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Abstract. Interpreting stable oxygen isotope (δ18O) records
from stalagmites is still one of the complex tasks in
speleothem research. Here, we present a novel model-based
approach, where we force a model describing the processes
and modifications ofδ18O from rain water to speleothem
calcite (Oxygen isotope Drip water and Stalagmite Model
– ODSM) with the results of a state-of-the-art atmospheric
general circulation model enhanced by explicit isotope di-
agnostics (ECHAM5-wiso). The approach is neither climate
nor cave-specific and allows an integrated assessment of the
influence of different varying climate variables, e.g. temper-
ature and precipitation amount, on the isotopic composition
of drip water and speleothem calcite.

First, we apply and evaluate this new approach under
present-day climate conditions using observational data from
seven caves from different geographical regions in Europe.
Each of these caves provides measuredδ18O values of drip
water and speleothem calcite to which we compare our sim-
ulated isotope values. For six of the seven caves modeled
δ18O values of drip water and speleothem calcite are in good
agreement with observed values. The mismatch of the re-
maining caves might be caused by the complexity of the cave
system, beyond the parameterizations included in our cave
model.

We then examine the response of the cave system to mid-
Holocene (6000 yr before present, 6 ka) climate conditions
by forcing the ODSM with ECHAM5-wiso results from
6 ka simulations. For a set of twelve European caves, we
compare the modeled mid-Holocene-to-modern difference

in speleothem calciteδ18O to available measurements. We
show that the general European changes are simulated well.
However, local discrepancies are found, and might be ex-
plained either by a too low model resolution, complex local
soil-atmosphere interactions affecting evapotranspiration or
by cave specific factors such as non-equilibrium fractiona-
tion processes.

The mid-Holocene experiment pronounces the potential of
the presented approach to analyseδ18O variations on a spa-
tially large (regional to global) scale. Modelled as well as
measured Europeanδ18O values of stalagmite samples sug-
gest the presence of a strong, positive mode of the North At-
lantic Oscillation at 6 ka before present, which is supported
by the respective modelled climate parameters.

1 Introduction

Various studies demonstrate a correlation between oxygen
isotopic (δ18O) variations measured in stalagmites and cli-
mate changes above the cave (e.g.Van Breukelen et al.,
2008; Cheng et al., 2009; Cruz et al., 2005; Fleitmann et al.,
2003; Mangini et al., 2005; McDermott et al., 2001; Partin
et al., 2007; Wang et al., 2001). However, theδ18O signal
of speleothem calcite is influenced by atmospheric, soil and
cave processes, making the untangling of the climate contri-
butions to the records a challenging task.

Atmospheric variables (e.g. near-surface air temperature
and amount of precipitation) and processes (e.g. moisture
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Table 1.Cave locations and compilation of isotope data from monitoring programs. Further information about the caves can be found in the
respective references. Drip waterδ18O values refer to VSMOW and calcite values to VPDB.

Cave Latitude Longitude Altitude δ18Odrip δ18Ocalcite Cave monitoring Reference
period

Soylegrotta 66.55◦ N 13.92◦ E 100–200 m −10± 0.23‰ −7.33 ‰ 1991–1992 Lauritzen and
(Norway) Lundberg (1999)

Korallgrottan 64.89◦ N 14.16◦ E 540–600 m −12.02± 0.41 ‰ −9.41 ‰ 2005–2006 Sundqvist
(Sweden) et al. (2007)

Tartair Cave 58.14◦ N 4.93◦ W 300–500 m −7.09± 0.26 ‰ −5.2± 0.35 2003–2005 Fuller
(Scotland) et al. (2008)

Bunker Cave 51.37◦ N 7.66◦ E 184 m −7.91± 0.18 ‰ −5.91± 0.30 ‰ 2006–2011 Riechelmann (2010)
(Germany) Riechelmann

et al. (2011)
Ongoing
monitoring

Katerloch 47.25◦ N 15.55◦ E 900 m −8.70± 0.10 ‰ −6.3 ‰ 2005–2007 Boch et al.
(Austria) (2009, 2010)

C. G. d. 45.85◦ N 11.09◦ E 1025 m −9.18± 0.24 ‰ −6.7 ‰ 2002–2003 Frisia
Giazzera 2006–2008 et al. (2007)
(Italy) Miorandi

et al. (2007)

Grotte 43.70◦ N 3.61◦ E 75 m −6.2 ‰ −4.9 ‰ 1999–2001 Frisia
de Clamouse et al. (2002)
(France) Plagnes

et al. (2002)

source and transport pathway from source to cave) affect
the isotopic oxygen composition of meteoric precipitation
that results in the drip water in the cave. These effects are
described in detail in comprehensive review publications
(e.g.Lachniet, 2009; McDermott, 2008; Mook, 2006). The
final drip waterδ18O signal (δ18Odrip) is furthermore influ-
enced by sub-surface processes in the biosphere, pedosphere
and karst layer. These processes, such as evapotranspiration,
calcite dissolution, the residence time of infiltrating water
and mixing of water parcels of different ages, depend on pa-
rameters like the temperature, the properties of the soil and
karst layer, thepCO2 of soil air and the type and seasonal
state of vegetation. The drip waterδ18O as well as the con-
ditions in the cave affect the final speleothemδ18O signal
(δ18Ocalcite). Cave temperature, the drip interval of the sta-
lactite feeding the stalagmite and supersaturation of the drip
water solution with respect to calcite determine the ampli-
tude of the isotopic fractionation between theδ18O signal
of drip water and speleothem calcite (e.g.Dreybrodt, 2008;
Mühlinghaus et al., 2009; O’Neil et al., 1969; Scholz et al.,
2009).

For an improved understanding of the relation between
climate variables and theδ18O signal of speleothems, for-
ward models are used to simulate the processes that mod-
ify the δ18O signal traveling from the atmosphere through
the soil to the cave (Baker and Bradley, 2010; Bradley et
al., 2010; Jex et al., 2010; Wackerbarth et al., 2010). In

this study we use the Oxygen isotope Drip water and Sta-
lagmite Model, ODSM (Wackerbarth et al., 2010; Wacker-
barth, 2012). Instead of forcing the model with observational
data (Wackerbarth et al., 2010), here we use the results of
a state-of-the-art atmospheric general circulation model with
explicit water isotope diagnostics, ECHAM5-wiso (Werner
et al., 2011). This approach allows us to simulate theδ18O
value of drip water and calcite on a global scale and under
different climate scenarios.McDermott et al.(2011) high-
lighted the value of analysing spatially large-scaleδ18Ocalcite
variations. They compiled a multitude of Holoceneδ18O sta-
lagmite samples and observed the changing zonal gradient
of theseδ18O values for different periods throughout the
Holocene. By focusing on a compilation of stalagmite sam-
ples, the study allows to draw conclusions on the driving rea-
sons for large-scaleδ18O and climate variation. Our study
presents a new approach which aims to contribute to the un-
derstanding and analysing of large scale climate variations
which is one of the key aspects to understand the driving
mechanisms of climate variability.

