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87Sr/86Sr reference maps (isoscapes) are a key tool for investigating past human and animal migrations. How-
ever, there is little understanding of which biosphere samples are best proxies for local bioavailable Sr when
dealing with movements of past populations. In this study, biological and geological samples (ground vege-
tation, tree leaves, rock leachates, water, soil extracts, as well as modern and archeological animal teeth and
snail shells) were collected in the vicinity of two early medieval cemeteries (“Thuringians”, 5–6th century
AD) in central Germany, in order to characterize 87Sr/86Sr of the local biosphere. Animal tooth enamel is
not appropriate in this specific context to provide a reliable 87Sr/86Sr baseline for investigating past human
migration. Archeological faunal teeth data (pig, sheep/goat, and cattle) indicates a different feeding area com-
pared to that of the human population and modern deer teeth 87Sr/86Sr suggest the influence of chemical fer-
tilizers. Soil leachates do not yield consistent 87Sr/86Sr, and 87Sr/86Sr of snail shells are biased towards values
for soil carbonates. In contrast, water and vegetation samples seem to provide the most accurate estimates of
bioavailable 87Sr/86Sr to generate Sr isoscapes in the study area. Long-term environmental archives of bio-
available 87Sr/86Sr such as freshwater bivalve shells and tree cores were examined in order to track potential
historic anthropogenic contamination of the water and the vegetation. The data obtained from the archeol-
ogical bivalve shells show that the modern rivers yield 87Sr/86Sr ratios which are similar to those of the past.
However, the tree cores registered decreasing 87Sr/86Sr values over time towards present day likely
mirroring anthropogenic activities such as forest liming, coal mining and/or soil acidification. The compar-
ison of 87Sr/86Sr of the Thuringian skeletons excavated in the same area also shows that the vegetation sam-
ples are very likely anthropogenically influenced to some extent, affecting especially 87Sr/86Sr of the
shallow rooted plants.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Over the past decade, strontium (Sr) isotope analysis has become
an increasingly powerful tool in present-day and past animal ecology,
for determining habitat use and mobility/migration (Blum et al.,
2001; Britton et al., 2011; Feranec et al., 2007; Hoppe et al., 1999;
Hoppe and Koch, 2007; Radloff et al., 2010; Tütken et al., 2011), in
tracing food provenance (Almeida and Vasconcelos, 2001; Barbaste
et al., 2002; Fortunato et al., 2004; Montgomery et al., 2006;
Swoboda et al., 2008; Techer et al., 2011; Voerkelius et al., 2010), in
. Maurer).
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hydrological and forest ecosystem investigations (Böhlke and Horan,
2000; Dijkstra et al., 2003; Drouet et al., 2005b, 2007; Poszwa et al.,
2004; Shand et al., 2009), as well as in forensic sciences (Beard and
Johnson, 2000; Juarez, 2008).

In archeology, the Sr isotopic composition can be used to identify
migrants and to examine movements of individuals (Bentley et al.,
2002, 2003; Knudson et al., 2004, 2005; Kusaka et al., 2011;
Montgomery et al., 2007; Müller et al., 2003; Price et al., 2000,
2006a, 2006b; Schweissing and Grupe, 2003; Tafuri et al., 2006;
Tung and Knudson, 2008; Wright, 2005). Such information, in turn,
provides insight into the dynamics and economy of past populations.

Strontium has four stable isotopes (88Sr, 87Sr, 86Sr and 84Sr) of
which 87Sr is radiogenic, resulting from the long-lived radioactive
decay of 87Rb, and is therefore variable in nature. The 87Sr/86Sr ratio
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of a closed system is controlled by the initial 87Sr/86Sr ratio, the Rb/Sr
ratio and time elapsed (Dasch, 1969). Different geological substrates
therefore possess varying 87Sr/86Sr ratios according to the Sr-bearing
minerals that they contain and their geological age. Weathering of
the bedrock material releases Sr from minerals, which then perco-
lates through soil pore waters and into the ecosystem (Ericson,
1985; Graustein, 1989). Strontium has similar chemical properties to
calcium and tends to follow the same biological pathways; however,
there is preferential absorption and retention of Ca over Sr by organisms
(Comar et al., 1957). Strontium is mostly absorbed via drinking water
and diet, in relative proportions to the Ca content in the foodstuffs,
and is mainly stored in vertebrates in the mineral phases of bones and
teeth (Comar et al., 1957; Rosenthal et al., 1972; Toots and Voorhies,
1965). Consequently, the skeletal 87Sr/86Sr mirrors, in a complex way,
that of underlying geological strata (Ericson, 1985).

Because 87Sr/86Sr is inherited from the local environment, resi-
dential mobility and lifestyle of individuals, or whole populations,
can be evaluated using the Sr isotope signatures of skeletal tissues.
To do so and, for example, to identify potential non-local individuals,
it is necessary to define the so-called “local” bioavailable 87Sr/86Sr
signature, which is a challenging task (Bentley et al., 2004; Price et
al., 2002; Tütken et al., 2011). A variety of comparative sample mate-
rials have been used in this regard, each of which has advantages and
disadvantages (Evans and Tatham, 2004). The enamel of archeological
faunal teeth from a site are one of the best indicators of the local range
(Price et al., 2002), but their exact origin may be questionable. Modern
faunal samples from known localities can also provide estimates of the
local biologically-available 87Sr/86Sr. Different environmental samples
have been put forward to assess the spatial variability in the bioavail-
able 87Sr/86Sr. These include surface water, soil leachates, vegetation
and snail shells (Evans et al., 2010; Hodell et al., 2004; Nafplioti, 2011;
Price et al., 2002; Sillen et al., 1998). However, industrial/anthropogenic
activities, such as the use of fertilizers, might have influenced the Sr iso-
tope ratios of modern ecosystems (Böhlke and Horan, 2000; Christian et
al., 2011; Tichomirowa et al., 2010; West et al., 2009), which would
then be inappropriate for interpreting 87Sr/86Sr data of archeological
specimens.

A prerequisite for investigating past human migration is the un-
derstanding of the Sr catchment area of the comparative samples
used to characterize the 87Sr/86Sr ratio of the bioavailable Sr. In this
study, different kinds of samples were tested (modern deer enamel,
water, soil and rock leachates, snail shells and vegetation) in order
to identify where they get their Sr from, and to determine whether
or not they are suitable as reference samples to investigate past
human migration in central Europe. Additional analyses of environ-
mental samples, such as modern and archeological freshwater bivalve
shells, as well as modern tree cores (Åberg, 1995) were performed in
order to monitor potential changes in bioavailable ecosystem 87Sr/86Sr
over time. Finally the 87Sr/86Sr results obtained from themodern ecosys-
temwere compared to 87Sr/86Srmeasured in archeological human teeth
excavated in the same area (so-called “Thuringians”, 5–6th century AD,
Saxony-Anhalt, Germany; see Knipper et al., 2012).

2. Geological settings

The environmental investigation focuses mainly around the early
medieval cemeteries of Obermöllern and Rathewitz in the SW of the
German federal state of Saxony-Anhalt (Fig. 1). The archeological set-
tings of these cemeteries have been outlined in Knipper et al. (2012).
Within a 50 km radius surrounding the archeological cemeteries, the
geology consists of Permian to Quaternary sedimentary rocks.

