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Abstract4

Unstructured meshes are common in coastal modeling, but still rarely used5

for modeling the large-scale ocean circulation. Existing and new projects6

aim at changing this situation by proposing models enabling a regional7

focus (multiresolution) in global setups, without nesting and open bound-8

aries. Among them, finite-volume models using the C-grid discretization on9

Voronoi-centroidal meshes or cell-vertex quasi-B-grid discretization on trian-10

gular meshes work well and offer the multiresolution functionality at a price11

of being 2 to 4 times slower per degree of freedom than structured-mesh12

models. This is already sufficient for many practical tasks and will be fur-13

ther improved as the number of vertical layers is increased. Approaches based14

on the finite-element method, both used or proposed, are as a rule slower at15

present. Most of staggered discretizations on triangular or Voronoi meshes al-16

low spurious modes which are difficult to filter on unstructured meshes. The17

ongoing research seeks how to handle them and explores new approaches18

where such modes are absent. Issues of numerical efficiency and accurate19

transport schemes are still important, and the question on parameterizations20

for multiresolution meshes is hardly explored at all. The review summarizes21

recent developments the main practical result of which is the emergence of22

multiresolution models for simulating large-scale ocean circulation.23
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1. Introduction26

Over the last decade the ocean circulation modeling on unstructured27

meshes was a subject of ongoing research, as partly highlighted in reviews by28

Pain et al. (2005) and Piggott et al. (2008). A number of new models has29
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been announced, such as FVCOM (Chen et al. (2003)), ICOM/Fluidity30

(Ford et al. (2004) and Piggott et al. (2008)), FESOM (Danilov et31

al. (2004) and Wang et al. (2008)), SLIM (White et al. (2008a),32

Blaise et al. (2010) and Kärnä et al. (2013)), the model by Stuhne and33

Peltier (2006), SUNTANS (Fringer et al. (2006)), MIKE 21 & MIKE34

3 Flow Model FM (http://www.mikebydhi.com), ELCIRC (Zhang et al.35

(2004)) or SELFE (Zhang and Baptista (2008)). There are older, largely36

coastal or estuarine modeling efforts, such as ADCIRC (Westerink et al.37

(1992)), QUODDY (Lynch et al. (1996)), TELEMAC (Hervouet (2000)38

and Hervouet (2007)) or UnTRIM (Casulli and Walters (2000)). Two new39

projects with focus on large-scale atmosphere and ocean circulation, MPAS40

(http://mpas.sourceforge. net/) and ICON (www.mpimet.mpg.de/en/science/41

models/icon.html), also include ocean components. The numerical principles42

of MPAS approach are described by Thuburn et al. (2009) and Ringler et al.43

(2010), and the first results of MPAS-ocean simulations are very encouraging44

(Ringler et al. (2013). There are many more models either designed for45

hydrology tasks or focused solely on barotropic shallow water which are not46

listed here.47

Unstructured meshes suggest flexibility with respect to resolving the ge-48

ometry of basins. By locally refining computational meshes they also enable49

one to simulate regional dynamics on a global mesh with an otherwise coarse50

resolution. The geometrical aspect is of utmost importance for coastal appli-51

cations where computational domains involve complex-shaped coastlines and52

very different scales, from basin size to details of river estuaries or riverbeds.53

Additionally, by locally scaling the meshes as H1/2 or H/|∇H|, where H54

is the water depth, one can take care of the variable surface wave speed or55

rapidly changing bottom topography, respectively, optimizing the mesh for56

simulations of tidally driven flows. The dynamical aspect is rather of interest57

for large-scale ocean modeling, as it offers an effective nesting approach in a58

global configuration free of open boundaries. The purely geometrical moti-59

vation is relevant too, but its focus shifts to places like straits, overflows or60

the continental break.61

The research community dealing with unstructured meshes aims at pro-62

viding a platform for multiresolution ocean modeling. Numerous coastal63

studies performed with FVCOM or ADCIRC (see their web sites for the64

lists of publications) vividly illustrate that the span of resolved scales can be65

very large (in excess of two orders of magnitude). And yet, further direct66

expansion from coastal toward large scales can be unpractical because the67
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spectrum of temporal and spatial scales becomes too wide. Indeed, the mere68

equilibration on the global scale may take tens (if not hundreds) of years, and69

the fine-resolved coastal part will become an unnecessary burden. Similarly,70

although large-scale ocean simulations on global meshes with the refinement71

factor of about 30–50 have already been reported (see, e. g., Wang et al.72

(2009)), it seems unlikely that this factor will be increased much further73

without additional measures. Given the coarse resolution of 50 – 100 km,74

such a refinement is already sufficient to reach a kilometer scale. Going be-75

yond it may imply new physics (e. g, non-hydrostatic effects) or prohibitively76

large CPU cost because the time step is determined by the smallest size.77

It is thus unlikely that unstructured meshes will offer a solution suited78

to simulate across all scales simultaneously while fully abandoning nesting.79

Considerations of numerical efficiency, let alone the difference in dynamics,80

parameterizations and mesh design, indicate that some separation between81

coastal and large-scale applications is likely to be preserved. This separation82