We first test our approach on seven European caves (Ta-
ble 1) which all provide both comprehensive present-day cli-
mate and monitoring data (δ18Odrip and recentδ18Ocalcite).
The results of an ECHAM5-wiso simulation covering the pe-
riod 1956–1999 are compared to observed climate variables
at the cave locations and used to force the ODSM. The re-
sulting modeledδ18Odrip andδ18Ocalciteare then compared to
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measured values. In the second part of this study, we employ
the model approach to the mid-Holocene (6000 yr before
present, 6 ka), where we compare our modeledδ18Ocalcite to
measured values from twelve European caves.

2 General model description

This section gives a short overview of both applied mod-
els, the ODSM and the ECHAM5-wiso. Specific experimen-
tal setup and simulation results using these models are de-
scribed in Sect. 3 (present-day experiment) and Sect. 4 (mid-
Holocene experiment).

2.1 The Oxygen isotope Drip water and Stalagmite
Model

The Oxygen isotope Drip water and Stalagmite Model
(ODSM) simulates the modification of theδ18O value in
precipitation (δ18Oprec) by several processes in the soil and
karst matrix (evapotranspiration, calcite dissolution, the res-
idence time of infiltrating water and mixing of water parcels
of different ages) to calculate theδ18O value of cave drip
water (δ18Odrip). Furthermore, calcite precipitation at the
stalagmite’s surface is considered in order to compute the
δ18O value of speleothem calcite (δ18Ocalcite). The descrip-
tion of isotopic fractionation during calcite precipitation is
one of the most challenging tasks in the speleothem sci-
ence.Mickler et al.(2006) pointed out that for most natural
speleothems a pure equilibrium fractionation (“equilibrium”
as described inMook, 2006) cannot be assumed. Since early
publications (e.g.Mook, 2006), ongoing research on natu-
ral and synthetic calcite precipitates (Friedmann and O’Neil,
1977; Kim and O’Neil, 1997; Coplen, 2007; Tremaine et
al, 2011; Feng et al., 2012) stresses the complexity of the
topic and how different cave specific parameters (tempera-
ture,pCO2 of cave air, calcite precipitation rate, cave ven-
tilation, bicarbonate concentration of the drip water) influ-
ence the isotopic fractionation. For estimation of the true ex-
tent of isotopic fractionation sophisticated models (e.g.Drey-
brodt, 2008; Mühlinghaus et al., 2009; Scholz et al., 2009)
must be applied. In principle the ODSM is able to apply ki-
netic fractionation as described byMühlinghaus et al.(2009).
However, this module require cave specific parameters which
are not given for all of the stalagmites in this study. There-
fore, we apply the equation byFriedmann and O’Neil(1977)
(Eq.1).

1000× ln α =
2.78 × 106

T 2
− 2.89 (1)

The equation leads to 0.3 to 0.8 ‰ higher values than stated
by the frequently used equation byKim and O’Neil (1997)
which is considered to describe the true equilibrium fraction-
ation. However, in a comparison of a compilation of different
modern caveδ18Odrip and the respectiveδ18Ocalcite by Mc-
Dermott et al.(2005) stated that theFriedmann and O’Neil

(1977) equation yields the most consistent results with mea-
sured values. They concluded thatFriedmann and O’Neil
(1977) seem to be the best representation of the isotopic
fractionation during calcite precipitation under natural cave
conditions. However, the uncertainty of this topic should be
noted and regarded when modelled and stalagmiteδ18O val-
ues are compared.

A more detailed description of ODSM can be found in
Wackerbarth(2012).

2.2 ECHAM5-wiso

ECHAM5 is the fifth generation of an atmospheric general
circulation model developed at the Max-Planck-Institute in
Hamburg (Germany). It was thoroughly tested under present-
day conditions (e.g.Roeckner et al., 2003, 2006) and used for
the last Intergovernmental Panel on Climate Change Assess-
ment Report (Randall et al., 2007). Recently, the ECHAM5
model has been enhanced by a water isotope module in the
model’s hydrological cycle (ECHAM5-wiso), following the
work of Joussaume et al.(1984); Jouzel et al.(1987) and
Hoffmann et al.(1998). This enhancement allows an explicit
simulation of isotopic changes within the entire hydrologi-
cal cycle, from ocean evaporation through cloud condensa-
tion and precipitation (rain- and snowfall) to surface water
reservoirs and runoff. On a global scale (Werner et al., 2011)
as well as on a European scale (Langebroek et al., 2011),
the ECHAM5-wiso simulation results are in good agreement
with available observations of the isotopic composition of
precipitation, both on an annual as well as on a seasonal time
scale.

3 Present-day experiment

In our present-day experiment, we force the ODSM with
the results from a present-day simulation using ECHAM5-
wiso (see Sects. 3.1 and 3.2). Model results are compared
to seven well-studied European caves for which climate data
andδ18Odrip andδ18Ocalcite are available. We first compare
the local ECHAM5-wiso simulation results to observational
data above the caves and discuss the differences (Sect. 3.3).
We then compare the modeledδ18Odrip and δ18Ocalcite to
the measured values within the caves (Sect. 3.4). Finally, we
evaluate in a sensitivity study how changes of local surface
conditions (temperature, precipitation amount andδ18Oprec)
will be imprinted in the simulatedδ18Odrip and δ18Ocalcite
values (Sect. 3.5), in general.

3.1 ECHAM5-wiso setup for present-day simulation

For this study, we are using results of a present-day
ECHAM5-wiso simulation covering the period 1956–1999,
recently performed byLangebroek et al.(2011). As sur-
face boundary conditions observed monthly mean sea surface
temperatures and sea ice cover data (Atmospheric Model
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Intercomparison Project (AMIP)-style forcing,Gates et al.,
1999) were used, theδ18O values of the ocean surface waters
were set to observed modern values, derived from the global
gridded data set compiled byLeGrande and Schmidt(2006).
The surface waters of large lakes were set to a constant value
of 0.5 ‰. The orbital configuration and the concentration of
greenhouse gases are set to modern values (CO2: 348 ppm,
CH4: 1650 ppb, N2O: 306 ppb).

The ECHAM5-wiso model was forced by sea surface tem-
peratures and sea ice cover only, leaving the atmosphere on
inter annual timescales free to evolve. As a consequence the
modeled climate of a specific month and year cannot be di-
rectly compared to the corresponding monthly mean value in
any observational data set. When comparing model results
with data, rather long-term mean values and variations shall
be applied.

ECHAM5-wiso was ran in a relatively high spectral res-
olution, T106L31, which corresponds to a horizontal grid
resolution of approximately 1.1◦ by 1.1◦, and 31 layers in
the vertical. For more information concerning this simulation
and a comparison to observational winter data over Europe,
we refer toLangebroek et al.(2011).

3.2 Forcing the ODSM

The ODSM is forced by the output values from ECHAM5-
wiso (temperature, precipitation, evapotranspiration and
δ18Oprec) in monthly resolution to capture the seasonality of
climate. Due to mixing processes in the soil and karst matrix
the δ18Oprec signal is smoothed to an infiltration weighted
meanδ18O value. To estimate the true residence time of wa-
ter in the epikarst is highly complicated.Boch(2010) denote
a residence time of “few years” for Katerloch Cave,Fuller et
al. (2008) state 1–10 yr in Tartair Cave and experiments from
Bunker Cave using tritium tracer indicate a residence time of
2–3 yr (Kluge et al., 2010). However, we calculatedδ18Odrip
values from monthly infiltration weightedδ18Oprec values at
Bunker Cave. The variability of the modelledδ18Odrip values
agrees with the measured variability when the averaging cov-
ers 48 months. Therefore, we set in this study the residence
time to a default value of 48 months. It should be noted, that
the averaging through the epikarst affects only the variance
of theδ18Odrip values, not the mean values itself.

