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a b s t r a c t

A 380 cm long sediment core from Lake Temje (central Yakutia, Eastern Siberia) was studied to infer
Holocene palaeoenvironmental change in the extreme periglacial setting of eastern Siberia during the
last 10,000 years. Data on sediment composition were used to characterize changes in the depositional
environment during the ontogenetic development of the Lake Temje. The analysis of fossil chironomid
remains and statistical treatment of chironomid data by the application of a newly developed regional
Russian transfer functions provided inferences of mean July air temperatures (TJuly) and water depths
(WD). Reconstructed WDs show minor changes throughout the core and range between 80 and 120 cm.
All the fluctuations in reconstructed water depth lie within the mean error of prediction of the inference
model (RMSEP ¼ 0.35) so it is not possible to draw conclusions from the reconstructions. A qualitative
and quantitative reconstruction of Holocene climate in central Yakutia recognized three stages of
palaeoenvironmental changes. The early Holocene between 10 and 8 ka BP was characterized by colder-
than-today and moist summer conditions. Cryotextures in the lake sediments document full freezing of
the lake water during the winter time. A general warming trend started around 8.0 ka BP in concert with
enhanced biological productivity. Reconstructed mean TJuly were equal or up to 1.5 �C higher than today
between 6.0 ka and 5.0 ka BP. During the entire late Holocene after 4.8 ka BP, reconstructed mean TJuly
remained below modern value. Limnological conditions did not change significantly. The inference of
a mid-Holocene climate optimum supports scenarios of Holocene climatic changes in the subpolar part
of eastern Siberia and indicates climate teleconnections to the North Atlantic realm.

� 2012 Elsevier Ltd and INQUA. All rights reserved.
1. Introduction

The reconstruction of past Holocene environments is important
for understanding of the background of natural climate variability
underlying anthropogenic influences on climate change. Though
the timing of Holocene climate change is well established for wide
parts of the Northern Hemisphere (Mayewski et al., 2004), suitable
palaeoenvironmental records are still scarce in the Russian Siberian
Arctic and sub-Arctic, due to such factors as complex periglacial
landscape history, low sedimentation rates in sedimentary
archives, and logistical challenges for field work in the remote and
extreme periglacial environment (Hubberten et al., 2004;
Schirrmeister et al., 2011).
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At the present state of knowledge, biological indicators from
aquatic (chironomids, diatoms, ostracods, cladocera) and terrestrial
environments (pollen, plant macrofossils) are the most reliable
proxies, because they react sensitively to climate change and define
different aspects of environments, which should be assessed
together for reliable reconstructions (Smol et al., 2005; Solovieva
et al., 2005, 2008; Kienast et al., 2011; Self et al., 2011;
Palagushkina et al., 2012; Pestryakova et al., 2012). The basis,
however, of all quantitative reconstruction approaches are regional
calibration datasets from which the empirical reconstruction
models (i.e. the transfer functions) are established. There are few
examples of quantitative palaeoclimate reconstructions in Siberia,
and those are mainly from pollen studies (Andreev and Klimanov,
2005; Müller et al., 2009; Andreev et al., 2011; Tarasov et al.,
1999, 2009). To date, there is only one quantitative temperature
reconstruction inferred from aquatic diatoms in central Siberia
(Kumke et al., 2004). Quantitative reconstruction of TJuly inferred
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from diatom assemblages of the Lake Lama (central Siberia) had
been performed using a calibration data set from north-western
Finnish Lapland (Kumke et al., 2004). The temperature variations
for Younger Dryas and Holocene reconstructed from pollen by
Andreev et al. (2004a) from the same lake sediments are up to 6 �C,
whereas the diatom-based temperatures are 1.6 �C, which means
4.4 C� difference in the reconstructed temperature range. Pollen
reconstructions for Nikolay Lake, Northern Yakutia (Andreev et al.,
2004b) weremade using temperature model based on an extensive
database from the former USSR. The model is rather statistically
robust (e.g. mean prediction error for TJuly � 1 �C). However, as
underlined in the results of the investigation, statistical errors in
the pollen-based climate reconstructions for the Russian Arctic
must be larger, due to the fact that the Arctic region is poorly
represented in the data set. The main drawback of the quantitative
reconstruction approach was the lack of a regional calibration
datasets and regional transfer functions.

Recently, lakes of different origin were systematically studied
along environmental gradients in eastern Siberia and checked for
their inventories of preserved chironomid assemblages in lake
sediments. These studies resulted in the development of the
modern chironomid-based temperature and water depth calibra-
tion data sets (training sets) for Yakutia, NE Siberia (Nazarova et al.,
2011). These data sets and derived quantitative transfer functions
have provided a new tool for qualitative assessment of the past
environment in northeastern Siberia.

