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Smoothers 
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Filters (e.g. Ensemble Kalman filter) 

  Estimate using observations until analysis time 

Smoothers perform retrospective analysis 

  Use future observations for estimation in the past 

  Example applications:  

  Reanalysis 

  Parameter estimation 



Ensemble smoothing 
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  Smoothing is very simple (ensemble matrix             ) 
(see e.g. Evensen, 2003) 

 Filter: 

In the numerical experiments, the matrix D̃δ is constructed using a 5th order polynomial

function (Eq. 4.10 of Gaspari and Cohn 1999), which mimicks a Gaussian function but has

compact support. The distance between the analysis and observation grid points at which

the functions becomes zero is used here to a define the localization length.

c. The smoother extension ESTKS

The smoother extension of the ESTKF is formulated analogous to the ensemble Kalman

smoother (EnKS, Evensen 2003). The sequential smoother computes a state correction at

an earlier time ti, i < k utilizing the filter analysis update at time tk.

For the smoother, the notation is extended according to the notation used in estimation

theory (see, e.g., Cosme et al. 2010): A subscript i|j is used, where i refers to the time that

is represented by the state vector and j refers to the latest time for which observations are

taken into account. Thus, the former analysis state xa
k is written as xa

k|k and the forecast

state xf
k is denoted as xf

k|k−1. In this notation, the superscripts a and f are redundant.

To formulate the smoother, the transformation equation (14) is first written as a product

of the forecast ensemble with a weight matrix as

Xa
k|k = Xf

k|k−1Gk (19)

with

Gk = 1(m) +T
(

Wk +Wk

)

. (20)

Here the relation X
f
k|k−1 = X

f
k|k−11(m) is used with the matrix 1(m) that contains the value

m−1 in all entries. The smoothed state ensemble at time tk−1 taking into account all obser-
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 Smoother: 

       

vations up to time tk is now computed from the analysis state ensemble Xa
k−1|k−1 as

Xa
k−1|k = Xa

k−1|k−1Gk . (21)

The smoothing at time ti with i < k by future observations at different analysis times is

computed by multiplying Xa
i|i with the corresponding matrices Gj for all the analysis times

tj , i ≤ j ≤ k. Thus, the smoothed state ensemble at time ti using the observations at all

analysis times up to time tk is given by

Xa
i|k = Xa

i|i

k
∏

j=i+1

Gj . (22)

Equations (19) to (22) are likewise valid for the global and local filter variants. Thus, Gk

can be computed for the global analysis and then applied to all rows of a global matrix Xi|j,

or for the local weights of section 2b and applied to the ensemble of corresponding local

analysis domain σ.

A particular property of the smoother is that it will work even in the case that the matrix

Λ in Eq. (13) is a random matrix. This is due to the fact that the random transformation

of an analysis at time ti is contained in the forecast and analysis ensembles at future times.

d. Properties of the smoother with linear and nonlinear systems

The ensemble smoothers like the ESTKS in section 2c are optimal for linear dynamical

systems in the sense that the forecast of the smoothed state ensemble Xa
i|k with the linear

model until the time tk results in a state ensemble that is identical to the analysis state

ensemble Xa
k|k. This property can be easily derived by applying the linear model operator
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In the numerical experiments, the matrix D̃δ is constructed using a 5th order polynomial

function (Eq. 4.10 of Gaspari and Cohn 1999), which mimicks a Gaussian function but has

compact support. The distance between the analysis and observation grid points at which

the functions becomes zero is used here to a define the localization length.

c. The smoother extension ESTKS

The smoother extension of the ESTKF is formulated analogous to the ensemble Kalman

smoother (EnKS, Evensen 2003). The sequential smoother computes a state correction at

an earlier time ti, i < k utilizing the filter analysis update at time tk.

For the smoother, the notation is extended according to the notation used in estimation

theory (see, e.g., Cosme et al. 2010): A subscript i|j is used, where i refers to the time that

is represented by the state vector and j refers to the latest time for which observations are

taken into account. Thus, the former analysis state xa
k is written as xa

k|k and the forecast

state xf
k is denoted as xf

k|k−1. In this notation, the superscripts a and f are redundant.

To formulate the smoother, the transformation equation (14) is first written as a product

of the forecast ensemble with a weight matrix as

Xa
k|k = Xf

k|k−1Gk (19)

with

Gk = 1(m) +T
(

Wk +Wk

)

. (20)

Here the relation X
f
k|k−1 = X

f
k|k−11(m) is used with the matrix 1(m) that contains the value

m−1 in all entries. The smoothed state ensemble at time tk−1 taking into account all obser-

8

  Optimal for linear systems: 
➜  Forecast of smoothed state = analysis at later time 

➜  Each additional lag reduces error 

  Not valid for nonlinear systems! 
 