notwithstanding, the refinement already used in practice on unstructured83

meshes by far exceeds that of traditional nesting, which warrants the place for84

unstructured-mesh models as bridging the gap between scales and reducing85

the need in nesting to minimum.86

Given the number of existing efforts and promises made, it seems timely87

to briefly summarize the achievements, questions and difficulties and draw88

conclusions on the further development. We do not aim at full account,89

leaving aside such ‘high-tech’ perspectives as mesh adaptivity. Instead, we try90

to explain what are the main difficulties as compared to structured meshes,91

what is already possible in practice and what should be improved, using the92

models known to us as an illustrating material. Our experience and hence93

conclusions are biased to the large-scale modeling, which is less forgiving to94

numerical errors than the coastal one simply because of much longer time95

scales. The importance of geostrophic adjustment and balance in the large-96

scale dynamics is the other distinguishing feature of large-scale modeling.97

Speaking broadly, the main difficulty faced by models formulated on98

unstructured meshes lies in spurious modes maintained by discretizations.99

While certain spurious modes are known to occur even on regular finite-100

difference grids (like pressure modes on A and B grids or inertial modes on101

C-D grids), handling them on unstuctured meshes is more difficult. Most of102

staggered discretizations support branches of spurious modes which can be103

excited by nonlinear dynamics. Additionally, unstructured-mesh models are104

more expensive per degree of freedom.105
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Because of relatively short integration time, coastal models formulated106

on unsructured meshes are less vulnerable to spurious modes or to errors107

occurring from stabilizing them. More importantly, they offer a geometric108

flexibility which is difficult to achieve by other means. As a result, most of109

unstructured-mesh models are coastal (with ADCIRC, FVCOM, UnTRIM,110

SELFE and others having a long record of successful applications). The111

research here only seeks how to improve their already good performance112

or works on new functionality (like nonhydrostatic and ice components in113

FVCOM).114

The need to handle spurious modes and the higher computational cost115

explain why the attempts to large-scale modeling on unstructured meshes116

have not always been successful or are taking too long. Unstructured-mesh117

large-scale ocean models now include FESOM and MPAS, with ICON work-118

ing to the goal and other projects (SLIM, ICOM and FVCOM) considering119

it. The understanding available now is already sufficient to propose solutions120

that are good enough to be used in practice. However, examples showing the121

utility of the approach are only beginning to appear.122

For convenience, section 2 schematically explains main discretization meth-123

ods used on unstructured meshes. It can safely be omitted if the reader is124

familiar with them. The following sections discuss the vertical coordinate,125

main discretization types and their properties, conservation properties, ad-126

vection schemes, and reiterate on practical examples. The final sections127

present discussions and conclusions.128

2. Main approaches129

In order to facilitate further reading this section briefly sketches ba-130

sic technologies of writing discretized equations on unstructured meshes —131

the finite element (FE) and finite volume (FV) methods. Within the FE132

method one distinguishes between continuous and discontinuous representa-133

tions. Sometimes one uses the notion of mimetic differencing (or mimetic134

approach), which is related to both FE and FV methods or their combina-135

tion, and places focus on mimicking the properties of continuous operators.136

Regular courses like Zienkiewicz and Taylor (2000), Blazek (2001) or Li137

(2006) contain many details.138

We select an advection–diffusion equation for a tracer T to illustrate the139

basic approaches,140

∂tT +∇ · (uT −Kh∇T ) + ∂z(wT −Kv∂zT ) = 0, (1)
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with ∇ = (∂x, ∂y) and boundary condition that tracer flux is equal to Q at141

the upper surface while other surfaces are ‘insulated’. Here u and w are,142

respectively, the horizontal and vertical components of advecting velocity,143

and Kh and Kv, the diffusivity coefficients. For definiteness assume that the144

computational mesh is vertically extruded from a triangular surface mesh.145

The vertical prisms are cut into smaller prisms by a set of z-surfaces.146

2.1. Continuous finite elements147

According to the FE method, all fields are expanded in test functions148

defined on the elements of an unstructured mesh and belonging to an appro-149

priate functional space. We will not touch on the details of spaces here. In the150

simplest case the test functions are polynomials of low order with support lim-151

ited to one (usually discontinuous) or several neighboring elements (prisms).152

The discretized equations are obtained by projecting dynamic equations on153

a set of test functions. They frequently coincide with the basis functions,154

giving the so-called Galerkin projection. Upwind-biased test functions lead155

to the Petrov-Galerkin method. By its idea, the FE method resembles the156

spectral method.157

Expand T in a set of basis functions Nj = Xj(x, y)Zj(z) defined on pris-158

matic elements, T = Tj(t)Nj (summation over repeating indices is implied159

if Tj is involved). Depending on the choice of functions, the index j can list160

mesh elements or vertices (nodes) or additional nodes in elements or on their161

faces. A simple example is the continuous P1 representation (P stands for162

polynomial, and 1 for its degree; see section 4 for more examples). In this163

case Xj and Zj equal 1 at vertex j and go linearly to zero at neighboring164

horizontal and vertical vertices respectively, so that T = Tj(t)Nj is a bilinear165

interpolation which is continuous across the faces. If prisms are split into166

tetrahedra, the 3D linear representation becomes possible, Nj = Nj(x, y, z),167

and the expansion TjNj implies a linear interpolation in three dimensions.168

Next, equation (1) is re-written in a weak form as169 ∫
(Mi∂tT − Fh∇Mi − Fv∂zMi)dΩ =