Another key variable influencing the isotopic signature of
the drip water is the amount of evapotranspiration (ETpot)
occurring from upper soil layers. ETpot strongly depends
on local conditions, such as the soil and vegetation types.
The complexity of this variable motivated us to select and
compare two different methods of computation of ETpot:
(i) in the first setup (setup 1, named “ECHAM”), we use
the monthly mean temperature,T , amount of precipita-
tion, P , amount of evapotranspiration, ETpot, andδ18Oprec
directly as computed by ECHAM5-wiso. (ii) In the sec-
ond set of experiments (setup 2, “Thornthwaite”), we re-
place the ECHAM5-wiso ETpot values by ETpot calculated

using the Thornthwaite equation (Thornthwaite and Mather,
1957), where the amount of evapotranspiration depends on
the respective monthly temperature and the annual latitude-
depending pattern of temperature. Both implementations
yield monthly meanδ18Odrip andδ18Ocalcite time series from
which long-term mean values and 1-σ standard deviations
are computed. The latter can be compared to the selected ob-
served cave data (Sect. 3.4).

3.3 Comparison of modeled and measured climate
conditions above the caves

We evaluate our model results at seven European cave sites
supplying extensive data from cave monitoring programs.
Tables 1 and 2 show the geographic position, mean annual
temperature, mean annual amount of meteoric precipitation,
precipitation-weighted meanδ18Oprec, mean δ18Odrip and
modernδ18Ocalcite of these caves. For more details on the
observational data see the respective references (Table 1).

In general the simulated large-scale temperature, precipi-
tation andδ18Oprec patterns are comparable to observations
over Europe (Langebroek et al., 2011). However, differences
between modeled and measured climate values at specific
cave locations occur (Table 2). This can be due to the dif-
ferent lengths of the analysed time periods. With ECHAM5-
wiso we compute climatological means for a period of 44 yr,
while the observed data at the respective caves are in most
cases from shorter time periods. In addition, the ECHAM5-
wiso model was run in a spatial resolution of 1.1◦

× 1.1◦.
Therefore, it is possible that substantial differences occur be-
tween mean climate values of the grid box and the particular
cave location. Especially the amount of precipitation and the
correspondingδ18O values are sensitive to orographic fea-
tures and the topographic position of the cave in the grid box.

Mean annual temperature: the expected positive tempera-
ture gradient from high to mid latitudes is clearly visible in
both, the modeled and measured values (Fig.1a). However,
the simulated ECHAM5-wiso temperatures tend to be lower
(1.5 to 3.5◦C) than the measured values (except Katerloch
Cave and Tartair Cave).

Annual amount of precipitation: the simulated annual
amount of precipitation agrees fairly well in all the locations
except Tartair Cave and Bunker Cave (Fig.1b). For Bunker
Cave, Clamouse Cave, and Korallgrottan precipitation is too
high by 240, 160, and 140 mm yr−1, respectively, while for
Tartair Cave the amount of precipitation is much too low
(+1030 mm yr−1). The discrepancies for Bunker Cave, Cla-
mouse Cave and Korallgrottan agree with the general mod-
elling results for present-day conditions.Langebroek et al.
(2011) stated that the amount of winter precipitation (DJF)
from ECHAM5-wiso shows slightly higher values than the
reanalysis data from ERA40 (Uppala et al., 2005). How-
ever, the extremely low precipitation amount modeled by
ECHAM5-wiso compared to the observed value at Tartair
Cave cannot be explained by this general model deficit, but
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Table 2.Compilation of ECHAM5-wiso results and observational climate data for each cave. The last column shows the difference between
modelled and observed data.

Annual mean model results Observational data Monitoring period Simulation offset
± 1σ -standard deviation (1956–1999) (observation – simulation)

Soylegrotta

P [mm] 1120± 180 NA
T [

◦C] 0.2± 0.7 2.7 1966–1989 +2.5
δ18Oprec [‰] −10.7± 0.6 −9.8 1991–1992 +0.9
ET [mm] 440± 40 NA
T cave[

◦C] 2.7 see references Table 1 +2.5

Korallgrottan

P [mm] 1000± 110 860 1961–1990 -140
T [

◦C] −0.5± 0.8 1 1961–1990 +1.5
δ18Oprec [‰] −12.4± 0.7 −13.7 1975–1988 −1.3
ET [mm] 340± 20 NA
T cave[

◦C] 2 see references Table 1 +2.5

Tartair

P [mm] 870± 130 1900 1971–2000 +1030
T [

◦C] 7.7± 0.4 7.1 1971–2000 −0.6
δ18Oprec [‰] −8.1± 0.5 −7.1 2003–2005 +1
ET [mm] 540± 50 NA
T cave[

◦C] 7.1 see references Table 1 −0.6

Bunker

P [mm] 1140± 140 900 1978–2007 −240
T [

◦C] 8.4± 0.7 10.5 1978–2007 +2.1
δ18Oprec [‰] −7.7± 0.6 −7.7 2006–2011 0
ET [mm] 600± 30 NA
T cave[

◦C] 10.8 see references Table 1 +2.1

Katerloch

P [mm] 750± 150 870 1973–2004 +120
T [

◦C] 8.5± 0.7 8 2006–2008 −0.5
δ18Oprec [‰] −9.0± 1.0 −8.8 1973–2004 +0.2
ET [mm] 540± 50 NA
T cave[

◦C] 6 see references Table 1 −2.5

Giazzera

P [mm] 910± 160 970 1992–2004 +60
T [

◦C] 10.9± 0.7 13.3 1992–2004 +2.4
δ18Oprec [‰] −7.1± 0.7 −8.7 2002–2004 −1.7
ET [mm] 610± 50 NA
T cave[

◦C] 8.5 see references Table 1 −2.4

Clamouse

P [mm] 760± 120 600 2003–2007 −160
T [

◦C] 11± 0.6 14.5 1997–2007 +3.5
δ18Oprec [‰] −6.4± 0.5 −5.8 1997–2007 +0.6
ET [mm] 560± 50 NA
T cave[

◦C] 14.5 see references Table 1 +3.5
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Fig. 1. Comparison of observational data (black) and model results (red: Setup 1 “ECHAM”, blue: Setup 2 “Thornthwaite”) for each cave
for (a) mean annual temperature,(b) annual amount of precipitation,(c) δ18Oprec, (d) δ18Odrip, and(e) δ18Ocalcite. Drip waterδ18O values
refer to VSMOW and calcite values to VPDB.

might be caused by the position of the cave. Tartair Cave is
located close to the Atlantic Ocean on the weather side of the
Scottish Highlands, which could result in much higher pre-
cipitation values then the mean value of the respective grid
box.

