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The Problem
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Application Example DeMarine :3

Model surface temperature Satellite surface temperature

’“Oberwolfac

Information: Model Information: Observation

» Forecasting in North & Baltic Seas

» Combine model and observations for optimal initial condition

> State vector size: 2.6 - 10° (4 fields 3D, 1 field 2D)

» Obervations: 10000 — 37000 (Surface temperature only)

» Ensemble size 8 p e
S. Loza et al., Journal of Marine Systems 105 (2012) 152-162 AWI @



Forecast deviation from satellite data DeMarine ::D

No assimilation Assimilation
RMSE of SST forecast (without DA) over 01.10.2007 - 30.09.2008  ensemble forecast (with LSEIK)
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Improvements also sub-surface and in other fields



Data Assimilation

Problem: Estimate model state (trajectory) from
* guess at initial time
*  model dynamics
» observational data

Characteristics of system:
e approximated by discretized differential equations
e high-dimension - O(107-10°)
e sparse observations
e non-linear

Current “standard” methods:
y This talk!

Optimization algorithms (*4DVar”)
+ Ensemble-based estimation algorithms 4 \

e, i
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Ensemble-based Kalman Filter

First formulated by G. Evensen (EnKF, 1994)

Kalman filter: express probability distributions by mean
and covariance matrix

EnKF: Use ensembles to represent probability distributions

forecast Looks triviall
[ensemble BUT
— forecast . There are
[ initial J/ : ore
. nsemble possible
ices!
transformation] choices!
state . -
estimate |
observation
time 0 time 1 time 2 oo

WID
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Computational and Practical Issues

Data assimilation with ensemble-based Kalman filters is costly!

Memory: Huge amount of memory required
(model fields and ensemble matrix)

Computing: Huge requirement of computing time
(ensemble integrations)

Parallelism: Natural parallelism of ensemble integration exists
(needs to be implemented)

,Fixes": Filter algorithms do not work in their pure form
(,fixes” and tuning are needed)
because Kalman filter optimal only in linear case
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What we are looking for...

= Goal: Find the assimilation method with
» smallest estimation error
» most accurate error estimate
» least computational cost
» least tuning

= Want to understand and improve performance

= Difficulty:
» Optimality of Kalman filter well known for linear systems
» No optimality for non-linear systems
=¥ limited analytical possibilities

=» apply methods to test problems

e, i
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Computing
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Logical separation of assimilation system

single
program Filter
Initialization
analysis
state re-initialization state
time Core of PDAF observations
Model Observations
initialization | ________Mmeshdaa obs. vector
time integration obs. operator
post processing obs. error
<— Explicit interface
<«----» |ndirect exchange (module/common)
Nerger, L., Hiller, W. (2012). Software for Ensemble-based DA Systems — Implementation AW

and Scalability. Computers and Geosciences. In press. doi:10.1016/j.cageo.2012.03.026



PDAF:

Parallel

A tool for data assimilation P AL Xesmaton

Framework

PDAF - Parallel Data Assimilation Framework

a software to provide assimilation methods
an environment for ensemble assimilation
for testing algorithms and real applications
useable with virtually any numerical model
also:
 apply identical methods to different models
« test influence of different observations

makes good use of supercomputers
(Fortran and MPI; tested on up to 4800 processors)

More information and source code available at

http://pdaf.awi.de
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Analysis Formulations
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Ensemble-based/error-subspace Kalman filters

A little “zoo” (not complete):

EnKF(2003) VILEF
EnKF(2004

RRSQRT NKFE004) gpkr
ROEK EAKF ESSE

| EnKF(94/98) | oeek | EnSRE —_pe

Studied in Nerger ‘ ETKF ‘ anamorphosis
et al. (2005) SEIK
New filt
New study ‘ ESTKF for?nV\llJI;tiirn

(Nerger et al. 2012)

o
= an—
ESTKEF: L. Nerger et al., Monthly Weather Review 140 (2012) 2335-2345 AWI @



Model Equations

Stochastic dynamic model:
XE — Mi,’i—l[XE—l] + 7, XE) n; € R"

Stochastic observation model:
Y = Hk[xil;] + €L, Yk, €k S Rm

Assumptions:
n; X N(O, Qi); <777;77]T> = Q;0;;
e, x N(0,Ry); <ekelT> = R0
x; oc N (x5, P;)

(el ) =0; (mx)T) =0 (el
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The Ensemble Kalman Filter (EnKF, Evensen 94)

Initialization: z
Generate random ensemble {xg( ),l =1,...,N}

Ensemble statistics approximate x;; and covariance P,

Forecast:

¢ = M %)) + 0
Analysis:
KO — IO | K, (yzi ) Hkxgm)

1 Kalman filter
K, = P/H! (Hka HY + Rk)

N

1 £ o R\
T ) )
=1
N
a 1 al
=

N
1



Issues of the EnKF94

Monte Carlo Method

» ensemble of observations required
(samples matrix R; introduces sampling error)

Inversion of large matrix HkPgﬂf + R, € R™™

(can be singular, possibly large differences in eigenvalues >0)

Alternative:
» Compute analysis in space spanned by ensemble

Methods: Ensemble Square-Root Kalman Filters, e.q.