A review of the geology can be found in Ziegler (1990). Permian
Zechstein evaporates (sulfates and halite) and carbonates, are found
south of the Harz Mountains and north of the Thuringian Highlands,
which are two Paleozoic geological units crosscut by plutonic and volca-
nic intrusions. Zechstein deposits are absent close to the cemeteries;
however, they run alongside the Helme River and are found in the
northern part of the Saale River, from which the freshwater bivalve
shells were collected as part of this study. The two Paleozoic bedrock
highs constitute the northern and southern borders of the Thuringian
Basin, mainly underlain by the Triassic Buntsandstein, Muschelkalk
and Keuper units. The Buntsandstein comprises three distinct facies:
Lower Buntsandstein (shaley sediments), Middle Buntsandstein (sand-
stones and shales) and Upper Buntsandstein composed of shales and
evaporates (Nollet et al., 2009; Ziegler, 1990). TheMuschelkalk ismost-
ly composed of carbonates and marls, while the Keuper is formed by
clastic–evaporitic deposits of intercalated clays, sandstones, salts and
dolomite. The archeological cemeteries, located on the eastern edge of
the basin, are surrounded by residual Triassic deposits. Small Oligocene
units (sand and clay) are also found near the necropoleis. Tertiary de-
posits becomemore preponderant further east, accompanied by glacial
and periglacial Quaternary sediments, which form the main surface
cover of north and north-eastern Germany. Loess deposits also cover
large proportions of the surface of the study area.
3. Material and methods

3.1. Sample collection

Strontium isotope analyses of 155 biological and geological sam-
ples were undertaken in this study (Tables 1 and 2). Most of the sam-
ples were collected in April 2009, from 50 locations in the vicinity of
the two “Thuringian” cemeteries, and mostly within a 4 km radius
around them (Fig. 2). In order to avoid contamination by fertilizers,
samples were taken from forests and quarries covering the major
geological units of the area. Sampling locations were recorded by a
hand-held GPS device.

The samples consist of rocks, soils, snail shells and plants, collect-
ed at the same locations if possible (Table 1). Two kinds of plant sam-
ples were considered: ground vegetation (mainly grass) and tree
leaves (Beech, Maple, Oak, Lime and Hazel). Fresh leaves were taken
from the same tree and/or from grass. A few grams of soil were col-
lected from the uppermost 15 cm of the mineral soil after removing
the humus layer, which should correspond closely to that of the ex-
changeable cation pool (Blum et al., 2000; Pett-Ridge et al., 2009).
Rock samples and snail shells (Helix pomatia, except for locality No.
3, Cepaea hortensis) were obtained as well, and close to the plant sam-
ples whenever possible. All of the samples were stored in zip-lock
plastic bags.

In order to complement the collection, some additional samples
from the same overall area were obtained:

- Twelve water samples from rivers and springs (w1–12; Table 2),
were sampled using a syringe and stored in 30 ml acid-cleaned
Teflon tubes, acidified with 100 μl HNO3. Samples were stored
for less than a month in a refrigerator prior to analysis.

- Two soil samples: one soil core, obtained with a soil core sampler
and reaching a depth of 60 cm (Table 1; locality No. 8), and one
soil (as well as cereal) sampled directly from an agricultural field
(Table 1; locality No. 10), were collected in order to specifically as-
sess the impact of fertilizer use in this region on the 87Sr/86Sr.

- Two tree cores from oaks nearby each cemetery were obtained
using an increment borer (Table 2) to look for possible variations
in the bioavailable 87Sr/86Sr over the last century (from 1925 to
2003; sampling resolution: five years).

- Nine modern roe deer teeth (Table 2) from road killed animals
(localities of Steinburg, Wallroda, Kalbitz and Steinbach), were
provided by the Forestry Office of Sachsen-Anhalt.

- Faunal tooth enamel from eleven animals (8 pigs, 2 cattle, 1
sheep/goat; Table 2) were obtained from the archeological ceme-
teries of Obermöllern (Thuringian and Iron Age), Eulau (Iron Age)
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and Schönburg (Iron Age), for use as pre-anthropogenic reference
material (locations, see Fig. 2).

- Seven freshwater bivalve shells (Unionidae) from four locations
(A to D; Fig. 1), approximately 5 to 20 years old, were investigated
(Table 2) to examine potential temporal variations in the bioavail-
able 87Sr/86Sr from river waters. Two modern specimens (collect-
ed in 1997 and 2009) and five archeological specimens (excavated
in cemeteries dating from the middle Neolithic Salzmünde culture
to the old Iron Age) were analyzed. The rivers (Saale and Helme)
were sampled during the spring of 2010. These water samples
were taken 50 to 100 km north of the cemeteries, at the southern
border of the Harz Mountains (Fig. 1).

3.2. Sample preparation and analysis

Leaves and snail shells were rinsed with demineralized water soon
after collection, and dried overnight at 50 °C. Approximately 1 g of
dried leaves was ground manually and ashed in acid-washed silica
crucibles at 550 °C for 12 h. Six tree ring samples of 80 to 150 mg, av-
eraging 5 years each, were taken from both tree cores, covering a time
span from 1925 to 2003. A surgical steel scalpel was used to take the
samples from the core and to clean their surfaces. They were then
ashed in a muffle furnace at 250 °C for 2 h, followed by manual grind-
ing with an agate pestle and mortar. The surfaces of the snail shells
and that of the faunal tooth enamel (modern and archeological)
were mechanically cleaned using a drill diamond bit. A fraction of
the snail shells (3–5 mg) was then ground with an agate mortar,
while 10 mg of faunal tooth enamel was directly collected with the
drill. The archeological faunal enamel samples were treated with
pH=4.5 buffer solution (0.1 M Li acetate–acetic acid solution) to re-
move any diagenetic carbonate precipitated during burial. The bivalve
shells were embedded in epoxy resin, cut perpendicular to the direc-
tion of growth, ground and polished. Between 0.3 and 0.9 mg of shell
powder from the early and the late ontogenetic years (averaging 2
to 3 years each) was obtained by micromilling according to the proto-
col described in Hallmann et al. (2008) with a diamond-coated cylin-
drical drill bit of 1 mm diameter. The soil leachates were obtained by
shaking 1 g of soil in 10 ml MilliQ (Millipore) water for 24 h in acid-
cleaned polypropylene tubes. This step was followed by 1 h in an ul-
trasonic bath. The resulting solution was filtered through 0.2 μm fil-
ters before being dried down. The powder obtained from the rocks
with a diamond-coated drill bit was leached with water as well.
After decantation, 2 ml of the water collected from rivers and springs
was sampled and dried down.