This paper presents the findings from a study of a 380 cm-long
Holocene sediment core, recovered from Lake Temje (central
Fig. 1. Location of Lake Tem
Yakutia). The specific aim is to provide reconstructions of mean July
air temperature (TJuly) and water depth (WD) during the last 10,000
years, using the newly developed chironomid-inferred mean July
temperature and water depth model published by Nazarova et al.
(2011). In addition, the depositional boundary conditions of the
lake development are revealed by sedimentological data. The
resulting reconstructions of the lake history and ecology are dis-
cussed in context of other palaeoecological records and recon-
structions of regional climate changes.
2. Regional setting

Lake Temje is located in central Yakutia, about 13 km east of
Yakutsk (Fig. 1). Central Yakutia represents one of Earth’s most
extreme semi-arid continental settings with pronounced seasonal
climatic gradients and deep permafrost. According to Gavrilova
(1973), the observed long-term climate in the region is character-
ized by minimum air temperatures of �63 �C in January, maximum
air temperatures of 38 �C in July.Modernmean Julyair temperatures
in central Yakutia are between 16.6 and 17.5 �C. Annual precipitation
is around 200 mm. The annual evaporation is approximately
350mme400mm. Thus, there is amoisture deficit of 150e200mm/
a. The summer period is short, lasting from themiddle of June to the
beginning of August. The study region is located within the boreal
coniferous forest zone. The vegetation is dominated by taiga, such as
larch (e.g., Larix dahurica), pine (e.g., Pinus sylvestris) and birch trees
(e.g., Betula pendula) (Kumke et al., 2007).
je in central Yakutia.
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The study site, Lake Temje (62�030 N, 129�290 E) (Fig. 1) is
a thermokarst lake located 13 km east of Yakutsk on the Magane
Terrace, west of the Lena River at ca. 208m a.s.l. Modern TJuly for the
vicinity of lake Temje is 17 �C (New et al., 2002). The lake basin is
underlain by sands and sandstones of Jurassic age. The lake is
shallow, with a maximum depth of 75 cm. The surface area is
0.32 km2. The lake has no permanent inflows and outflows.

3. Material and methods

3.1. Field work

The lake sediments were recovered as part of a joint Russian-
German expedition to Yakutia in July 2004. Sampling was per-
formed from two connected rubber boats in the central part of Lake
Temje at 70 cm water depth with a rod-operated half-tube corer
(Russian peat corer: 5 cm in diameter, 100 cm long sampler).
Overlapping core sections yielded a 380-cm-long sediment-core
sequence. The core sections were described and sampled at 5-cm
intervals in the field. According to the applied age model (Section
3.3), this spacing yielded a temporal resolution between 60 and 300
years, with the best resolution for the mid-Holocene part. The
taken samples were transported to the AlfredWegener Institute for
Polar and Marine Research (AWI) in Potsdam, Germany, and stored
at 4 �C. In the AWI laboratory, the samples were divided into
subsamples for further micropalaeontological and sedimentolog-
ical studies.

3.2. Sediment analysis

One set of subsamples were weighted in wet condition, freeze-
dried, and weighed again to estimate the water contents. Weight
concentrations in total organic carbon (TOC), total carbon (TC), and
total nitrogen (TN) contents have been estimated chromatograph-
ically on milled samples, using a Vario� CNS Elementanalyser. The
data were used to calculate the TOC/TN ratio, using a factor of 1.167
to obtain the atomic ratio (Fig. 2). Calcium carbonate weight
Fig. 2. Variations of compositional parameters in the Lake Temje sediment c
concentrations were calculated from the inorganic carbon contents,
the difference between TC and TOC, multiplied by a factor of 8.33 to
include the stoichiometric contributions from calcium and oxygen.
Inorganic carbon concentrations were below the limit of detection
in the middle and upper parts of the sediment core. Therefore, X-
ray diffraction analysis (XRD) was conducted to check both the
presence of carbonate and the mineralogical composition of
carbonate, which solely consists of calcite (XRD peak at 3.027 �A).
The XRD data were also used to check the relative amount of quartz
(XRD peak at 3.34 �A). XRD measurements were undertaken on
random powder mounts, using a Philips PW1820 goniometer at
AWI Bremerhaven (40 kV, 40 mA, from 3 to 100 , step-rate 0.05 , Co
ka radiation). More details concerning the applied methods can be
found in previous publications (Lüpfert, 2006; Biskaborn et al.,
2012).

3.3. Radiocarbon dating

Five AMS radiocarbon dates were obtained from macroscopic
plant remains collected from the lake sediments (Table 1). The
AMS radiocarbon dating was performed in Leibniz-Laboratory for
Radiometric Dating and Stable Isotope Research, Kiel University,
using the radiocarbon Accelerator Mass Spectrometry (AMS) 14C
method. The radiocarbon dates were calibrated and converted into
calendar ages, using the CalPal Online program (Danzeglocke et al.,
2010). The applied age model was obtained by assuming linear
sedimentation rates between the calibrated dates and a recent age
of the surface sediments. Also presented (Fig. 2) are extrapolated
ages between the two uppermost dates to the sediments. In this
case, the sediments of the last 2800 years are absent. Nonetheless,
there is no lithological evidence for an assumption that erosional
processes and removal of sediments during the late Holocene in
the almost closed lake basin took place. However, if such processes
played a role in the past, they potentially could lead to a system-
atic dating error. Another source of errors might be related to the
presence of hard-water conditions in the early Holocene, when the
lake deposits were enriched in carbonate precipitates. It is difficult
ore (abbreviations: XRD ¼ X-ray diffraction, wt.% ¼ weight percentage).
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to ascertain this influence without any independent dating.
Therefore, the conservative approach was followed, with linear
interpolation of given calibrated ages. The final age model was
obtained by assuming linear sedimentation rates between the 14C
calibrated dates (Fig. 3).
Table 1
Radiocarbon dates from the Lake Temje sediment core. The radiocarbon dates were
calibrated and converted into calendar ages, using the CalPal Online program
(Danzeglocke et al., 2010).