δ18O of precipitation: the results of simulated and mea-
suredδ18Oprec values are displayed in Fig.1c. In general,
the isotopic composition of precipitation depends on (i) the
temperature effect, referring directly to lowerδ18Oprec sig-
nal with colder surface temperatures; (ii) the altitude effect
describing the isotopic depletion, when an air mass is lifted
to higher altitudes due to cooling of the air mass accompa-
nied with a rain-out effect; (iii) the latitude-effect by which
an air mass depletes in18O with increasing latitude due to

lower temperatures; and (iv) the continental effect describ-
ing the depletion of an air mass through successive rain-out
on the path from the coast across landmasses (Mook, 2006).
Therefore, theδ18Oprecvalue at a cave location will be lower
with decreasing surface temperatures (increasing latitudes),
increasing distance from the coast and increasing altitudes,
and vice versa.

Observedδ18Oprec values: as seen in Fig.1c, the mea-
sured precipitation samples from Soylegrotta and Korallgrot-
tan (high latitude, cold surface temperature) show the low-
est δ18Oprec. The precipitation at Korallgrottan is isotopi-
cally lower than at Soylegrotta, since Korallgrottan is located
more inland, leading to additional depletion through the rain-
out effect at Korallgrottan. At Tartair Cave the mean annual
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temperature is about 6◦C warmer than in Soylegrotta. There-
fore, the measuredδ18Oprecvalue is heavier by 4 ‰. The ob-
servedδ18Oprec value for Bunker Cave is similar to Tartair
Cave, despite the annual temperature which is about 3.5◦C
warmer at Bunker Cave. However, Bunker Cave is not di-
rectly near the shore like Tartair Cave. Thus, theδ18O value
of precipitation becomes lower on the path from ocean to
Bunker Cave counteracting the temperature effect. Though
Katerloch Cave lies farther south than Bunker Cave, the loca-
tion is at a rather high altitude (about 1000 m). Theδ18O val-
ues of an an air mass decrease during its way upwards to the
cave. Hence, theδ18Oprec signal at the cave is lower. In ad-
dition the mean annual temperature is colder than at Bunker
Cave and the location is farther away from the ocean – two
effects that increase the depletion of theδ18Oprec. Giazzera
Cave is located nearly at the same altitude as Katerloch Cave.
Surface temperature is about 5◦C warmer at Giazzera Cave.
Therefore, theδ18Oprec should be higher than in Katerloch
Cave. However, both measured values are nearly the same.
Theδ18Oprec at Clamouse Cave shows the highest observed
value. Here the Mediterranean influence might yield higher
δ18Oprec values, since the Mediterranean Sea is isotopically
heavier than the Atlantic Ocean due to high evaporation rates
from the relatively small water basin compared to the At-
lantic Ocean (Lachniet, 2009).

Simulatedδ18Oprec values: in general the simulated Euro-
peanδ18Oprec values are in fair agreement with the obser-
vations. However, some small differences occur at the vari-
ous cave sites. For Soylegrotta the simulatedδ18Oprec is too
low by 0.9 ‰ which might originate from the simulated an-
nual mean temperature (Table 2), which is 2.5◦C lower than
the observed value. For Korallgrottan the simulatedδ18Oprec
value is 1.3 ‰ too high when compared to observed data.
The reason could be an underestimation of the continental
effect depleting theδ18Oprec signal of the air mass while
transported to the cave. The modeledδ18Oprec value at Tar-
tair Cave is again too low (by 1 ‰), while for Bunker Cave
and Katerloch Cave the modeled values agree well with the
data. Theδ18Oprec at Giazzera Cave is 1.7 ‰ heavier than
the monitoring data, which could possibly be caused by an
overestimated influence of the Mediterranean in the model.
For Clamouse Cave this influence seems to be present in
the model, though the simulated temperatures are 3.5◦C too
low resulting in slightly lowerδ18Oprec values at the cave’s
location.

In summary, the comparison between simulated and ob-
servedδ18Oprec values must be carried out with some cau-
tion since the period of observation is in some cases rather
short. Only for Bunker Cave, Katerloch Cave and Clamouse
Cave could the meanδ18Oprec value and standard deviation
be given for periods longer than 10 yr. For Bunker Cave and
Katerloch Cave the standard deviation of the annual weighted
δ18Oprec is 0.7 ‰. Due to the lack of direct observational
data, we assume that the variations are in an equal range
also for the other caves. If this assumption is correct, all the

modeled and observed values agree within the 2-σ standard
deviation.

3.4 Comparison ofδ18Odrip and δ18Ocalcite results

In the following sections and wheneverδ18O values are
stated, calciteδ18O values refer to the VPDB standard, while
drip water or precipitationδ18O values refer to VSMOW.

In the δ18Odrip values the characteristic European pattern
as discussed forδ18Oprec is present in both the simulated
and measured values (Fig.1d). With respect to the simu-
lated amount of evapotranspiration, for four caves setup 1,
“ECHAM” seems to be a good representation (Clamouse
Cave, Katerloch Cave, Korallgrottan and Soylegrotta). Alter-
natively, for three caves (Clamouse Cave, Bunker Cave, Tar-
tair Cave) the measuredδ18Odrip value can be well simulated
by the model approach with setup 2 “Thornthwaite”. For Gi-
azzera Cave none of the two approaches is in agreement with
the measuredδ18Odrip value.

Assessing the reason for this mismatch is complicated.
One reason could be an erroneously modeled seasonal in-
filtration pattern. Alternatively, the cave system could bear
some local features not included in the ODSM.

Overall the general spatial pattern of measuredδ18Odrip
values is well grasped by our model approach. The agree-
ment between modeled and measuredδ18Odrip values, as
calculated by the Root Mean Square Deviation RMSD, is
1.32 ‰ for setup 1 “ECHAM” and 1.36 ‰ for setup 2
“Thornthwaite”.

As seen in Fig.1d, the simulatedδ18Odrip andδ18Ocalcite
values from setup 2 (ETpot from Thornthwaite) are signif-
icantly lower than from setup 1 (ETpot from ECHAM5-
wiso) for nearly all the cave locations. This is caused by
lower evapotranspiration rates during winter calculated by
the equation fromThornthwaite and Mather(1957) com-
pared to the ECHAM5-wiso computation. Lower winter
evapotranspiration leads to higher infiltration rates and to a
higher weight of the isotopically lighter winter season. How-
ever, in the Mediterranean (Clamouse Cave and Giazzera
Cave) both setups agree with each other, indicating that the
seasonal patterns of evapotranspiration are similar. These two
cases suggest that the model setups yield equivalent results in
a warm climate.

In general, three reasons can cause discrepancies between
modeled and observed values ofδ18Odrip: (i) offsets between
modeled and observed climate and isotope input parameters
and their seasonal pattern lead to shifts in theδ18Odrip values
(according to the sensitivities discussed in Sect. 3.5). (ii) The
modeled seasonal pattern of infiltration might be not repre-
sentative for the true seasonal pattern. Too high simulated
δ18Odrip values correspond to an overestimated weight of the
warmer season while too lowδ18Odrip values are assumed to
indicate a stronger influence of the colder season. (iii) The
enrichment with respect to18O of the water parcel during
evapotranspiration might be overestimated. The percentage
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Fig. 2. Sensitivity of δ18Odrip and δ18Ocalcite to temperature, precipitation andδ18Oprec. Each parameter is varied in a certain range:

temperature from−5◦C to +5◦C, precipitation from−50 mm month−1 to +50 mm month−1 andδ18Oprec from −2 to +2 ‰. The respective
parameter shift is added to the whole time series and the ODSM recalculates the(a) meanδ18Odrip, and(b) meanδ18Ocalcite with this

modified data set. Note, that this figure shows the sensitivity asδ18O anomalies with respect to the standard experiment (centre dot). Drip
waterδ18O values refer to VSMOW and calcite values to VPDB.

of evaporation from the amount of evapotranspiration is in
the model estimated for the summer season (AMJJAS) to be
20 % and in the winter months (ONDJFM) to be 50 %. This
could especially be a major problem in warmer regions, since
evaporation rates are higher than in colder regions.