» SEIK (Pham et al., 1998)
» ETKF (Bishop et al., 2001)
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Ensemble Transform Kalman Filter - ETKF

Ensemble perturbation matrix
X, = X} — Xp
Analysis covariance matrix
P = XSAXNHT
“Transform matrix” (in ensemble space)
A7l = (N - DI+ (HX)HTR'HX

Ensemble transformation

/

X'o — X’f WETKF‘
Ensemble weight matrix
WHEE .= /N — 1CA

« CCT =A (symmetric square root)

« A is identity or random orthogonal matrix with EV (1, . ..
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SEIK Filter

Error-subspace basis matrix size
L = X/T (n x N-1)
(T subtracts ensemble mean and removes last column)

Analysis covariance matrix

P® = LAL" (n x n)
“Transform matrix” (in error subspace)

A7l =(N-1DT'T + (HL)'R'HL (N-1 x N-1)

Ensemble transformation

X/a — L WSEIK (n X N)

Ensemble weight matrix
WSFIK . — /N —1CQ7 (N-1 x N)

- Cis square root of A (originally Cholesky decomposition)
« 7 is transformation from N-1 to N (random or deterministic

) PRrRe: Y
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Weight Matrices (W in X&' = XTW )

ETKF SEIK-Cholesky sqrt y
. 0.05
0
~0.05
| 0.1
ETKF SEIK with Cholesky sqrt
main contribution from diagonal main contribution from diagonal

(minimum transformation) Off-diagonals with strongly

Off-diagonals of similar weight varying weights

=» Minimum change in distribution  =» Changes distribution of variance
of ensemble variance in ensemble

- " ™ . ..'j‘......q'
AWIS
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Transformation Matrix of SEIK/symmetric sqrt

SEIK symmetric sqrt Difference SEIK-ETKF
0.1

Transformation matrices of ETKF and SEIK-sym very
similar

-3
| -.-4

Largest difference for last ensemble member
(Experiments with Lorenz96 model: This can lead to
smaller ensemble variance of this member)

AWID
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SEIK depends on ensemble order

Switch last two ensemble members

SEIK-sym: Difference of transformation matrices 10-3

(Switched back last two columns
& rows for comparison)

o = N W A

Ensemble transformation depends on order of ensemble members
(For ETKF the difference is 10-1°)

Statistically fine, but not desirable!

o
= —
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Revised T matrix

|dentical transformations require different projection matrix for
SEIK: f
L = X/T

For SEIK:
T subtracts ensemble mean and drops last column

=» Dependence on order of ensemble members!

=?» Solution:
=» Redefine T: Distribute last member over first N-1 columns
- Also replace €2 by new T

New filter formulation:
Error Subspace Transform Kalman Filter (ESTKF)
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T-matrix in SEIK and ESTKF

SEIK: T ; = <

A

ESTKEF:

T = <

/

\

\

1
=5
1

N

1

N

1

=5
1

N

fori =751 <N
for i # 75,1 < N
fore =N

1
T
N T
1
VN
1

VN

1

fori =71 < N
for ¢ # 5,1 < N

fors =N

» Efficient implementation as subtraction of means & last

column

» ETKF: improve compute performance using a matrix T
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ESTKF: New filter with identical transformation as ETKF

New filter ESTKF — properties like ETKF:
» Minimum transformation
» Transformation independent of ensemble order

But: < analysis computed in dimension N-1
» direct access to error subspace
* smaller condition number of A

o

=
L. Nerger et al., Monthly Weather Review 140 (2012) 2335-2345 AW I @



Localization
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Localization: Why and how?

» Combination of observations and
model state based on estimated
error covariance matrices

» Finite ensemble size leads to
significant sampling errors

« particularly for small covariances!

Example: Sampling error and localization

—true

o] S | I Rt sampled ||
- - -localized

distance

» Remove estimated long-range correlations

=?» Increases degrees of freedom for analysis

(globally not locally!)