Sediment
depth (cm)

Material
dated

Laboratory
code #

Conventional
14C age (BP)

Calibrated
age (BP)

62 Plant remains KIA26376 3487 � 28 3771 � 46
155 Plant remains KIA26377 4350 � 25 5190 � 96
290 Plant remains KIA26378 6040 � 60 6895 � 81
320 Plant remains KIA29871 6645 � 40 7531 � 34
370 Plant remains KIA26560 8895 � 50 10,038 � 101
3.4. Chironomid analysis

Treatment of sediment samples for chironomid analysis fol-
lowed standard techniques described in Brooks and Birks (2000).
Subsamples of wet sediments were deflocculated in 10% KOH,
heated to 70 �C for up to 10 min, to which boiling water was added,
and left to stand for another 20 min. Subsequently, the sediment
was passed through stacked 125 and 90 mm sieves. Chironomid
larval head capsules were picked out of a grooved Bogorov sorting
tray using fine forceps under a stereomicroscope at 25e40
magnifications. To capture the maximum diversity of the chiron-
omid population, 50e147 chironomid larval head capsules were
extracted from each sample. Several studies have demonstrated
that this sample size is adequate for a reliable estimate of inferred
temperature (Heiri and Lotter, 2001; Larocque, 2001; Quinlan and
Smol, 2001). Larval head capsules were mounted two at a time in
Euparal or Hydromatrix, ventral side up, under a 6 mm diameter
cover slip, with ten cover slips per microscope slide. In total, 4921
chironomid head capsules were slide-mounted and identified to
the highest taxonomic resolution possible, with reference to
Wiederholm (1983) and Brooks et al. (2007).
Fig. 3. Ageedepth model and lithology of the Lake Temje sediment core. Calibrated
age dates with 2-sigma error range (see Table 1) are plotted against downcore depth.
The age model is designed under the assumption of the presence of recent surface
sediment. The dotted line indicates extrapolated ages from the older datum points.
A chironomid-percentage stratigraphic diagramwas made in C2
version 1.5 (Juggins, 2007) (Fig. 4). Zonation of the chironomid
stratigraphy was made, using the optimal sum-of-squares parti-
tioning method (Birks and Gordon, 1985) using the program ZONE
(Lotter and Juggins, 1991), where the number of significant zones
was assessed by a broken stick model (Bennett, 1996) using BSTICK
(Birks and Line unpublished). The diversity and evenness of the
chironomid assemblages were estimated using the Shannone
Wiener Index (H) and Pielou Evenness Index (I) (Pielou, 1966).
Effective numbers of occurrences of chironomid taxa were esti-
mated by Hill’s N2 index (Hill, 1973).
3.5. Statistical treatment of chironomid data

Detrended Correspondence Analysis (DCA) was performed to
examine trends within the chironomid data and to determine
whether linear or unimodal based numerical techniques should be
used (Birks, 1995). Mean July air temperatures (TJuly) and water
depths (WD) were reconstructed, using a modern chironomid-
based temperature and water depth calibration data sets
(training sets) from Yakutia (Nazarova et al., 2011). TJuly training
set contains 143 lakes spanning the temperature gradient from 3.4
to 18.8 �C. Two-component TJuly Weighted-averaging partial least
squares (WA-PLS) model had the best performance: coefficient of
determination r2 boot ¼ 0.87, root mean square error of prediction
(RMSEP) ¼ 1.93. WD training set includes 147 lakes that are 0.1e
17.1 m deep. For WD, the one-component WA-PLS model had the
best performance: r2 boot ¼ 0.62, RMSEP ¼ 0.35.

In order to evaluate the reconstructed palaeotemperatures,
a principal components analysis (PCA) was performed with the
fossil species from each sample of the sediment core. The PCA is an
eigenanalysis from which eigenvalues lk (where k is a principal
axis) and eigenvectors uk are derived. The eigenvectors corre-
sponding to the largest k represent most of the variance in the
species data. The position of the objects fk (i.e., the sample scores)
at each principal axis k is a linear combination of the centered
values for each species and uk. The values of fk were scaled to the
square root of (n�1) lk. The sample scores of the first few PC axes
were compared to the reconstructed temperatures and water
depths, because the variability of fk is, at least theoretically, deter-
mined by the first few ecological gradients of the species. Ideally, fk
should be dominated mainly by the variable being reconstructed
(Kumke et al., 2004).

Percentage abundances of the fossil chironomids that are absent
or rare in the modern Yakutian calibration data set (Engels et al.,
2010) were calculated. A taxon is considered to be rare in the
modern data when it has a Hill’s N2 (Hill, 1973) below 5. Optima of
taxa which are rare in the modern data are likely to be poorly
estimated (Brooks and Birks, 2001).