➜ What is the effect of the nonlinearity? 

➜ Do ensembles just decorrelate? (see e.g. Cosme et al. 2010) 



Numerical study with Lorenz-96  

  Cheap and small model (state dimension 40) 

  Local and global filters possible 

  Nonlinearity controlled by forcing parameter F 
  Up to F=4: periodic waves; perturbations damped 

  F>4: non-periodic 

  Nonlinearity of assimilation also influenced by forecast length 

  Experiments over 20,000 time steps 

  Tune covariance inflation for minimal RMS errors 

  Implemented in open source assimilation software PDAF  
(http://pdaf.awi.de) 
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Effect for forcing – optimal lag 

  Assimilate at each time step 

  Ensemble size N=34 

  Global ESTKF  
(Nerger et al., MWR 2012) 

  Up to F=4 

  very small RMS errors 

  F>4 

  Strong growth in RMS 

  Clear impact of smoother 

  Optimal lag:  
minimal RMS error (red lines) 
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Stronger nonlinearity 

  F=7 

  Forecast length: 9 steps 

  Clear error-minimum  
at 2 analysis steps 

➜  the optimal lag 

  Error increase beyond 
optimal lag (here 50%!) 

➜  spurious correlations 
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Filter
Smoother
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N=34
N=20
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Impact of smoothing 

  Optimal lag (minimal RMS error) 

  Behavior similar to error-doubling time 

  RMS error at optimal lag 

  Smoother reduces error by 50% for all F>4 

  Effect of sampling errors visible with smaller ensemble 
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Vary forecast length (F=7) 

  Forecast length = time steps over which nonlinearity acts on ensemble 

  Longer forecasts: 

➜  Optimal lag shrinks 

➜  RMS errors grow for filter and smoother 

➜  Improvement by smoother shrinks (depends on forcing strength) 
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Vary forecast length (F=7) 

  Forecast length = time steps over which nonlinearity acts on ensemble 

  Longer forecasts: 

➜  Optimal lag shrinks 

➜  RMS errors grow for filter and smoother 

➜  Improvement by smoother shrinks (depends on forcing strength) 
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Filter
Smoother
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Smoothing with global ocean model 

FESOM (Finite Element Sea-ice Ocean model, Danilov et al. 2004) 

Global configuration 
  1.3o resolution, 40 levels 
  Horizontal refinement at equator 
  State vector size 107 

  Weak nonlinearity 
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Drake passage Twin experiments with sea surface height data 
  Ensemble size 32 
  Assimilate each 10th day over 1 year 
  ESTKF with smoother extension and localization 

(Using PDAF environment as for Lorenz-96) 
  Inflation tuned for optimal performance (ρ=0.9) 



Effect of smoothing on global model 

Typical behavior 

  RMSe reduced by smoother 

Error reductions: 

~15% at initial time 

~8% over the year 

  Large impact of each lag up to 
60 days 

  Further reduction over full 
experiment  
(optimal lag = 350 days) 
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Multivariate effect of smoothing – 3D fields 

temperature salinity 

merid. velocity zonal velocity 

-1.0% at lag 40 -2.9% at lag 350 

-0.9% at lag 40 -1.3% at lag 250 

3D fields: 

  Multivariate impact smaller & specific for each field 

  Optimal lag specific for field 

  Optimal lag smaller than for SSH 
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Multivariate effect of smoothing – surface fields 

temperature salinity 

merid. velocity zonal velocity 

-0.9% at lag 30 -3.7% at lag 350 

-0.9% at lag 30 -0.9% at lag 20 

Ocean surface: 

  Relative smoother impact not larger than for full 3D 

  Deterioration for meridional velocity at long lags 

➜  What is the optimal lag for multivariate assimilation? 
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Conclusion 

  Multivariate assimilation: 
➜  Lag specific for field  

➜  Choose overall optimal lag or separate lags 

➜  Best filter configuration also good for smoother 

  Nonlinearity: 

➜  Introduces spurious correlations in smoother 

➜  Error increase beyond optimal lag 

➜  Optimal lag: few times error doubling time 
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Thank you! 



Web-Resources 

www.data-assimilation.net 
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pdaf.awi.de 