The pattern ofδ18Ocalcite is similar to theδ18Odrip pattern
(Fig. 1e). However, theδ18Ocalcite variations among the dif-
ferent caves are smaller than forδ18Odrip, because the iso-
topic fractionation from drip water to calcite is anticorrelated
to temperature. This results in relatively smaller differences
of the oxygen isotope ratios between drip water and the pre-
cipitated calcite in warmer caves and larger differences in
colder caves. For the evaluation of modeledδ18Odrip and
δ18Ocalcite values it should be kept in mind that the ODSM
model calculates the isotopic fractionation between drip wa-
ter and speleothem calcite as occurring under equilibrium
conditions. Therefore, the decision if the model approach
is representative of the true conditions at the cave should
mostly rely on the comparison ofδ18Odrip values. For ex-
ample, at Katerloch Cave the simulatedδ18Odrip agrees with
the measured value, while the measuredδ18Ocalcite value is
higher than the modeledδ18Ocalcitevalue. This is an effect of
the kinetic fractionation and additional enrichment of18O in
the calcite during calcite formation, which is not included in
the ODSM model due to lack of required input parameters.

3.5 Sensitivity ofδ18Odrip and δ18Ocalcite values
regarding changes ofT , P and δ18Oprec

In principle, a mismatch between modeled and measured
T , P and δ18Oprec might lead to a significant offset be-
tween the simulated and observedδ18Odrip and δ18Ocalcite
values. Therefore, we analyse here the general effect of
these variables on theδ18Odrip and δ18Ocalcite values. As a

representative, Fig.2 illustrates the sensitivity ofδ18Odrip
(Fig. 2a) andδ18Ocalcite (Fig. 2b) to changes inT , P and
δ18Oprec for Bunker Cave. Although the sensitivity differs
slightly for the other caves, Fig.2 is a good example to inves-
tigate the occurring effects. The x-axes (“sensitivity step”)
show how temperature, precipitation,δ18Oprec are varied in
the sensitivity experiment relative to the mean annual values.
The investigated temperature range is−5 to +5◦C, the pre-
cipitation range−50 to +50 mm month−1 and theδ18Oprec is
varied from−2 to +2 ‰.

Temperature sensitivity: the temperature influences the
isotopic fractionation during evapotranspiration. There are
two counteracting effects: (i) fractionation effect: with de-
creasing temperature fewer heavy18O isotopes are evapo-
rated, leading to slightly higherδ18Odrip values. According
to Majoube(1971) the temperature dependence of the frac-
tionation is small (0.09 ‰/◦C). (ii) Weighting effect: with in-
creasing temperature, the evapotranspiration increases in the
summer months leading to a higher weight of the precipita-
tion from the winter season. This leads to lowerδ18O values
of the drip water, since precipitation from the winter season is
isotopically lighter. By adopting the evapotranspiration from
ECHAM-wiso (setup 1), we only consider the first temper-
ature effect onδ18Odrip (see Fig.2a, black lines). In con-
trast, when ETpot is computed by the Thornthwaite equation
(setup 2), the precipitation weighting effect is also included
(Fig. 2a, grey lines). At Bunker Cave this leads to decreas-
ing δ18Odrip values with increasing temperature. Compared
to the δ18Oprec or precipitation sensitivity (see below) the
temperature sensitivity ofδ18Odrip is rather small. The iso-
topic fractionation with respect to oxygen from drip water
to speleothem calcite (Friedmann and O’Neil, 1977) has in
general a temperature gradient of about−0.23 ‰/◦C. Hence,
the temperature sensitivity ofδ18Ocalcite is affected by this
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gradient on top of theδ18Odrip changes (see Fig.2b, black
and grey lines).

Precipitation sensitivity: the influence of a changing
amount of precipitation is complex. Two mechanisms must
be distinguished: (i) change of the seasonal infiltration pat-
tern. If the monthly mean precipitation amount decreases for
all months, the already smaller infiltration in summer due
to higher temperatures and more evapotranspiration expe-
riences a larger relative change than the amount of winter
infiltration. This shifts the weight to the winter season. As
winter δ18Oprec shows low values due to low temperatures,
the resultingδ18Odrip value will be lower as well when the
weight of winter precipitation increases. This shift in season-
ality affectsδ18Odrip computed both in setup 1 “ECHAM”
and setup 2 “Thornthwaite”. (ii) Effect on isotopic fractiona-
tion during evapotranspiration (degree of18O enrichment in
the soil water). In setup 2 “Thornthwaite”, a decrease in pre-
cipitation furthermore may increase theδ18Odrip due to the
18O enrichment of the soil water during evapotranspiration
caused by diminishing the infiltration/precipitation ratio. In
total, both effects (i) and (ii) counteract each other. There-
fore, the particular situation at the cave must be considered
to estimate which effect prevails.

A major aspect of precipitation is the seasonality, since
more or less precipitation yields more or less contribution
of this water to the cave drip water. This shifts theδ18Odrip
value toward the season of the highest infiltration. A shift in
seasonality can therefore result in a major variation of the
meanδ18Ovalue value. As an example, if winter precipitation
increases the meanδ18Odrip decreases to due lower isotopic
values during the winter season compared to the summer sea-
son. For theδ18Ocalcite, a shift in seasonality can be even
more complicated, since other effects in the cave like super-
saturation, cave air pCO2 and ventilation can play a role for
the contribution of monthlyδ18Oprec values to theδ18Ocalcite
value of the growing stalagmite.

δ18Oprec sensitivity: a change in the isotopic composition
of precipitation does not affect the fractionation occurring in
the ODSM. Therefore, a shift of the initialδ18Oprec signal
can be directly translated into the same shift inδ18Odrip and
δ18Ocalcite (Fig. 2, green lines).

4 Mid-Holocene experiment (6 ka)

4.1 Experimental setup of the 6 ka experiment

After the evaluation of our model setup using present-day cli-
mate conditions, we apply our model approach to the climate
conditions for 6 ka before present. Unfortunately, only three
of the stalagmites from the present-day analysis can be used
for comparison with 6 ka (Korallgrottan, Bunker Cave, Cla-
mouse Cave) due to the different growth periods. To extend
our analysis, we have therefore selected several other sta-
lagmites which grew in this mid-Holocene period, although

these could not be used for the present-day analysis as they
do not supply the required cave monitoring data.

We compare the modeled to measuredδ18Ocalcite differ-
ence between present-day and 6 ka, assuming that local, cave
specific model offsets remain constant over this time period.
This allows for including caves with offsets in the present-
day experiment, like Korallgrottan.