In addition, an analysis of analogues between the samples of
the calibration dataset and the chironomids from the core samples
was carried out. The analogue analysis involves the computation
of dissimilarities between the assemblages of the calibration data
and the core data, using the c2-square distance as the dissimilarity
coefficients. Following the modern analogue technique described
in Birks et al. (1990), the cut-off levels of the 2nd and 5th
percentiles of all squared c2-distances in the modern calibration
data were determined and used to define ‘no close’ and ‘no good’
analogues when comparing the distance between an individual
fossil assemblage and the most similar assemblage in the modern
data set.

DCA and PCA were performed using CANOCO 4.5 (ter Braak and
�Smilauer, 2002). Chironomid abundance data were square-root-
transformed.



Fig. 4. Relative proportions of the most abundant chironomid taxa in the Lake Temje sediment core (shown taxa have minimum abundance of >3% in at least one sample),
chironomids head capsules concentrations (HC) per gram of sediment, variations of ShannoneWiener Index (H) and Pielou Evenness-Index (E), and chironomid stratigraphic zones
(T1eT3).
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4. Results

4.1. Sediment composition and depositional environment

The 380 cm long sediment core revealed a sequence of strongly
water-saturated gyttja, admixed with sand in the lower 30 cm
(Fig. 3). In the lower part, water concentrations steadily drop from
about 90% to about 40% due to compaction and lithological change
(Fig. 2). Apart from the basal sand layer, high concentrations of
total organic carbon (TOC) that range between 20 and more than
40 wt.% reflect the high amount of organic matter in the gyttja.
The lowermost gyttjas (330e360 cm) reveal a crumbly and friable
texture, similar to freeze-dried instant coffee. Such textures have
rarely been described in the literature, but seem to be related to
permafrost. Teller and Last (1982) report similar features in post-
glacial lake sediments of Canada, that possibly resulted from the
freezing of lake water down to the lake bottom with the effect of
moisture migration out of the lake sediment into the lake ice.
Repeated loss and gain of pore-water through the seasons then
leads to shrinkage of the lake sediments, documented in the
crumbly structure of the sediment. Alternatively, the formation of
small ice crystals in the sediments may cause the friable character.
Similar cryotextures were also described by Wetterich et al. (2008)
for fossil lake sediments in the Kolyma region of northeastern
Siberia. For the Lake Temje record, the cryotextures are interpreted
to document the invasion of the seasonal freezing zone into the
lake sediments and that this process may have occurred frequently
prior to 8.0 ka BP. As the overlying younger sediments do not show
signs of cryotextures, the freeze-drying effect did not occur during
the remaining part of the Holocene.

The atomic TOC/TN ratios in the gyttjas of Lake Temje show low
variability in the range between 9 and 11 and are interpreted to
reflect the sources of organic matter. Such low values usually point
to a high abundance of organic remains from planktonic algae with
only small contributions from higher land plants and/or macro-
phytes from near-shore areas (Meyers and Teranes, 2001). The low
variability of TOC/TN ratios points to a persistent pelagic deposi-
tional environment through the investigated time interval, though
at shallow water conditions (as shown by the fossil chironomids,
presented in the following Section 4.2). Variations in TOC concen-
trations result from relative dilution effects by other sediment
components. Thus the continuous upcore increase in TOC between
10.0 and 4.0 ka BP is mirrored by decreasing quartz concentrations
(Fig. 2). This trend documents a systematic decline in detrital
sediment supply.

The lacustrine sediments of the time interval between 10.0 and
7.0 ka BP include relatively high amounts of carbonate (around
15%) composed of calcite (Fig. 3). The carbonate fraction has not
been studied in detail. Nonetheless, visual inspection of the gyttja
exhibited ostracod remains and micritic carbonate as main
carbonate constituents. Thus the carbonate is of both endogenic
(precipitates) and biogenic origin. Such lacustrine carbonates are
mostly related to hard-water lakes with elevated pH values (Dean,
1999). In summer 2004, when the lake was cored, pH of the
surface layer of lake water was 8 (slightly alkaline). In the modern
and young sediments, calcite is only present in trace amounts
(Fig. 2). The carbonate-rich section in the older part of the record
thus gives evidence of higher pH values during the early lake
development.

In summary, the depositional environment was dominated by
organic sedimentation. According to the applied age model (Fig. 2),
maxima in sediment accumulation rates appeared between
roughly 7.5 and 5.2 ka BP at 0.7e0.8 mm/a, documenting enhanced
biological productivity and sediment preservation during that time,
while the older sediments (0.25 mm/a) and younger sediments
(0.16 mm/a) are condensed.
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4.2. Chironomid stratigraphy