=?» Increases size of analysis correction
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Global vs. local SEIK, N=32 (March 1993)

SSH: improvement for SEIK, N=32 at 4th analysis; GLOBAL [m] SSH: improvement for LSEIK, N=32 at 4th analysis; [=200km [m]

Latitude

-40
Longitude

-100 -80 -60 -40 -20 0
Longitude

» Improvement is error reduction by assimilation

» Localization extents improvements into regions not
improved by global SEIK

» Regions with error increase diminished for local SEIK

AWIT®

» Underestimation of errors reduced by localization

L. Nerger et al. Ocean Dynamics 56 (2006) 634



Localization Types

Simplified analysis equation:

P/
+Pf+R(y_Xf)

x* = x/

Covariance localization Observation localization

» Modify covariances in forecast » Modify observation error
covariance matrix P! covariance matrix R

» Element-wise product with » Needs distance of observation
correlation matrix of compact (achieved by local analysis or
support domain localization)

Requires that P is computed Possible in all filter formulations

(not in ETKF or SEIK)

E.g.: Houtekamer/Mitchell (1998, 2001), E.g.: Evensen (2003), Ott et al. (2004),

Whitaker/Hamill (2002), Keppenne/ Nerger/Gregg (2007), Hunt et al. (2007)
Rienecker (2002)
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Local SEIK filter — domain & observation localization

Local Analysis:

» Update small regions

D
(like single vertical columns) /g L \‘\
> Observation localizations: ( Shonneand )
Observations weighted N )
according to distance T~ -

» Consider only observations

with weight >0 S: Analysis region
D: Corresponding data region

» State update and ensemble
transformation fully local

Similar to localization in LETKF (e.g. Hunt et al, 2007)

L. Nerger et al., Ocean Dynamics 56 (2006) 634 AWI @
L. Nerger & W.W. Gregg, J. Mar. Syst. 68 (2007) 237



Different effect of localization methods

Experimental result:

» Twin experiment with simple Lorenz96 model

» Covariance localization better than observation localization
(Also reported by Greybush et al. (2011) with other model)

0.98

0.96

0.94

1 / Inflation

0.92

0.9

Covariance localization

Time-mean RMS errors

2

6

10 14 18 22 26 30 34

Localization radius

1 / inflation

0.98

0.96

0.94

0.92

0.9

T. Janjic et al., Mon. Wea. Rev. 139 (2011) 2046-2060

Observation localization

2

6

10 14 18 22 26 30 34

Localization radius ..
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Different effect of localization methods (cont.)

Larger differences for smaller observation errors

Covariance localization Observation localization

0.98

o
©
©

0.96

o
©
o

0.94

o
©
=

1/ Inflation
forgetting factor

0.92

o
©
N

0.9

o
©

2 6 10 14 18 22 26 30 34 2 6 10 14 18 22 26 30 34
Localization radius Localization radius

AWID
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Covariance vs. Observation Localization

Some pUbIIShed findings: .—prescrib.ed weight
_ 0.8} B - - -effective weight
= Both methods are “similar” 5
= 0.6f
= Slightly smaller width required for 2
[] " " O "
observation localization 3
0.2f
But note for observation localization: 0
= Effective localization length depends 1
on errors of state and observations _og}
S
» Small observation error 2 0.6f
. . . ()
=¥ wide localization Z 0.4l
()
» Possibly problematic: ® 0.2}
* in |n|t|§I t.rar.13|ent phase 0, 0 40 = o
of assimilation distance

P: state error variance

i large state errors are R: observation error variance

estimated locally
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Regulated Localization

=» New localization function for observation localization

= formulated to keep effective length constant
(exact for single observation)

= depends on state and observation errors

= depends on fixed localization function

= cheap to compute for each observation

= Only exact for single observation — works for multiple

_Wfixed
- -w', R=10 | P

1

80 100

distance

e, i
L. Nerger et al. QJ Royal. Meterol. Soc. 138 (2012) 802-812 AWI @



Lorenz96 Experiment: Regulated Localization

Covariance loc., N=10, R=0.5 Regulated localization, N=10, R=0.5
0.5 0.5
1 0.4 1. 0.4
0.35 0.35
0.3 0.3
0.98 0.25 0.98 0.25
. 0.2 e 0.2
o 0.15 g 0.15
8 0.96 0.145 8 096 0.145
2 0.135 2 0.135
= A b= 0.13
S, 0.94 00.1235 S 0-94 0.125
S 0.12 S 00.11125

A1 .
0.92 00.115 0.92 0.11
0.105 0.105
0.1 0.1
0.9 0.095 0.9 0.095
0.09 0.09

2 6 10 14 18 22 26 30 34

2 6 10 14 18 22 26 30 34
support radius

» Reduced minimum rms errors

support radius

» Increased stability region

» Still need to test in real application

» Description of effective localization length explains
the findings of other studies!

AN
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Summary

» Ensemble-based KFs not exact

=» But they “work™!
» Improve methods

=?» Least cost; least tuning; best state and error estimates
» Study relations for improvements

=» Efficient analysis formulations

=» Efficient localization

Thank you!

AW
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