4.1.1 Studied stalagmites and measured1δ18Ocalcite

The study fromMcDermott et al.(2011) gives an excel-
lent overview of European stalagmites, their growth peri-
ods and correspondingδ18Ocalcite values. From this compi-
lation twelve caves were selected (Table 3) with stalagmites
that grew at 6 ka as well as at present. For the 6 ka value of
the Spannagel Cave, we use the recently updatedδ18Ocalcite
value of the COMNISPA record (Vollweiler et al., 2006;
Vollweiler, 2010).

Six stalagmites (from Korallgrottan, B7 Cave, Spannagel
Cave, Ḧolloch Cave, Savi Cave, and Garma Cave) reveal
higherδ18Ocalcite value at present-day compared to 6 ka BP,
while six others show a lowerδ18Ocalcitevalues (Poleva Cave,
Bunker Cave, Ernesto Cave, Crag Cave, Carburangeli Cave,
Clamouse Cave) (Table 3).

4.1.2 ECHAM-wiso and ODSM setup for the
mid-Holocene

The mid-Holocene ECHAM5-wiso simulations were forced
by sea surface temperatures and sea ice cover extracted
from transient Holocene simulations performed with three
different fully coupled ocean-atmosphere models. By us-
ing the forcing derived from three different coupled mod-
els, we can compare a range of possible mid-Holocene cli-
mate conditions. The three models used are the Commu-
nity Climate System Model CCSM3 (Collins et al., 2006),
COSMOS (Jungclaus et al., 2010) in a coupled atmosphere-
ocean-land surface model version documented inWei and
Lohmann(2012), and ECHO-G (Legutke and Voss, 1999).
The transient integrations were performed with identical or-
bital forcing, pre-industrial level of greenhouse gas concen-
trations, and were accelerated by a factor of ten. For details
on the transient simulations, we refer toLorenz and Lohmann
(2004) for ECHO-G andVarma et al.(2012) for CCSM3 and
COSMOS. From these transient simulations, the monthly
mean 6 ka and preindustrial values (calculated over a 50-yr
period, each) were used to determine 6 ka anomalies of SST
and sea ice cover. These anomalies were then added to the
present-day AMIP SST and sea ice values and the result-
ing fields were used as forcing for the ECHAM5-wiso 6 ka
time-slice experiments. Thus, our 6 K simulations are driven
by a climatology of monthly mean SST and sea ice cover.
This setup is technically different from the ECHAM5-wiso
present-day simulation prescribing annually varying monthly
mean SST and sea ice fields. However, as we compare in
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Table 3.Cave locations and compilation of isotope data of the studied 12 speleothems with mid-Holocene (6 ka)δ18Ocalcitevalues, extracted
from McDermott et al. (2011). Calciteδ18O values refer to VPDB.

Cave Stal. Latitude Longitude Altitude δ18OcalcitePD δ18Ocalcite6 k Reference

Korallgrottan K1 64.89◦ N 14.16◦ E 570 m −8.55 ‰ −9.2 ‰ Sundqvist et al.
(Sweden) (2007)

Crag Cave CC3 52.23◦ N 9.44◦ W 60 m −3.8 ‰ −2.9 ‰ McDermott et al.
(Ireland) (2001)

Bunker Cave BU4 51.37◦ N 7.66◦ E 184 m −5.7 ‰ −5.4 ‰ Riechelmann
(Germany) (2010)

B7 Cave B7-5 51.34◦ N 7.65◦ E 185 m −5.7 ‰ −5.8 ‰ Niggemann et al.
(Germany) (2003)

Spannagel Cave COMNISPA 47.09◦ N 11.67◦ E 2500 m −7.9 ‰ −8.3 ‰ Vollweiler
(Austria) (2010)

Hölloch Cave StalHoel1 47◦ N 10◦ E 1440 m −7.97 ‰ −8.27 ‰ Wurth et al.
(Germany) (2004)

Ernesto Cave ER76 45.96◦ N 11.65◦ E 1165 m −7.8 ‰ −7.6 ‰ See McDermott et al.
(Italy) (2011)

Savi Cave SV1 45.61◦ N 13.88◦ E 441 m −6.1 ‰ −6.74 ‰ Frisia et al.
(Italy) (2005)

Poleva Cave PP9 44.77◦ N 21.73◦ E 390 m −8.62 ‰ −7.8 ‰ Constantin et al.
(Romania) (2007)

Clamouse Cave CL26 43.7◦ N 3◦ E 75 m −4.95 ‰ −4.76 ‰ McDermott et al.
(France) (1999)

Garma Cave Gar01 43.43◦ N 3.66◦ W 75 m −3.99 ‰ −4.39 ‰ See McDermott et al.
(Spain) (2011)

Carburangeli CR1 38.15◦ N 13.3◦ E 22 m −6 ‰ −5.5 ‰ Frisia et al.
(Italy) (2006)

the following analyses long-time mean simulation values,
only, this difference in the model setup can be neglected.
The ECHAM5-wiso simulations were furthermore forced by
the 6 ka orbital configuration and greenhouse gas concen-
trations (CO2: 280 ppm, CH4: 650 ppb, N2O: 270 ppb) as
agreed upon by the Paleoclimate Modelling Intercomparison
Project Phase III (PMIP3,Braconnot et al., 2007).

All three ECHAM5-wiso simulations (with CCSM-
forcing: ECHAM5-wisoCCSM, COSMOS-forcing: ECHAM5
-wisoCOSMOS, and ECHO-G-forcing: ECHAM5-wisoECHO-G)
were run in T106L31 resolution for 12 yr. The first two years
are regarded as spin-up and the mean of the last 10 yr are
used for our data-model comparison. Like for the present-
day ECHAM5-wiso simulation, we use the modeled monthly
mean values of temperature, precipitation andδ18Oprec to
computeδ18Ocalcite using the ODSM. Again we use two
setups for estimating the amount of evapotranspiration:
(i) taking the evapotranspiration directly as computed by
ECHAM5-wiso; and (ii) calculating the evapotranspiration
by the Thornthwaite equation using the temperature as
computed by ECHAM5-wiso.

4.2 Comparison of modeled 6 ka temperature,
precipitation and δ18Oprec

In Fig. 3 the differences between the 6 ka and present-day
experiments (6 ka-PD) are given for annual and boreal winter
(December-January-February) mean temperature, for precip-
itation (Fig.4) andδ18Oprec (Fig. 5) over Europe.

The annual mean and boreal winter temperature anoma-
lies reveal significantly lower values in the ECHAM5-
wisoCOSMOSsimulation relative to the ECHAM5-wisoCCSM
and ECHAM5-wisoECHO-G simulations (Fig.3a–f). In both
ECHAM5-wisoECHO-G and ECHAM5-wisoCCSM the mid-
Holocene warming is most pronounced in Central Europe.

The mean annual 6 ka-PD anomaly of precipitation is
highest in the ECHAM5-wisoCCSM simulation with the
most pronounced seasonal cycle (Fig.4a–f). During win-
ter ECHAM5-wisoCCSM reveals a distinct north–south gra-
dient from wetter to drier conditions with a minimum at
Poleva Cave. The same north–south gradient is also vis-
ible in ECHAM5-wisoECHO-G although less pronounced.
ECHAM5-wisoCOSMOSlacks a clear gradient of the precipi-
tation anomaly during winter and reveals hardly any changes
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Fig. 3. Temperature anomalies (6 k-PD) in Europe as simulated by ECHAM5-wiso forced by sea surface temperatures and sea ice cover
extracted from transient Holocene simulations performed with three different fully coupled ocean-atmosphere models (CCSM, COSMOS,
ECHO-G). First row: annual mean temperature, second row: winter temperature.