In total 4921 chironomid head capsules (HC) were recovered
and slide-mounted from the 42 samples of the investigated sedi-
ment core. The average count was 118 � 65 HC per sample with
a minimal count of 50 HC and a maximal count of 335 HC per
sample. Chironomid concentrations varied between 35 and 2710
HC/g of dry sediment, with a mean value of 950 HC/g. The lowest
concentration of HC was at the base of the sediment core and the
highest HC concentration in the upper part of the core (Fig. 4). In
total, 52 chironomid taxa were identified. Due to a lack of taxo-
nomically important features, 246 HC could not be identified to
species group. Among them, 242 HC belonged to the tribe Tany-
tarsini and four HC belonged to the subfamily Orthocladiinae. The
most abundant taxa were Corynocera ambigua (799 HC in total,
16.2% of the total number of the HC), Chironomus anthracinus-type
(487 HC, 9.9%), Psectrocladius sordidellus-type (433 HC, 8.8%), and
Paratanytarsus penicillatus-type (403 HC, 8.2%). The number of taxa
per sample varied throughout the core from12 to 27with amean of
19 taxa. Taxonomic richness was slightly lower at the bottom of the
core and increased towards the sediment surface. Shannone
Wiener Index, a measure of biodiversity and the trophic state of
the ecosystem, varied very little throughout the core with minimal
values of 1.99 at the base of the core and maximal values of 2.82 in
the middle part of the core, averaging 2.5, characteristic for b-
mesotrophic to oligotrophic conditions (Sladecek, 1973). Pielou
Evenness Index, a measure of ecosystem stability remained relative
high (mean 0.65) throughout the majority of the core but declined
slightly in the upper part of the core, indicating some changes in
the ecological conditions (Smirnov, 1993). The down-core changes
in the chironomid assemblages led to the identification of three
statistically significant zones (T 1e T 3). Zone 2was subdivided into
Fig. 5. Reconstructed chironomid-inferred mean July air temperature (T-July) and water dep
(eSEPs), respectively. Reference line in the T-July and water depth graphs indicate modern
Nearest modern analogues (NMA) for the modern samples in the Yakutian data set (Naza
indicate second and fifth percentiles of all squared c2-distances in the Yakutian data set and
1990).
two subzones T 2-1 and T 2-2 (Fig. 4) based on a strong shift in
dominant taxa from C. anthracinus-type to Tanytarsus pallidicornis-
type 1.

4.2.1. Zone T 1 (370e349 cm, 10e8.2 ka BP)
At the bottom of this zone, the chironomid assemblage is

dominated by C. anthracinus-type reaching a maximum of 46% at
365 cm depth (w9.5 ka BP) and Tanytarsus lugens-type. These are
both cold stenothermic taxa which usually occur in cold subalpine
or subarctic lakes (Brundin, 1956; Brodin, 1986). At 355 cm depth
(9.5 ka BP), C. anthracinus-type declines to 15% abundance and
T. lugens-type disappears. These taxa are replaced by T. pallidicornis-
type, a taxon that prefers warmer conditions (Nazarova et al., 2008,
2011). C. ambigua gradually increases in abundance throughout this
zone from 2 to 18% and Propsilocerus lacustris-type, although not
very abundant, is only present in this zone. These three taxa are
characteristic of meso- to eutrophic conditions (Brooks et al., 2007).
P. lacustris is reported to be indicative of hypertrophic lakes
(Kornijów and Halkiewicz, 2007). The chironomid abundances in
the zone, with a mean of 104.3 HC/g, are the lowest values for the
core. The average reconstructed TJuly for this zone is up to 2 �C lower
than the present day TJuly value (reconstructed TJuly mean is
15.6 � 0.7 �C; Fig. 5).

Reconstructed WDs show minor changes throughout the core
and range between 80 and 120 cm. All the fluctuations in recon-
structed water depth lie within the mean error of prediction of the
inference model (RMSEP ¼ 0.35) so it is not possible to draw
conclusions from the reconstructions.

4.2.2. Zone T 2-1 (349e240 cm, 8.2e6.3 ka BP)
This zone is dominated by C. anthracinus-type (22.6% in

average) and Cricotopus laricomalis-type (11.3%). Abundances of
th for Lake Temje together with grey-shaded sample-specific estimated standard errors
TJuly in the region and WD in the lake Temje during the sampling campaign in 2004;
rova et al., 2011) for TJuly and WD of the Lake Temje sediment core. The dashed lines
are defined here as “no close” and “no good” analogues, respectively (after Birks et al.,
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other Cricotopus taxa are also highest in this and the previous zone.
Increases in the abundance of Cricotopus taxa can be indicative of
the expansion of submerged vegetation (Cranston et al., 1983).
T. pallidicornis-type declines and, although present, is not found in
all samples and is at low abundances when it does occur.
C. ambigua also gradually declines, and is present at high abun-
dance only at 300 cm depth (w7.0 ka BP). In this zone, Dicro-
tendipes nervosus-type, a thermophilic taxon that is also often
associated with macrophytes (Moller Pillot and Buskens, 1990),
appears for the first time and remains present till the end of the
core. The concentration of chironomid HC increases throughout the
zone to a mean of 557.5 HC/g.

The reconstructed TJuly fluctuates between 16.0 and 18.0 �C with
the highest values reconstructed for the upper part of the subzone.
The average TJuly for this subzone is 16.9 � 0.9 �C.

4.2.3. Zone T 2-2 (240e135 cm, 6.3e4.8 ka BP)
C. anthracinus-type declines noticeably in this subzone, to

approximately 6.8%, whilst T. pallidicornis-type becomes the most
abundant taxon doubling the abundances seen throughout the
other three zones and reaching a maximum of 31%. C. ambigua
nearly disappears from the chironomid assemblage. The acidophilic
P. sordidellus-type is more abundant than previously, reaching
a peak of 17%. P. penicillatus-type, Einfeldia dissidens-type, D. nerv-
osus-type and Parachironomus varus-type are not abundant in the
core as a whole, but reach their maximum abundances in this zone.
All these taxa are indicative of warmer conditions and are associ-
ated with macrophytes (Brooks et al., 2007). P. penicillatus-type
reaches its maximal abundance of 20% at the end of the subzone.
The concentration of chironomids HC reaches its maximal value
(mean 1318.1 HC/g). At the lower part of this subzone (210 cm,
w5.8 ka BP) very high HC concentrations are observed coincidence
with a pronounced decline in H und I indices.