The major portion of the samples was analyzed at the Max Planck
Institute for Chemistry in Mainz, Germany. All samples were dis-
solved in sub-boiling distilled hydrochloric acid (snail and bivalve
shells) or nitric acid (enamel and vegetation, with the addition of
30% H2O2), respectively, and evaporated to dryness. The strontium
fraction was separated from the samples using Sr-SPEC Eichrom



Table 1
Strontium isotope ratios of modern environmental samples (rock and soil leachates, snail shells, ground vegetation and tree leaves) collected from 39 locations in the vicinity of two Thuringian cemeteries (Obermöllern and Rathewitz) and
sorted according to the geological substrate (Buntsandstein: Middle and Upper; Muschelkalk: Lower andMiddle; Keuper, Oligocene, Pleistocene and Holocene). Locality No. 21 provided samples from aMuschelkalk quarry as well as from the
Pleistocene sediments covering the Muschelkalk. Samples in italics are not included in statistical calculations because of potential anthropogenic contamination effects.

Locality
no.

Type of sample
location

Latitude Longitude Epoch Rock Soil Snail Ground vegetation Tree leave

87Sr/86Sr±2σ 87Sr/86Sr±2σ 87Sr/86Sr±2σ 87Sr/86Sr±2σ Common name 87Sr/86Sr±2σ Common name

1 Alluvial plain 51.11822 11.85434 Holocene 0.70820±0.00005a Grass
2 Forest 51.15312 11.76641 Holocene 0.70905±0.00001 0.70864±0.00001 Grass 0.70897±0.00001 Oak
3 Alluvial plain 51.22667 11.67986 Holocene 0.70840±0.00004 0.70842±0.00003a Grass
4 Forest 51.16321 11.66920 Pleistocene 0.70811±0.00001 0.70892±0.00001a Grass 0.70945±0.00001 Maple
5 Forest 51.16136 11.66185 Pleistocene 0.70950±0.00001a Anemone 0.70966±0.00001 Maple
6 Forest 51.16371 11.66361 Pleistocene 0.70949±0.00004a Anemone 0.70976±0.00004 Beech
7 Quarry loess 51.12470 11.86896 Pleistocene 0.70910±0.00001 0.70972±0.00001a Grass
8 Forest 51.11538 11.87961 Pleistocene 0.71012±0.00002 0.70861±0.00001 0.70898±0.00001a Greater celandine 0.70939±0.00001 Hazel

Soil core [Depth cm] 0.70935±0.00002 Oak
0.70884±0.00002 [15]
0.71237±0.00002 [30]
0.71169±0.00002 [45]
0.71478±0.00002 [60]

9 Forest 51.11224 11.89450 Pleistocene 0.70772±0.00002 0.70776±0.00004a Grass 0.70791±0.00002 Maple
10 Agricultural field 51.16241 11.66505 Pleistocene 0.70553±0.00001 0.70551±0.00001a Cereal
11 Forest 51.16140 11.66401 Pleistocene 0.70958±0.00001 0.70936±0.00001 Anemone 0.70983±0.00001 Lime tree
21 Quarry Muschelkalk 51.16584 11.66751 Pleistocene 0.71054±0.00007 0.71016±0.00001 Grass

0.71027±0.00001 Lotus
12 Forest 51.15581 11.72055 Oligocene 0.70931±0.00002 0.70933±0.00008a Anemone 0.70942±0.00001 Beech
13 Forest 51.15433 11.72152 Oligocene 0.70887±0.00002a Grass
14 Forest 51.15279 11.72165 Oligocene 0.70959±0.00001a Grass 0.70959±0.00001 Oak
15 Forest 51.12938 11.53619 Keuper 0.70964±0.00001 Beech
16 Forest 51.13093 11.53640 Muschelkalk (Middle) 0.70925±0.00006 Beech
17 Forest 51.13065 11.53562 Muschelkalk (Middle) 0.70811±0.00006 0.70905±0.00003 0.70913±0.00001 Beech

0.70822±0.00007
18 Forest 51.16557 11.67017 Muschelkalk (Lower) 0.70836±0.00003
19 Forest 51.16552 11.66985 Muschelkalk (Lower) 0.70839±0.00003
20 Forest 51.16552 11.66983 Muschelkalk (Lower) 0.70819±0.00003 Grass
21 Quarry Muschelkalk 51.16584 11.66751 Muschelkalk (Lower) 0.70784±0.00004 0.70848±0.00001
22 Quarry Muschelkalk 51.16572 11.66749 Muschelkalk (Lower) 0.70782±0.00005 0.70866±0.00006a Grass
23 Quarry Muschelkalk 51.16591 11.66681 Muschelkalk (Lower) 0.70783±0.00003 0.70875±0.00004a Grass
24 Forest 51.16388 11.66423 Muschelkalk (Lower) 0.70871±0.00001
25 Quarry Muschelkalk 51.16465 11.66454 Muschelkalk (Lower) 0.70796±0.00001 0.70863±0.00004 0.70840±0.00006 Woodruff
26 Forest 51.16455 11.66473 Muschelkalk (Lower) 0.70831±0.00001
27 Forest 51.15637 11.64908 Muschelkalk (Lower) 0.70866±0.00002a Ivy
28 Forest 51.15689 11.64857 Muschelkalk (Lower) 0.70838±0.00004 0.70875±0.00002a Grass 0.70910±0.00012 Beech

0.70900±0.00001 Beech
29 Forest 51.12333 11.86359 Muschelkalk (Lower) 0.70783±0.00003 0.70817±0.00004 Lime tree
30 Forest 51.12321 11.86382 Muschelkalk (Lower) 0.70797±0.00006 0.70855±0.00002a Grass 0.70884±0.00006 Maple
31 Forest 51.12322 11.86339 Muschelkalk (Lower) 0.70803±0.00018 0.70822±0.00001 0.70824±0.00001a Ivy-leaved speedwell 0.70836±0.00001 Oak
32 Forest 51.12475 11.85100 Muschelkalk (Lower) 0.70798±0.00005 0.70827±0.00003a Wild ginger 0.70839±0.00012 Beech
33 Forest 51.13501 11.84944 Buntsandstein (Upper) 0.70838±0.00002 0.70857±0.00003 0.70858±0.00001a Anemone 0.70920±0.00010 Lime tree
34 Forest 51.13533 11.84760 Buntsandstein (Upper) 0.71016±0.00003 Beech
35 Forest 51.13544 11.84785 Buntsandstein (Upper) 0.70977±0.00001 0.70950±0.00001a Unknown
36 Forest 51.13485 11.84518 Buntsandstein (Upper) 0.71004±0.00001 0.70975±0.00001a Anemone 0.71008±0.00001 Beech
37 Forest 51.19076 11.52319 Buntsandstein (Middle) 0.71213±0.00002 0.71060±0.00001a Grass 0.71074±0.00001 Beech
38 Forest 51.19070 11.52306 Buntsandstein (Middle) 0.71116±0.00005 Hazel
39 Forest 51.19076 11.52169 Buntsandstein (Middle) 0.70959±0.00001

a Already published in Knipper et al., 2012.
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Table 2
Additional environmental 87Sr/86Sr data from tree cores, freshwater bivalve shells, water samples, modern deer tooth enamel and archeological faunal tooth enamel samples.
The 87Sr/86Sr of Thuringian human skeletons from 5 to 6th century AD from Obermöllern and Rathewitz cemeteries (Knipper et al., 2012) are also reported.