Fig. 4.As Fig. 3, but for precipitation anomalies (6 k-PD).
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Fig. 5.As Fig. 3, but forδ18Oprecanomalies (6 k-PD) given relatively to VSMOW standard.

in the annual amount of precipitation from 6 ka to present
over the European continent.

The δ18Oprec anomalies in the ECHAM5-wisoCOSMOS
simulation are most negative (Fig.5a–f), which can be as-
cribed to the low temperatures in this experiment. The mean
winter δ18Oprec anomalies from ECHAM5-wisoECHO-G re-
veal a north-west to south-east gradient from negative to pos-
itive anomalies, while the spatial pattern from ECHAM5-
wisoCCSM shows positive anomalies in central Europe and
negative in northern and southwestern Europe. In both se-
tups the seasonality is suggested to be more pronounced at
6 ka than today (Fig.5a, b, d and e).

4.3 Measured and simulatedδ18Ocalcite anomalies of the
mid-Holocene

The correlation between modeled and measured stalagmite
1δ18Ocalcite (6 ka-PD) anomalies is displayed in Fig.6,
together with calculated RMSD values. The results from
ECHAM5-wisoCCSM (both evaporation setups) show the
lowest RMSD values and therefore these set ups seem to
be the best choice to simulate European 6 ka stalagmite
1δ18Ocalcite (6 ka-PD) anomalies.

As shown in Fig.6a and b, the ECHAM5-wisoCCSM re-
sults agree roughly in most1δ18Ocalcite (6 ka-PD) anomalies
for the Mediterranean stalagmites and up to B7 Cave. For
higher latitudes (Crag Cave, Korallgrottan) the modeled val-
ues differ from real1δ18Ocalcite (6 ka-PD) values. For five

caves, the offset between modeled and measured1δ18Ocalcite
(6 ka-PD) values is 0.4 ‰ or greater: Korallgrottan, Crag
Cave, Bunker Cave, Savi Cave and Poleva Cave. For Korall-
grottan ECHAM5-wiso seems to be unable to simulate the
full extend negative isotopic anomalies. The strongly positive
anomaly of the1δ18Ocalcite (6 ka-PD) value in Crag Cave
can also not be reached by our model setup. This might be
an effect of fractionation kinetics, but without present-day
δ18Odrip values, the true reason is difficult to determine. In
contrast, for Bunker Cave the influence of a strong kinetic
was revealed in the present-day experiment. Due to the very
low drip rate of the stalagmite from Bunker Cave the influ-
ence of fractionation kinetics might have a large effect. For
Poleva Cave it is challenging to assess why the cave system is
not captured by the model. It is possible that the geographic
position in the Carpathians and the influence of the Black Sea
versus Mediterranean as source of precipitation complicates
the local climate conditions as hinted byBadertscher et al.
(2011) for this region.

Figure 7 shows the spatial European pattern of mea-
sured and simulated1δ18Ocalcite(6 ka-PD) anomalies for the
ECHAM5-wisoCCSM simulation. The simulated1δ18Ocalcite
(6 ka-PD) patterns (Fig.7b and c) show less spatial het-
erogeneity than the measured1δ18Ocalcite (6 ka-PD) values
(Fig. 7a). The modelling results suggest lowest1δ18Ocalcite
(6 ka-PD) values in central Western Europe and most posi-
tive values over southeastern Europe. The difference between

Clim. Past, 8, 1781–1799, 2012 www.clim-past.net/8/1781/2012/



A. Wackerbarth et al.: Simulated δ18Ocalcite in European caves 1793

Fig. 6. Modelled versus measured stalagmiteδ18Ocalcite (6 k-PD) values for the different model setups. The value of the Root Mean Square
Deviation, RMSD, gives an evaluation of how well the modelledδ18Ocalcite(6 k-PD) values agree with the data. Black lines indicate the 1 : 1
ratio. All calciteδ18O values refer to VPDB.

the smooth modeled and the irregular measured1δ18Ocalcite
(6 ka-PD) anomaly patterns indicate that the simulation re-
sults lack some location and/or cave specific features.

One major factor influencing the stalagmiteδ18Ocalcite is
the kinetic fractionation. With the current model setup this
cannot be approximated. Other discrepancies between mod-
eled and measured 6 ka-PD values might be caused by the
1.1◦

× 1.1◦ resolution of the climate model or by an inade-
quate representation of the mid-Holocene climate in the sim-
ulations. However, by applying a range of different sea sur-
face temperature and sea ice fields (as derived from CCSM3,

ECHO-G and COSMOS), we already capture a broad band
of possible mid-Holocene temperature and precipitation pat-
terns in this study.

4.4 Interpretation of the 6 ka δ18O anomalies

From this study the ECHAM5-wisoCCSM seems to be the
best climate model setup to simulate stalagmite data from
Europe. The modeled patterns of winter temperature, pre-
cipitation and δ18Oprec (Figs. 3, 4 and 5) display some
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Fig. 7. δ18Ocalcitedifference 6 k-PD in Europe:(a) measured stalagmite date,(b) and(c) simulated by ECHAM5-wiso coupled with CCSM
using two different setups for calculating the amount of evaporation (setup 1 “ECHAM” and setup 2 “Thorntwaite”). The coloured dots
represent the cave locations and respective value forδ18Ocalcite (6 k-PD) according to the given colour bar.

similarities with a strong positive phase of the North Atlantic
Oscillation (NAO).

The basics of the NAO and the impact on the European
winter climate conditions are described in several publica-
tions (e.g.Hurrel, 2008; Jones et al., 1997; Wanner, 2001).
Trigo et al.(2002) andBaldini (2008) determined correlation
coefficients between the NAO index and precipitation, tem-
perature and theδ18Oprecvalue for the present-day European
winter climate. According to these studies a positive mode
of the NAO (NAO+) results in a characteristicδ18Ocalcitepat-
tern, as shown by Fig.8.

During NAO+ strong westerlies from the Atlantic Ocean
transport a large amount of precipitation to mid- and north-
ern Europe (accounting for German caves, caves in north-
ern Alps, Garma Cave) during the winter months accom-
panied by higher winter temperatures andδ18Oprec values
compared to a negative NAO mode (NAO-). For Crag Cave
the correlations of temperature andδ18Oprec to NAO are
positive, but a correlation to the amount of winter precip-
itation is not detected (Baldini, 2008). High latitude loca-
tions (e.g. Korallgrottan) reveal a negative correlation be-
tween NAO+ andδ18Oprec and the amount of winter precipi-
tation (Baldini, 2008). In southern Europe (south of the Alps)

winter precipitation originates primarily from the Mediter-
ranean during NAO+ and is therefore reduced. During NAO-
precipitation has its origin in the Atlantic. Temperature and
δ18Oprec are positively correlated to the NAO index due to
the diminished Atlantic influence (Baldini, 2008). In addi-
tion, a strong positive NAO phase is accompanied by a weak
Siberian anticyclone restraining cold air from the north to in-
fluence the climatic condition in southeast Europe (important
for Poleva Cave). The positive correlation to temperature and
anticorrelation to precipitation was shown byWinterhalder
(2011), Tomozeiu et al.(2002) andTomozeiu et al.(2005).