The reconstructed TJuly is the highest for the entire core, TJuly
varies from 16.3 to 18.4 �C with a mean of 17.3 � 0.8 �C. Temper-
ature remains above the present-day value with some decline in
the middle of this subzone around 5.8 ka BP. Reconstructed WDs
are the lowest for the whole core with the slight increase towards
the end of the zone.

4.2.4. Zone T 3 (135e0 cm, 4.8 ka BP e younger than 4.8 ka BP)
C. anthracinus-type and C. laricomalis-type remain at low

abundances, similar to those in the subzone T 2-2 whilst
T. pallidicornis-type declines strongly and appears only sporadically
in abundances of less than 10%. C. ambigua dominates throughout
the zone, reaching abundances of more than 40%. The abundances
of D. nervosus-type, P. sordidellus-type and E. dissidens-type remain
similar to those in zone T 2-2. Other taxa indicative for macro-
phytes, such as Endochironomus albipennis-type and P. penicillatus-
type, decline towards the top of the sediment core. Micropsectra
insignilobus-type and Pseudochironomus appear for the first time,
with abundances above 5%, in this zone only. The cold stenotherm
M. insignilobus-type appears in the middle of the zone, and Pseu-
dochironomus, an indicator of relatively warm conditions, low total
phosphorus and high Secchi depth (Brooks et al., 2007; Nazarova
et al., 2011) is recorded in the top four analysed horizons of the
zone. The concentration of chironomids HC varies widely
throughout this zone.

The reconstructed TJuly decreases sharply from subzone T 2-2
and zone T 3. It remains below the present-day value throughout
the entire zone T3 but after 3.8 ka BP shows a gradual increase
towards the top of the core and reaches modern values. The
reconstructed TJuly fluctuates between 14.7 at the lower part of this
zone and 16.9 �C at the upper part of the zone. The average TJuly for
this subzone is 15.6 � 0.7 �C, which is below modern TJuly values.
4.2.5. Quality of the chironomid-based TJuly and WD
reconstructions

The numerical evaluation is an important consideration when
applying quantitative chironomid-based reconstruction methods
to palaeoecological data (Birks, 1998). This is especially important
in the regions, where no quantitative reconstructions have been
done before. As inference models produce numbers, even if the
calibration data set does not contain the necessary ecological
information to reliably reconstruct past environments from the
fossil samples, several statistical techniques were used to test the
reliability of the reconstructed TJuly and WD (Birks et al., 1990;
Birks, 1995, 1998): correlation of the first PC axes to the recon-
structed temperatures and water depths; taxonomic fit of the
fossil data set with the modern data set; and modern analogue
statistics (Fig. 5). The gradient lengths of species scores were
relatively short. DCA axes 1 and 2 were 1.71 and 1.41 standard
deviation units respectively, indicating that numerical methods
based on a linear response model were the most appropriate to
assess the variation structure of the chironomid assemblages (ter
Braak, 1995). PCA axes 1 and 2 together explain 60.2% of distri-
bution of the chironomid data, with axis 1 explaining 36.4% and
axis 2 explaining 23.8% of the variance. The first two PCA axes,
which are the major hypothetical gradients in PCA, are signifi-
cantly correlated with the inferred air temperatures and water
depths. WD significantly correlates with PCA axis 1 (r1 ¼ 0.56,
and r2 ¼ 0.23, p � 0.05) and inferred TJuly significantly correlates
with the PCA axis 2 (r1 ¼ 0.43, and r2 ¼ 0.53, p � 0.05). The
indirect gradient analysis of the fossil assemblages (i.e. the PCA)
therefore has shown that the major part of the variability in the
chironomid assemblages is driven mainly by temperature-
indicative and water depth-indicative taxa. This is supported by
the significant correlation of the principal components of the first
major axes with the reconstructed temperatures and water
depths.

All subfossil taxa present in the chironomid record from Lake
Temje are well represented in the Yakutian training set
(Nazarova et al., 2011). Only two taxa found in Lake Temje have
values for Hill’s N2 diversity index below 5 in the modern data
set: Cladotanytarsus mancus-type (3.45) and Cricotopus bicinctus
(4.60). Hill’s N2 values of all other taxa found in the core range
between 5.13 and 88.60 providing further support that the
quantitative chironomid-based TJuly and WD reconstructions are
reliable (Brooks and Birks, 2001). Nearly all samples have “close
analogue” in the modern calibration data set (Fig. 5). One
sample is defined as having “no close” analogues in terms of TJuly
in the modern Yakutian data set and two sample as having “no
close” analogue in terms of WD in the modern Yakutian data set.
Therefore the reconstructions are considered as very reliable
(Birks, 1998). The reconstructed WDs at the top of the sediment
core are slightly deeper than the modern WD of the lake. The
difference exceeds the errors of the reconstruction (SEP). WD
reconstructions using the chironomid-based WA-PLS inference
model (Nazarova et al., 2011) tend to overestimate values at the
lower part of the gradient and underestimate values at the
deeper part of the gradient. Lake Temje is very shallow, and
therefore slight overestimations of the reconstructed WD can be
a consequence of the quality of the applied model.
5. Discussion