Locality Latitude Longitude Sample 87Sr/86Sr±2σ

Tree core samples
Near Obermöllern 51.16363 11.66350 Years 1925–1930 0.71005±0.00001

Years 1940–1945 0.70989±0.00005
Years 1960–1965 0.70930±0.00005
Years 1970–1975 0.71025±0.00001
Years 1985–1990 0.70927±0.00002
Years 1998–2003 0.70922±0.00001

Near Rathewitz 51.11563 11.87962 Years 1925–1930 0.71097±0.00001
Years 1940–1945 0.71041±0.00001
Years 1960–1965 0.70968±0.00001
Years 1970–1975 0.70936±0.00001
Years 1985–1990 0.70942±0.00001
Years 1998–2003 0.70935±0.00002

Freshwater bivalve shells
A. (Saale River) 51.53495 11.81891 1. Middle Neolithic (early ontogeny) 0.70833±0.00001

1. Middle Neolithic (late ontogeny) 0.70835±0.00001
2. Middle Neolithic (early ontogeny) 0.70840±0.00001
2. Middle Neolithic (late ontogeny) 0.70836±0.00001
3. Early Bronze Age (early ontogeny) 0.70841±0.00001
3. Early Bronze Age (late ontogeny) 0.70841±0.00001
4. Late Bronze Age/pre-Roman Iron Age (early ontogeny) 0.70845±0.00001

B. (Helme River) 51.43190 11.30399 5. Old Iron Age 0.70821±0.00001
C. (Helme River) 51.45697 11.20076 6. Died in 1997/1998 (early ontogeny) 0.70798±0.00001

6. Died in 1997/1998 (late ontogeny) 0.70789±0.00001
D. (Helme River) 51.50400 10.70887 7. Died in 2009 (early ontogeny) 0.71001±0.00001

7. Died in 2009 (late ontogeny) 0.70999±0.00001

Water samples Sr content μg.l−1

w1 51.19088 11.52330 Steinbach River 306 0.71011±0.00024a

w2 51.19057 11.52309 Steinbach River 309 0.71026±0.00017a

w3 51.19070 11.52306 Spring 319 0.71051±0.00012a

w4 51.19193 11.73039 Hasselbach River 1088 0.70913±0.00020a

w5 51.16111 11.64105 Hasselbach River 1495 0.70919±0.00023a

w6 51.12456 11.85215 Spring 1318 0.70919±0.00001a

w7 51.12005 11.87561 Spring 482 0.71064±0.00017a

w8 51.11808 11.85450 Wethau River 772 0.70960±0.00027a

w9 51.12301 11.87309 Schoppbach River 492 0.71011±0.00005a

w10 51.13588 11.86652 Nautsche River 449 0.71040±0.00012a

w11 51.22633 11.67894 Unstrut River 2822 0.70845±0.00010a

w12 51.15250 11.76591 Saale River 889 0.70887±0.00013a

w13 51.53115 11.82333 Saale River 1443 0.70867±0.00001
w14 51.52952 10.48907 Helme River 284 0.71178±0.00001
w15 51.50860 10.69175 Helme River 457 0.70977±0.00001
w16 51.44870 11.20250 Helme River 754 0.70801±0.00001
w17 51.43151 11.30529 Helme River 802 0.70811±0.00001
w18 51.45226 11.19619 Helme River 654 0.70804±0.00001

Modern deer tooth enamel
Steinburg 51.19069 11.51780 Second molar 0.70933±0.00001
Wallroda 51.19693 11.54340 Third molar 0.70734±0.00001

Third molar 0.70730±0.00001
Kalbitz 51.19106 11.55949 Third molar 0.70792±0.00001
Steinbach 51.19044 11.58284 Third molar 0.70703±0.00001

Third molar 0.70800±0.00001
Third molar 0.70666±0.00001
Third molar 0.70713±0.00001
Third molar 0.70788±0.00001

Archeological faunal tooth enamel
Eulau Iron Age 51.16475 11.84572 Pig: second molar 0.70912±0.00001

Pig: deciduous molar 0.70927±0.00001
Pig: first molar 0.70930±0.00001
Pig: second molar 0.70901±0.00001

Obermöllern Iron Age 51.16235 11.66984 Pig: first molar 0.70886±0.00001a

Sheep/goat: third molar 0.70964±0.00001a

Cattle: deciduous molar 0.70954±0.00001a

Cattle: third molar 0.71297±0.00001
Obermöllern Thuringian 51.16235 11.66984 Pig: third molar 0.71046±0.00033a

Schönburg Iron Age 51.17397 11.88019 Pig: third molar 0.70943±0.00001
Pig: third molar 0.71204±0.00001

Human bones (average calculated from data published in Knipper et al., 2012)
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Table 2 (continued)

Locality Latitude Longitude Sample 87Sr/86Sr±2σ

Obermöllern 51.16235 11.66984 0.70976±0.00046
Rathewitz 51.12126 11.87862 0.71004±0.00061

Human teeth (average calculated from data published in Knipper et al., 2012)
Obermöllern 51.16235 11.66984 0.71021±0.00234
Rathewitz 51.12126 11.87862 0.71000±0.00233

a Already published in Knipper et al., 2012.

221A-F. Maurer et al. / Science of the Total Environment 433 (2012) 216–229
resin. Approximately, 100 ng of purified Sr was loaded onto tungsten
filaments with Ta-fluoride activator. Strontium isotopic compositions
were measured using a Triton (ThermoFisher) TIMS instrument. The
standard reference material NIST SRM 987 yielded 0.710270±10
(1σ, population) for 41 measurements during one year. The expected
value for this reference material is 0.710250 (see Faure and Mensing,
2005), which was used to renormalize 87Sr/86Sr of the samples on a
daily basis. Strontium procedural blanks were b100 pg strontium
and are negligible. Some of the samples were analyzed by solu-
tion MC–ICP–MS at the Curt Engelhorn Center for Archaeometry,
Mannheim. Measurements of the same sample aliquots for plant
and snail specimens using the two techniques MC–ICP–MS and
TIMS yielded 87Sr/86Sr agreeing within less than 0.00008.