The measured 6 ka1δ18Ocalcite (6 ka-PD)anomaliesre-
semble the expected NAO+ induced1δ18Ocalcite (6 ka-PD)
pattern to a large extent (Fig.8). The stalagmites from Ko-
rallgrottan, B7 Cave, Spannagel Cave, Hölloch Cave and
Garma Cave show lower 6 kaδ18Ocalcite values compared
to present-day, while the samples from Crag Cave, Clam-
ouse Cave, Ernesto Cave, Poleva Cave and Carburangeli
Cave reveal positive anomalies.δ18Ocalcite anomalies. Only
two caves (Bunker and Savi Cave) disagree with the ex-
pected1δ18Ocalcite (6 ka-PD) values. A possible reasons for
discrepancies are stalagmite kinetics, offsets between mod-
elled and true seasonal climate parameters, determination
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Fig. 8. Scheme illustrating the impact of the positive NAO mode on the European pattern of temperature, precipitation,δ18Oprec and the
resulting, hypotheticalδ18Ocalcite as discussed in the text. “+” represents an increase, “−” represents a decrease and the circle represents
invariance of the respective parameters. Coloured dots represent the measured 6 kaδ18Ocalciteanomalies from the different speleothems.

of evapotranspiration or the position of the cave in the grid
box as discussed above (Sect. 3.4). This characteristic, mea-
sured1δ18Ocalcite(6 ka-PD) pattern confirms the presence of
a positive mode of the NAO at 6 ka.

SST-based reconstructions of the NAO (Rimbu et al.,
2004), modelling studies ofLorenz and Lohmann(2004),
and a collection of proxy evidence summarised byWanner
et al. (2008) also indicate a positive NAO phase during the
mid-Holocene. The same statement is supported byJansen
et al. (2007) suggesting an overall temperature increase for
Europe compared to pre-industrial times.

In the simulated 1δ18Ocalcite (6 ka-PD) values from
ECHAM5-wisoCCSM, the predicted NAO+ related pattern
is also visible, showing a lowδ18Ocalcite values for Garma
Cave, Ḧolloch Cave, Spannagel Cave, Bunker Cave, B7 Cave
and higher values in the Mediterranean region (Fig.7).
Outliers are theδ18Ocalcite values from Korallgrottan and
Crag Cave. Although the ECHAM5-wiso output captures the
strong NAO+ phase pattern, the other seasons weaken the im-
print of the winter season in the drip water and calciteδ18O
signal.

5 Summary and conclusions

We present in this study a new approach that aims to improve
our understanding of the climate factors influencing the oxy-
gen isotope ratio measured in stalagmites (δ18Ocalcite). We
force an Oxygen isotope Drip water and Stalagmite Model
(ODSM) with climate variables (temperature, precipitation
amount and evapotranspiration) and oxygen isotope values
in precipitation (δ18Oprec) computed by an isotope-enabled
atmospheric general circulation model (ECHAM5-wiso).

Present-day climate andδ18O values: we first test our
model approach (forcing the ODSM with ECHAM5-wiso
output values) by comparing modeled present-day climate
variables and oxygen isotope ratios in cave drip water
(δ18Odrip) andδ18Ocalcite to measured values in seven well-
monitored European caves. The modeled European tempera-
ture, precipitation andδ18Oprec patterns in general capture
the observed patterns. Differences occurring at some cave
sites are presumably caused by (i) general offsets between
the averaged climate variables of the grid box and the re-
spective values at the cave location or (ii) the different time
periods used for the ECHAM5-wiso simulation (45 yr) and
measurements (varies per cave, but often just a few years).
There is a good agreement between modeled and measured
δ18Odrip andδ18Ocalcitefor six of the seven investigated Euro-
pean caves (Soylegrotta, Korallgrottan, Tartair Cave, Bunker
Cave, Katerloch Cave and Clamouse Cave). Consequently,
the observed spatial European pattern of theδ18Ocalcite val-
ues is very well represented by the modeledδ18Ocalcite. Ana-
lyzing the influence of the evapotranspiration amount as cal-
culated by two different approaches onδ18Ocalcite yields a
mixed result: for three caves, the evaporation as directly com-
puted by ECHAM5-wiso seems to be the better choice, while
for two other caves the evapotranspiration amount as calcu-
lated by the Thornthwaite equation fits better to the observa-
tions. For two caves, both setups give almost identical results.
A general preference of one of the setups can therefore not be
derived suggesting the application of both setups for future
research projects. Some discrepancies between modeled and
measuredδ18Odrip andδ18Ocalcite values still remain, which
can probably occur due to small-scale local effects, the im-
portant, but difficult to compute, evapotranspiration, and in
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case ofδ18Ocalcite values by kinetic fractionation between
drip water and speleothem calcite.

Mid-Holocene (6 ka) changes: in the second part of this
study we compare ECHAM5-wiso and ODSM simulated
δ18Ocalcite changes between the mid-Holocene (6 ka) and
present-day to measuredδ18Ocalcite values for twelve Euro-
pean caves. For this comparison, ECHAM5-wiso was driven
by mid-Holocene sea surface temperature and sea ice cover
extracted from transient Holocene simulations modeled by
three different fully coupled ocean-atmosphere general circu-
lation models (CCSM, COSMOS, ECHO-G). The best rep-
resentation of the climate condition at 6 ka before present
seems to be supplied by the ECHAM5-wisoCCSM simulation.
The T , P , andδ18Oprec values modeled in this setup yield
1δ18Ocalcite (6 ka-PD) values which resemble the observed
values of the European stalagmites. This indicates that the
boundary conditions of this setup represent more closely the
true European climate during the mid-Holocene. An inter-
esting result of the mid-Holocene experiment is the appar-
ent spatialδ18Ocalcite pattern across Europe. The measured
as well as modelled patterns suggest the presence of a pro-
nounced positive mode of the North Atlantic Oscillation. The
terrestrial climate pattern which is related to a NAO+ mode
can be observed in the ECHAM5-wisoCCSM simulated cli-
mate parameters at 6 ka BP.

This study demonstrates that our approach to simulate
δ18Ocalcite values by using the ECHAM5-wiso atmosphere
general circulation model with explicit water isotope diag-
nostics as input for the ODSM is a helpful tool to understand
δ18Ocalcite changes of the past and will be a valuable tool to
investigate other past time slices as well. In the future we in-
tend to simulate more Holocene time slices in combination
with as much stalagmite data as possible for an improved
evaluation of the presented model results. This will allow us
to assess whether the detected discrepancies at specific cave
sites between 6 ka model and stalagmiteδ18Ocalcite data are
a temporally varying problem (stalagmite kinetics) or a sys-
tematic offset (for example, caused by the geographical po-
sition of the cave).
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O. M., Zumb̈uhl, A., Leuenberger, M., and Tüys̈uz, O.: Pleis-
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Universiẗat, Heidelberg, 2010.

Vollweiler, N., Scholz, D., M̈uhlinghaus, C., Mangini, A., and Spötl,
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