The sediment record of Lake Temje comprises almost the whole
Holocene. Three stages in lake development and palaeoecological
evolution can be recognized from changes in sediment composi-
tion and fossil chironomid assemblages.
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5.1. Early Holocene (10.0e8.0 ka BP)

The oldest limnic gyttjas are about 10.0 ka old and are underlain
by terrestrial sandy sediments. The formation of the lake basin
possibly started sometime between 15.0 and 10.0 ka BP, a time
which was characterized by postglacial temperature rise and
melting processes in permafrost over eastern Siberia (Baulin and
Danilova, 1984; Schirrmeister et al., 2011; Biskaborn et al., 2012).
At the same time, steppe vegetation in central Yakutia was gradu-
ally declining and being replaced by the spread of larch and birch
forests with pine and spruce along river valleys (Andreev et al.,
1997; Fradkina et al., 2005; Andreev and Tarasov, 2007; Müller
et al., 2009).

During the Early Holocene, the chironomid fauna of the Lake
Temje was dominated by cold stenothermic taxa that were grad-
ually replaced by more thermophilic fauna. This period is char-
acterised by high abundances of C. ambigua. During the late glacial
stage in northern Europe, C. ambigua thrived at low temperatures
in lakes with silty and low organic sediments, abundant oxygen
and probably extensive charophyte beds in carbonate rich waters
with high transparency (Brodersen and Lindegaard, 1999). The
rapid temperature increase following the Younger Dryas (Coope,
1986), a lowering in water levels (Berglund et al., 1996), exten-
sive erosion, and redeposition of lake sediments (Digerfeldt, 1986)
might have caused an increased nutrient availability (Birks, 1980),
an outward spread of aquatic macrophytes (Digerfeldt, 1986) and
increased organic sedimentation (Birks, 1986). Thus, an overall
change in lake type from ‘Chara’ to ‘Potamogeton lakes’ (Forsberg,
1965) might have contributed to reduction in C. ambigua pop-
ulations in northern Europe, just as much as increased tempera-
ture. In Lake Temje, increases in the abundance of C. ambigua
together with the highest reconstructed WD, relatively high
carbonate concentrations and an increase in organic matter show
that during the Early Holocene the lake was well oxygenated, with
high water transparency, and widespread algae beds (most prob-
ably Chara algae). Taxonomic composition of chironomid
communities and reconstructed TJuly indicate colder than present-
day climatic conditions. This is also indicated by the presence of
cryostructures in the lowermost sediments indicative of perma-
frost conditions with a totally frozen lake floor, while during the
rest of the Holocene no freezing fronts affected the upper lake
sediments. Gradual increase in the content of organic carbon from
5% to 24% and of nitrogen from 0.3% to 3.5% indicate enhanced
biological productivity in the lake related to climate amelioration.
Chironomid-based reconstructions of increasing air temperature
and higher-than-present lake-level points to cool summer condi-
tions that also favoured a change in vegetation in eastern Siberia
(Müller et al., 2009).

5.2. Middle Holocene (8.0e4.8 ka BP)

Warmer-than-today climatic conditions are inferred for the
Middle Holocene in central Yakutia from the Lake Temje chiron-
omid record. An increase in sedimentation rate (Fig. 3) is
consistent with high concentrations of organic matter in the
lacustrine deposits, giving evidence of strong biological produc-
tivity. The lake system changed from a carbonate-rich hard-water
lake to a typical Siberian fresh-water lake with dominant gyttja
sedimentation and reduced supply of weathering materials from
the surrounding catchment. Cold stenothermic taxa were replaced
by more thermophilic fauna. Many macrophyte-associated
chironomid taxa appeared, indicating the spread of submerged
vegetation and algae beds. Reconstructed TJuly are up to 1.5 C�

higher than today. The warmest temperatures fall into the time
frame between 6.7 and 5.0 ka BP. Lake level fluctuated slightly
with a maximum around 6.0 ka BP, concurrent with a short
interval of lower temperatures. Lower lake levels are often asso-
ciated with higher temperatures, possibly related to stronger
evaporation.

5.3. Late Holocene (4.8 ka BP e present)

While the lithology of Lake Temje did not change significantly in
the late Holocene, chironomid assemblages became dominated by
C. ambigua, suggesting a decline in aquatic macrophytes towards
the top of the core. The presence of cold stenothermic taxa and
reconstructedmean July temperatures indicate climate cooling. The
reconstructed TJuly remains below the modern value between 4.8
and 3.0 ka BP, then warms to present-day values.