The strontium content of the water samples was measured by
ICP-OES, at the Institute of Geosciences, Mainz. Analytical precision –
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3.3. Statistical analysis

Non-parametric statistics were used to describe the 87Sr/86Sr dis-
tribution and to compare 87Sr/86Sr between groups. The structure of
the data was visualized using Kernel Density Estimates (RSC, 2006).
Differences in 87Sr/86Sr between sample types were examined by ap-
plying the two-tailed Mann–Whitney U test, performed with PAST
(http://folk.uio.no/ohammer/past/). This test was preferred over the
t-test because of the small sample sizes, important differences in
sample sizes between groups and some heterogeneities between
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variances. The null hypothesis states that there is no difference be-
tween the ranks of two samples. A probability level of 5% was consid-
ered significant to reject the null hypothesis. The probability was
given by the exact p-value when n1+n2≤30; otherwise, the asymp-
totic approximation p (same) was reported.
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Fig. 4. Differences in 87Sr/86Sr ratios of rocks, snail shells, tree leaves and soil leachates
relative to the ground vegetation collected at the same sampling location (cf. Table 1).
4. Results

4.1. 87Sr/86Sr of the different environmental materials

All results are listed in Tables 1 and 2. If not otherwise noted, er-
rors are reported as ±2σ. The modern environmental samples col-
lected within the region of Naumburg, central Germany, display a
broad range in average 87Sr/86Sr ratios (Fig. 3). The soil leachates
and water samples yield the highest mean values of 0.7103±0.0022
and 0.7097±0.0015, respectively, which are consistent with the av-
erage ratios measured in the archeological human bones and enamel,
which are respectively 0.7099±0.0006 and 0.7098±0.0011 (data
described in Knipper et al., 2012). The archeological faunal teeth data
are slightly lower, averaging 0.7094±0.0009, excluding two outliers.
The least radiogenicmodernmaterial is represented by the deer enamel
(0.7076±0.0016). Intermediate values occur in plants – tree leaves and
ground vegetation have 0.7094±0.0015 and 0.7090±0.0014, respec-
tively – aswell as in snail shells and rock leachates, which exhibit values
of 0.7086±0.0010 and 0.7083±0.0015, respectively. Although plants
yield fairly similar 87Sr/86Sr ratios, tree leaves are consistentlymore radio-
genic thangroundvegetation from the very same location (averagediffer-
ence in 87Sr/86Sr: 0.0003±0.0004; Fig. 4) whereas snail shells and rock
leachates tend to yield lower 87Sr/86Sr ratios than ground vegetation (av-
erage difference in 87Sr/86Sr: −0.0001±0.0007 and −0.0004±0.0009;
respectively). The average intra-site difference in 87Sr/86Sr between
ground vegetation and soil leachates is 0.0005±0.0013.
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the archeological human skeletons are also shown (Knipper et al., 2012).
It is worth noting that for the tree leaves, the inter- and intra-
species difference in 87Sr/86Sr is less than 0.0001 (Table 1; localities
No. 8, No. 21 and No. 28, respectively). Two aliquots collected from
the same rock (Table 1; locality No.17) also show fairly similar
87Sr/86Sr ratios (difference≤0.0001).

4.2. 87Sr/86Sr of samples collected on different geological units

Considering all the samples collected on specific geological units
(Fig. 5), the Middle Buntsandstein exhibits higher, although not sig-
nificantly different, biologically-available 87Sr/86Sr values than those
of the Upper Buntsandstein (average 87Sr/86Sr: 0.7108±0.0018 and
0.7099±0.0005, respectively; Mann–Whitney U=5, n1=5, n2=6,
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mples collected in the vicinity of the Thuringian cemeteries. The 87Sr/86Sr of each sam-
lus bars) are provided for each kind of sample. The strontium isotopic compositions of
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P=0.08, two-tailed). The samples directly collected on gypsum
layers (Fig. 5; locality No. 33) from the Upper Buntsandstein display
lower values (0.7087±0.0007), which are slightly higher than those
measured in samples collected on Muschelkalk (0.7084±0.0008).
The riverine sediments on average yield fairly similar 87Sr/86Sr ratios
(0.7086±0.0007). The samples collected on Pleistocene units (loess)
yield intermediate values (0.7095±0.0010), which differ significant-
ly from those exhibited by the Middle Buntsandstein (Mann–Whitney
U=7, n1=17, n2=5, P=0.003, two-tailed) and the Muschelkalk
(Mann–Whitney U=21, n1=17, n2=34, P (same)b0.0001, two-
tailed), which represent the 87Sr/86Sr end-members for bioavailable
Sr in this region. The samples collected on Oligocene sediments pro-
vide similar values (0.7094±0.0005) to those of the loess. Finally,
the single sample collected on Keuper has a 87Sr/86Sr ratio of 0.7096.

4.3. 87Sr/86Sr through time (tree core and freshwater bivalve shells)

No significant difference in 87Sr/86Sr was observed between bi-
valve shell samples mineralized during early and late ontogeny
(mean difference: 0.00003; Fig. 6). The archeological shells from lo-
cality A (Table 2) yield fairly homogeneous 87Sr/86Sr through arche-
ological time (Middle Neolithic to Late Bronze Age: mean value
0.7084±0.0001). The 87Sr/86Sr of Saale River water, sampled near
the archeological site of Salzmünde, is 0.7087 (Table 2; sample
w13) and therefore only differs by about 0.0003 from that of the bi-
valves. The archeological (Iron Age) and the modern (year 1997)
shells from two adjacent localities, B and C, from the Helme River
(Figs. 1 and 6), show comparable 87Sr/86Sr ratios (difference:
0.0003), which differ substantially from those of a recent shell (dif-
ference: 0.0019), collected at around 30 km further west in the
same river (locality D, Fig. 6). Such a difference is also observed in
the signature of their aquatic environments (difference: 0.0017). It
is worth noting that the difference in 87Sr/86Sr ratios between the bi-
valves and their corresponding aquatic milieu lies between 0.0001
(for localities B and C) and 0.0002 (locality D).

The tree core sampled near to Rathewitz recorded decreasing
87Sr/86Sr values from 1925–1930 (0.7110) to 1970–1975 (0.7094)
(Fig. 7). From then to modern times, the 87Sr/86Sr remains fairly con-
stant (mean value 0.7094±0.0001). The tree core sampled close to
the locality of Obermöllern displays a similar decreasing trend, but
with overall lower values (from 0.7100 to 0.7092) and one “outlier”
(0.7102 in 1970–1975) from the trend observed from 1960 to 1965
onwards (0.7093±0.0001).

A soil core (Table 1; locality No. 8) was taken 30 m away from the
Rathewitz tree core on loess cover. The four soil samples analyzed
from the soil core display highly variable 87Sr/86Sr: from 0.70884
(humus layer) to 0.71478 (sandy mineral soil at the bottom of the
core, 60 cm depth).
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5. Discussion

5.1. Geological vs. biological-available Sr

The weathering of bedrock is certainly heterogeneous, with radio-
genic Sr usually preferentially mobilized (Blum et al., 1993; Blum and
Erel, 1997; Erel et al., 2004). The soil will also likely contain primary
mineral fragments of the least-weatherable basement minerals, as
well as newly-formed clays and carbonates. Altogether, bedrock min-
erals, soils and pore waters will be heterogeneous in 87Sr/86Sr, which
will reflect a complex balance between weathering rates, the age of
the weathering surface as well as the geological age of the substrate.
Soils on geologically “old” basement terrains are expected to exhibit
the most extreme variation in 87Sr/86Sr ratios (see Blum and Erel,
1997).

This geological and pedological setting dictates the dispersion in
87Sr/86Sr, which is then somehow pooled and assimilated into the
so-called “bioavailable Sr” entering the food chain and, ultimately,
humans and animals. Depending on what material one uses as a mon-
itor of bioavailable Sr, the natural 87Sr/86Sr variations will either be
homogenized or, perhaps, skewed towards a particular reservoir of
strontium in the environment. It is the purpose, here, to shed light
on what materials would be best to use in this regard, given that
there is no consensus at all in the current literature in this regard.

5.2. Regional reference samples to use in mobility and migration studies

5.2.1. Modern vs. archeological faunal teeth 87Sr/86Sr
It has been suggested that 87Sr/86Sr of deer teeth may be potential

provenance indicators (Kierdorf et al., 2008), as some deer have rela-
tively small roaming ranges of less than 70–80 ha (Kierdorf et al.,
1999). Chemical compositions of deer teeth have also been used to
monitor environmental pollution (Kierdorf et al., 1999; Kierdorf and
Kierdorf, 1999; Richter et al., 2011). However, the deer teeth analyzed
in this study clearly do not reflect the bioavailable 87Sr/86Sr of the
unperturbed “natural” ecosystem. Measured 87Sr/86Sr ratios in the
deer teeth are generally lower than 0.708, while water, soil, vegeta-
tion and snails collected on all of the geological substrates from
the study area are mostly higher, lying between 0.708 and 0.710
(Fig. 3). 87Sr/86Sr measured on samples collected from an agricultural
field (0.7055 measured in ground vegetation and soil leachate from
locality No. 10, Table 1) illustrate that agricultural fertilizers (used
in this region over the past decade) yield lower values than the ma-
rine carbonates of the Muschelkalk, which are the least radiogenic
geological end-member of the study area (cf. Section 4.2). Such low
strontium isotope values are usually measured in young mantle-
derived volcanic rocks, which are not known to occur within approx-
imately 50 km radius around the site (Fig. 1). Therefore, although
modern fertilizers differ widely in their strontium isotopic composi-
tion, ranging from 0.7034 to 0.7152 (Vitoria et al., 2004), the unex-
pectedly low 87Sr/86Sr ratios of the deer enamel samples very likely
result from the ingestion of food or water affected by unradiogenic
fertilizers. Based on 87Sr/86Sr measured in a deer enamel sample
from the locality of Steinburg (cf. Table 2, Fig. 2) mostly surrounded
by Middle Buntsandstein in the deer roaming range area, the con-
sumption of agricultural fertilized products would have accounted
for 30% to the deer diet, assuming similar Sr/Ca ratios for woodland
and agricultural plain plants. This is not an incongruous result despite
the fact that roe deer is mainly a woodland species (Hewison et al.,
2001), because deer also select weed species amongst crops in small
woodlands and agricultural areas (Johnson, 1984; Putman, 1986).
An important conclusion from our study is that modern faunal sam-
ples cannot be used unambiguously to determine the “baseline” for
bioavailable 87Sr/86Sr in past migration studies in areas where fertil-
izers use has been documented.

In contrast, archeological faunal samples, which are free from an-
thropogenic contamination, should be the best archive for local bio-
available 87Sr/86Sr, if the animals fed locally in the same area as the
humans (Bentley, 2006; Price et al., 2002). Unfortunately, in this spe-
cific context, the statistical comparison of the clustered 87Sr/86Sr of
archeological faunal teeth (Table 2, Fig. 3) with those of the 87Sr/86Sr
data of archeological human teeth excavated in the same area
(Knipper et al., 2012) implies different feeding areas for the fauna and
the humans (two-tailed Mann–Whitney U=76, n1=8 n2=52,
P=0.004; considering the major mode of human 87Sr/86Sr, Fig. 9). Al-
though this may lead to useful new questions regarding the way of
life of past populations, this result justifies the examination of other en-
vironmental samples collected in the same ecosystem, in order to
delimitate a “local signature” for investigating past migration, and
opens the debate on their potential anthropogenic contamination.

5.2.2. Water samples

5.2.2.1. Strontium sources of the rivers analyzed. The strontium in water
and thus 87Sr/86Sr of water mostly comes from the products of miner-
al weathering and atmospheric deposition (e.g. Bain and Bacon, 1994;
Capo et al., 1998). Climate and, seasonality, which influences catch-
ment discharge, also control the 87Sr/86Sr ratios of rivers (e.g. Land
et al., 2000; Palmer and Edmond, 1989). Assessing the 87Sr/86Sr and
Sr content of waters together is helpful in identifying the main lithol-
ogies from which the strontium isotopic composition of the water has
been derived (e.g. Frei and Frei, 2011). If 87Sr/86Sr versus 1/Sr content
yields a straight line, the isotopic composition of the water must be
controlled by weathering of just two end-members. This is clearly il-
lustrated by the samples collected from the Helme River (Fig. 8).
Here, the 87Sr/86Sr is governed by the Lower Buntsandstein (radio-
genic end-member), and most likely, evaporites from the Zechstein
(unradiogenic end-member), which are found close to the river
(Fig. 1).

All of the other water samples, which were mostly collected in the
vicinity of the cemeteries, suggest simple binary mixing relationships.
In this case, marine carbonates of the Muschelkalk are most likely the
least radiogenic end-member, while the radiogenic 87Sr/86Sr end-
member remains uncertain (see Fig. 8). The mixing line defined by
these water samples seems to converge towards the same radiogenic
end-member as that of the Helme River samples. However, the Lower
Buntsandstein does not outcrop near the cemeteries, and it is there-
fore unlikely that this geological unit could supply radiogenic Sr to
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streams and rivers from this area. According to the 87Sr/86Sr mea-
sured here for the geological units in this region, and inferred from
the other samples analyzed, the Middle Buntsandstein is expected
to have the highest overall 87Sr/86Sr ratio. However, the water sam-
ples collected directly at or close to a spring coming from Middle
Buntsandstein outcrops have 87Sr/86Sr ratios that do not fall on the
expected mixing line (Fig. 8). Whether this is due to anthropogenic
contamination of the water or local differences in lithology remains
to be investigated.
5.2.2.2. Anthropogenic contamination of the rivers?. Biogenic carbon-
ates, such as bivalve shells, record the 87Sr/86Sr ratio of the dissolved
Sr in the aquatic environment (Nakano and Hiroshi, 1991; Veizer,
1989), which itself is derived from weathering, atmospheric inputs,
and anthropogenic activities in some cases (Christian et al., 2011). If
the Sr inputs deviated from their long-term average, this would
have modified the 87Sr/86Sr of the water, and this change would, in
turn, be recorded in the sequential layers of mineralized carbonate
during the growth of the bivalve shell (Åberg, 1995). Such changes
over a short period of time (between 5 and 20 years) apparently did
not occur, because very similar 87Sr/86Sr ratios are found in early-
and late-formed ontogenetic portions of modern and archeological
Unionidae shells (Fig. 6, Table 2). Likewise, changes over long periods
of time (around 2000 years) can probably be excluded, since 87Sr/86Sr
values of archeological shells from Salzmünde (locality A) are similar.
This assumes, of course, that all the shells were collected from the same
location by people and that they were not affected by later diagenetic
processes (see cathodoluminescence investigations; Beierlein, 2011).
The nearest river (Saale) has been suggested as the most probable col-
lection site for the shells. A water sample (Table 2, w13) provides a
slightly higher 87Sr/86Sr ratio (+0.0003) than that of the archeological
shells. However, the exact provenance of the archeological shells is un-
known, and might also be located further north within the Saale River.
The sedimentary facies varies along the course of the Saale, with larger
proportions of carbonates downstream (Hobert et al., 1994), thus the
river water 87Sr/86Sr is expected to be lower further northward. This
is illustrated by the difference of −0.0002 in the 87Sr/86Sr ratios be-
tween two water samples, w12 and w13, collected from the Saale fur-
ther south and north, respectively. A modern shell (collected in 2009,
locality D) also displays a slightly different 87Sr/86Sr (+0.0002) than
the Helme River from which it was collected (Fig. 6). In contrast, an
archeological shell from the Iron Age, which very likely came from the
same river, exhibits a smaller difference (+0.0001) compared to that
of the modern river water.