5.4. Regional comparison

The inferred stages of Holocene climate and environmental
changes in central Yakutia are consistent with findings from other
regional palaeoclimate records. The marked palaeoecological
change of chironomid habitats observed in Lake Temje between 5.0
and 4.5 ka BP is consistent with climate-related ecological changes
in other shallow lakes across central Yakutia, as inferred from fossil
diatoms (Pestryakova et al., 2012). The most prominent feature in
the record, however, is the presence of an early to mid-Holocene
climate optimum. Using a bioclimatic vegetation model,
Monserud et al. (1998) reconstructed the peak of postglacial
warming in East Siberia for the time interval between 6.0 and 4.6 ka
BP, which is in accordance with the reconstruction in the present
study. The study of Monserud et al. (1998) has shown that the
Siberian winters were 3.7 C� warmer than now, and between 63
and 73�N the summers were 2e5 C� warmer than today. The
annual sum of precipitation in Yakutia was more than 200 mm
higher, or approximately double, the present-day values. In three
different areas, the northern Ural, the Taimyr Peninsula, and the
Lena Delta, temperatures appear relatively high during the early to
middle Holocene (Andreev et al., 2003). The investigations of
Kremenetski (1996) on Fadeyevsky Island, of Andreev et al. (2001,
2002, 2004a, 2004b) and Anderson et al. (2002) in Northern
Siberia, Fradkina et al. (2005) in central Yakutia and Koshkarova
and Koshkarov (2004) in northern Central Siberia, and Biskaborn
et al. (2012) in the region close to Lena Delta ascertained the
climate optimum in comparable periods for several regions from
Central to Northern Siberia, although there is also evidence for
warmer towarmest periods occurring in the Early Holocene (Pisaric
et al., 2001; Andreev et al., 2005). The palynological data from high-
arctic Holocene sediments of the Kara Sea region (Andreev et al.,
1998; Serebryanny et al., 1998) clearly identify the Holocene
climatic optimum between 6 and 4 ka (Andreev et al., 1998;
Serebryanny et al., 1998). During the Middle Holocene, high-
latitudinal air temperatures were significantly higher than now
(Frenzel et al., 1992). The deviation from present-day values of
annual mean temperature (time interval 6 to 5.5 cal. ka.) is esti-
mated at þ3 to þ2 C� (Klimanov, 1992) which is 0.5e1.5 C� higher
than the inferences made from Lake Temje for central Yakutia. In
the Verkhoyansk Mountains of northern central Yakutia (Lake
Billyakh record), mid-Holocene warming was marked by the
establishment of modern-like taiga vegetation and climate warm-
ing after 7 ka BP (Müller et al., 2009; Tarasov et al., in this volume).
Investigation of stable oxygen and hydrogen isotope ratios of
ground-ice wedges in the Verkhoyansk Mountains foreland reflect
postglacial climate amelioration at its maximum between 8.5 ka
and 4.5 ka BP during the winter season (Popp et al., 2006). The
pollen record from Smorodinovoye Lake indicates that mid-
Holocene climatic changes in the upper Indigirka basin resembled
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those in the lake Billyakh area (Anderson et al., 2002). The
maximum postglacial warming also occurred after 7 ka BP, a few
thousand years later than in the northern and northeastern parts of
the Arctic region.

Thus, the chironomid-based quantitative reconstruction of the
Holocene climate optimum in central Yakutia between 8.0 and
4.8.0 ka BP supports published scenarios. This timing of maximum
warming is consistent with postglacial climate development in
central and northern Europe (e.g. Davis et al., 2003), suggesting
strong climate teleconnections to Europe via the westerly wind
system (Müller et al., 2009; Renssen et al., 2009; Biskaborn et al.,
2012).

6. Conclusions

The palaeolimnological development of Lake Temje through the
Holocene is well documented by changes in sediment composition
and fossil assemblages of preserved chironomid head capsules.
Statistical transfer functions, established from a modern training
data set of chironomid remains in modern lake sediments of
Yakutia (Nazarova et al., 2011), were applied to the fossil chiron-
omid record for the quantitative reconstruction of the mean July air
temperatures and lake water depth during the last 10.0 ka.
Reconstructed WDs show minor changes throughout the core and
range between 80 and 120 cm. This amplitude is close to the
statistical error of the reconstruction.

Three stages of climate-related palaeoenvironmental changes,
consistent with other regional palaeoclimatic records, could be
recognized:

� The early Holocene between 10 and 8 ka BP was characterized
by colder-than-today summer conditions with average recon-
structed TJuly ¼ 15.6 � 0.7 �C. A high proportion of endogenic
carbonate and detrital sediment components documents water
runoff from the catchment, supplying dissolved and solid
weathering products. Cryotextures in the lake sediments
document full freezing of lake water during winter.

� The chironomid-based quantitative reconstruction of the
Holocene climate optimum in central Yakutia between 8.0 and
4.8.0 ka BP supports published scenarios. A general warming
trend started around 8.0 ka BP in concert with enhanced bio-
logical productivity and fluctuating lake level. Mean TJuly up to
1.5 C� higher than today are reconstructed between 6.7 and
5.0 ka BP.

� During the late Holocene after 4.8 ka BP, the reconstructed TJuly
fluctuates between 14.7 �C at the lower part of this zone and
16.9 �C at the upper part of the zone. The TJuly remains below
the modern value between 4.8 and 3.0 ka BP then warm to
present-day values.

� The timing of maximumwarming is consistent with postglacial
climate development in central and northern Europe, sug-
gesting strong climate teleconnections to Europe via the
westerly wind system.
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