In summary, our 87Sr/86Sr data therefore suggest that although
anthropogenic contamination of the Saale River has been reported
(Zerling et al., 2003), the 87Sr/86Sr ratio was probably not affected sig-
nificantly. Modern river waters in this region can therefore be used as
comparative samples in studies of past mobility and migration. How-
ever, rivers drain diverse bedrock geology, that are spatially limited
and variable. For this reason, using river waters alone as a reference
point for bioavailable 87Sr/86Sr ratios would appear to be unwise.

5.3. Local reference samples to use in mobility and migration studies

To investigate the mobility of humans or animals using Sr isotope
analysis of skeletal remains, the bioavailable 87Sr/86Sr needs to be
characterized by appropriate environmental samples collected from
each geological substratum in the presumed habitat. However, signif-
icant 87Sr/86Sr differences were observed in this study between differ-
ent types of modern environmental samples collected in a restricted
region. This raises serious questions about whether the so-called
“local signature” can be easily and reliably determined from just a few
samples, that are supposed to then represent the “baseline” for investi-
gating past migrations.

5.3.1. Soil leachates
The 87Sr/86Sr values of the soil leachates illustrate just how poor this

material is in providing an accurate estimate for the local 87Sr/86Sr sig-
nature. At the “regional scale”, the soil leachates exhibit more variable
87Sr/86Sr ratios than that of all the other modern environmental sam-
ples (Fig. 3); similarly at a very local level (the same sites) the leachates
provide values that are quite often inconsistent with the plant data
(Fig. 4). Several studies have compared soil and plant 87Sr/86Sr ratios
from the same locations (Blum et al., 2000; Evans and Tatham, 2004;
Hodell et al., 2004; Nakano et al., 2001; Pett-Ridge et al., 2009; Poszwa
et al., 2004). However, in those studies, the soil-exchangeable cations
were obtained using various chemical reagents, which hampers direct
comparisonwith our results— herewe simply usedMilliQwater. None-
theless, Evans and Tatham (2004) did find discrepancies between the
87Sr/86Sr ratios of the soil leachates and vegetation aswell, with slightly
lower values occurring in the soils (average difference: 0.0002); this is
the opposite of what we found here. Thus, it is clear that soils should
only be used with caution for determining the bioavailable 87Sr/86Sr,
as they do not appear to yield consistent or reasonable comparative
values.

5.3.2. Snail shells
Likewise, snail shells give a biased estimate of the bioavailable

87Sr/86Sr. Evans et al. (2010) found that the 87Sr/86Sr recorded by
snail shells appears to be shifted towards that of rainwater. Further-
more, land snails also incorporate significant amounts of soil carbon-
ates into their diet — up to 40% (Yanes et al., 2008). As a result, snail
shell 87Sr/86Sr are usually biased towards values for soil carbonates,
which also seems to be the case for the snail shells analyzed in this
study. Together, these observations strongly suggest that snail shells
are unsuitable for providing accurate estimates of biosphere 87Sr/86Sr.

5.3.3. Vegetation

5.3.3.1. Different rooting depth, different 87Sr/86Sr. The 87Sr/86Sr that
ends up in vegetation ultimately results from weathering of bedrock,
as well as atmospheric deposition of material from outside the region
(Åberg et al., 1989; Graustein and Armstrong, 1983; Nakano et al.,
2001; Poszwa et al., 2004). As nutrient assimilation by the plant
from the soil is affected by plant anatomy (root systems) as well as
plant physiology (e.g., Sr cycling), which vary according to the species
of plant (Poszwa et al., 2004), it is not altogether surprising to observe
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differences in 87Sr/86Sr between that of ground vegetation and that
found in tree leaves. This difference is the same order of magnitude
as that documented between bamboo grass and oaks in Japan
(Nakano et al., 2001), and is slightly lower than that found between
plantlet/young and mature trees in Belgium (Drouet et al., 2005a).
Furthermore, the 87Sr/86Sr of the exchangeable Sr often varies between
soil horizons (Drouet et al., 2007; Poszwa et al., 2002, 2004), as also in-
dicated by the soil core data presented here, and thus plant-assimilated
87Sr/86Sr may vary according to rooting depth (Nakano et al., 2001; this
study). The 87Sr/86Sr of a soil profile depends, among other parameters
(see Pett-Ridge et al., 2009), on the weathering of the parent material
(Drouet et al., 2007). However, the fact that 87Sr/86Sr of the intra-site
ground vegetation is lower than that of the corresponding tree leaves
reflects the overall lower 87Sr/86Sr found in top soils, which seems to
occur regardless of the nature of the geological substrate. Although veg-
etation samples have been used as Sr isotope biosphere proxy (Evans et
al., 2010; Kusaka et al., 2011), the constantly less radiogenic 87Sr/86Sr
found in ground vegetation needs to be better understood. In particu-
lar, one must determine which type of plant, ground vegetation or
tree leaves, yields the most reliable estimate of the bioavailable
87Sr/86Sr entering the food chain today and in the past.

5.3.3.2. Tree core samples: witness of environmental acidification?. In
addition to ground vegetation and tree leaves, two tree cores were
collected nearby each archeological cemetery. Both cores, sampled
from oaks on loess outcrops, have quite similar 87Sr/86Sr ratios, but
were quite variable over the last century (up to 0.0016 within the
same tree). There is a trend of decreasing 87Sr/86Sr values towards re-
cent times as can be seen in Fig. 7. This trend might be caused by
years of mining activities. The Saale–Elbe region is known for its for-
mer coal mining industry (Eissmann, 2002), and anthropogenically-
influenced groundwater has the lowest 87Sr/86Sr ratios in the
Bitterfeld/Wolfen mining area (Petelet-Giraud et al., 2007), located
70 km away from our study area. Moreover, forests have been fre-
quently limed in Germany, and especially during the 1980s (Huettl
and Zoettl, 1993). The liming of forests can readily account for the de-
creasing trend in 87Sr/86Sr observed in a tree core (Drouet et al.,
2005a) when the 87Sr/86Sr ratio of the underlying geological sub-
strate is higher than that of the lime. However, if such local causes
(mining activities and/or liming forests) are able to explain the de-
creasing 87Sr/86Sr values recorded in the tree cores, it is still difficult
to establish any temporal link to such events due to the radial and
vertical translocation of cations within trees themselves (Drouet et
al., 2005a; Hagemeyer, 1993).

Besides the mining industry and lime addition, anthropogenic SO2

emissions, mainly from coal burning over the last century, are also re-
sponsible for a decreasing trend in 87Sr/86Sr seen universally in tree
ring samples from different areas, though the pattern of the decrease
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Fig. 9. Kernel density plots of Thuringian teeth 87Sr/86Sr of individuals buried in the cemeteri
to two major modes, which lie between 0.708 and 0.711. A few minor modes exist beyond
does vary according to the substrate and the tree species (Drouet et
al., 2005a). Soil acidification leads to calcium depletion of the soil,
and thus increases the relative contribution of atmospherically de-
posited Sr (Drouet et al., 2005a), which shifts the final 87Sr/86Sr of
the vegetation. The dramatic damage in Scandinavia due to acid rain
(Menz and Seip, 2004) might help explain the very high variability
in 87Sr/86Sr measured by Åberg (1995) within a single oak tree in
Stockholm. Evidence for mining, liming and/or soil acidification, all
resulting from human activities, might be observable in the tree
cores sampled near Naumburg, and are very likely responsible for
the differences found in 87Sr/86Sr between ground vegetation and
tree leaves. If this is indeed correct, then the 87Sr/86Sr of modern veg-
etation diverges from that of the past. Hence, it would be inappropri-
ate to use modern vegetation as an archive for the local “biosignal” for
comparison with 87Sr/86Sr of medieval skeletons excavated in the
same area.

5.3.3.3. Statistics of 87Sr/86Sr in modern vegetation and archeological
human teeth. A kernel density plot of 87Sr/86Sr measured in teeth
of individuals buried in the area shows two major distribution
modes, lying both between 0.708 and 0.711, and a few minor
modes at higher 87Sr/86Sr (Fig. 9). If the population lived locally,
these major modes most likely record bioavailable loess 87Sr/86Sr,
as loess dominates the landscape in the vicinity of each cemetery
(Fig. 2). However, the ground vegetation 87Sr/86Sr do not support
such an interpretation when compared to the archeological human
dataset. The statistical probability that loess provided most of the di-
etary bioavailable Sr to the Thuringian population is less than 33%
while for the Upper Buntsandstein the probability is higher than
60% for data from both cemeteries (Fig. 10). This statistical inference,
however, is not supported by the sparsity of Upper Buntsandstein
units in the vicinity of the cemeteries. Therefore, 87Sr/86Sr measured
in ground vegetation and those of archeological human teeth do not
provide a coherent or consistent picture of the bioavailable 87Sr/86Sr
within the geological context of the region.

Fig. 10 shows that the bioavailable 87Sr/86Sr, as recorded in the
archeological human teeth, are in better overall agreement with the
loess-hasted leaf data (probability of 56% and 86% for the adults bur-
ied in Obermöllern and Rathewitz, respectively). Nevertheless, the
87Sr/86Sr data for children buried in Obermöllern are, paradoxically,
inconsistent with 87Sr/86Sr from loess, and are matched better by
the signature seen in tree leaves collected on Upper Buntsandstein.

In summary, the fact that it is proving so difficult to arrive at amean-
ingful Sr isotope biosignature is perplexing. The most important aspect
of our study is thatwe have analyzed Sr isotopes in somanydiversema-
terials from this setting for 87Sr/86Sr to compare with 87Sr/86Sr data
from the human population of ca. 1500 years ago from the region. The
data illustrate the potential, but also the pitfalls, of many proxies of
0.713 0.714 0.7150.712

Sr
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es of Obermöllern and Rathewitz. The human 87Sr/86Sr are mainly distributed according
0.711 and up to 0.715.
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Fig. 10. Probability histogram of matching 87Sr/86Sr in teeth of 5–6th century AD
Thuringian individuals and 87Sr/86Sr of different geological units found in the region,
and as inferred from tree leaves (top) and ground vegetation (bottom) samples. The
non-parametric statisticalMann–WhitneyU test is applied to adult teeth of the Thuringian
cemeteries of Obermöllern and Rathewitz and to tooth enamel samples of children buried
in Obermöllern. The probability is given in % (P value∗100, two-tailed Mann–Whitney U
test) and theU value is reported on top of each sample group. The number of archeological
or environmental samples (provided as a/b for each geological unit with (a) ground
vegetation and (b), tree leaves) used in the calculation is given in italics.
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bioavailable environmental 87Sr/86Sr used in the current archeological
literature. It is clear that there is no one ideal material to use in this re-
spect, and the choice is probably best made on a case-by-case basis, to
avoid misleading inferences in past migration studies.

6. Conclusion

Archeological studies of past human migrations using Sr isotopes
rely on a comparison of 87Sr/86Sr in skeletal remains with that of bio-
available Sr from the local surroundings. Many sorts of material have
been used previously to estimate 87Sr/86Sr of bioavailable Sr, and it
remains unclear which of these are appropriate or reliable. Here we
measured the 87Sr/86Sr of a large number of different types of sam-
ples (water, soil leachate, snail shells, deer enamel, ground vegeta-
tion, tree leaves) from central Germany in order to infer which
might be the best proxy for local bioavailable Sr in archeological stud-
ies. These data were compared with 87Sr/86Sr from bones and teeth of
two 5–6th century AD cemeteries.
Our study demonstrates the influence of anthropogenic activities
(e.g. fertilizers) on the 87Sr/86Sr of modern deer enamel and the
87Sr/86Sr of archeological faunal teeth (pigs, sheep/goat, and cattle)
indicate that they fed in isotopically different areas than the Thurin-
gian population. This justifies the investigation of environmental
samples in order to provide a reliable 87Sr/86Sr baseline for investi-
gating past migration. Among them, snail shells and soil leachates
87Sr/86Sr do not provide accurate estimates of that of bioavailable
Sr. Rather, modern water and vegetation – especially tree leaves –

appear to be the best suited materials to use, and most closely reflect
87Sr/86Sr of the local biosphere. The influence of anthropogenic activ-
ities on the 87Sr/86Sr of water and vegetation can be examined back in
time using archives such as freshwater bivalve shells and tree cores,
respectively. Modern and archeological bivalve shells rule out any
significant deviation in 87Sr/86Sr of modern versus historic water
samples. However, 87Sr/86Sr in tree ring cores exhibit a decreasing
trend, indicative of anthropogenic influence on vegetation in the 20th
century. This most likely results from mining, forest liming and/or soil
acidification.

Comparison of the modern vegetation 87Sr/86Sr data with that of
enamel from “Thuringian” skeletons suggests that the modern gro-
und vegetation data are too unradiogenic as a consequence of anthro-
pogenic effects. Data from tree leaves may also have been affected,
but to a lesser extent.

Consequently, the results obtained in this study may be used as a
recommendation for investigating movements of past populations,
although very different results might arise in other areas. Overall, refer-
ence samples to reconstruct bioavailable 87Sr/86Sr for ancient humans
and animals and infer their mobility, must be carefully selected consid-
ering factors such as anthropogenic influences on modern ecosystems,
rooting depth of plants, as well as food sources used by modern and
archeological fauna.
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