∫
QMidS, (2)

where Mi is an appropriate test function, Fh and Fv are the horizontal and170

vertical components of fluxes and integration by parts has been performed.171

If Mi = Ni, one arrives at the Galerkin discretization172

Mij∂tTj + (Aij +Dh
ij +Dv

ij)Tj = Si, (3)
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whereMij =
∫
NiNjdΩ, Aij = −

∫
Nj(u·∇Ni+w∂zNi)dΩ, Dh

ij = −
∫
Kh(∇Ni)(∇Nj)dΩ173

and Dv
ij = −

∫
Kv∂zNi∂zNj)dΩ are, respectively, mass, advection, horizon-174

tal and vertical diffusion matrices, and Si =
∫
NiQdS is the source term.175

Note that (2) requires that Ni are at least continuous (derivatives have to176

be bounded). The approach implemented in (3) will be referred to as the177

continuous Galerkin (CG) discretization.178

Modifications are needed to the approach above on prismatic meshes if179

the level surfaces deviate from the z-coordinate. In this case functions Nj180

are specified on so-called standard (parent) elements (unit height rectangular181

prisms with the base formed by a unit rectangular triangle), and coordinate182

transforms from the physical space to the parent space are performed in inte-183

grals for matrix elements. For linear tetrahedral elements the modification is184

trivial since the Jacobians of transforms are elementwise constant. They are185

coordinate dependent in a general case and quadrature rules of appropriate186

order are needed to perform computations.187

There are several immediate implications. First, in contrast to finite-188

difference codes, time derivatives in (3) are coupled through mass matrices189

(Mij above) which are usually non-diagonal and global for the CG discretiza-190

tion (for example, on triangular prismatic meshes row i of Mij will contain191

about 20 non-zero entries for linear functions). Keeping them improves accu-192

racy by reducing numerical dispersion in advection schemes (see, e. g., Donea193

and Huerta (2003)), but iterative solvers must then be used. Diagonal, or194

lumped, approximations are sometimes selected to reduce the incurring com-195

putational burden, yet with an adverse effect on the accuracy of advection.196

According to Le Roux et al. (2009), lumping has a moderate (yet negative)197

effect on the dispersion properties of resolved waves, but this has been tested198

only for several FE pairs.199

Second, the implicit treatment of vertical diffusion, needed as a rule by200

ocean circulation models, implies inversion of global matrices too, this time201

because of horizontal connections in Dv. These connections create even larger202

numerical difficulties in hydrostatic codes, making hydrostatic balance or203

continuity equation difficult to solve for pressure and vertical velocity re-204

spectively.205

Third, since test functions satisfy
∑

iMi = 1 (partition of unity), global206

tracer conservation is immediately recovered by summing over i. Local con-207

servation is the equation itself, but it does not take the flux form a user is208

inclined to have. Computing ‘common sense’ transports (like the meridional209

overturning) entails uncertainties (see discussion by Sidorenko et al. (2009)).210
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These issues is the reason why the CG FE method is not optimal for211

ocean modeling, as will be explained further in more detail.212

2.2. Finite-volumes213

The FV method derives discretized equations by introducing control vol-214

umes and integrating over them. We consider the simplest case when the215

control volumes coincide with prisms the mesh is composed of (see section 4216

for more variants). The equations of motion are integrated over the con-217

trol volumes and their flux divergence terms are expressed, via the Gauss218

theorem, as fluxes out of the control volumes. Due to this strategy, local219

and global balances are ensured on the discrete level. To illustrate the FV220

method, it is applied to equation (1). Integrating (1) over prism (n, i) located221

in layer n below triangle i one obtains222

∂t

∫
TdΩni +

3∑
k=1

(Fh · nS)nk + (FvS)ni − (FvS)(n+1)i = 0, (4)

with (FvS)1i = QiSi. Here k enumerates the edges of triangle i, n is the outer223

normal on vertical faces, S the area of faces and Si is the area of surface trian-224

gle i. The discrete tracer values are introduced as Tni =
∫
TdΩni/Vni, where225

Vni = Sihn is the volume of prism (n, i) and hn the layer thickness (the226

prism height). The essence of the FV approach lies in estimating the fluxes227

leaving the control volume in terms of Tni and volume-mean values at neigh-228

boring control volumes. Generally, reconstruction of fields or their gradients229

is performed to accurately assess the fluxes. The estimates are discontinuous230

across the face and are replaced with ’numerical’ fluxes. Obvious examples231

are furnished by centered or upwind fluxes, and they are frequently limited to232

warrant monotonicity. Linear field reconstructions are formally sufficient for233

the second order convergence. They can be easily implemented as they only234

require the information from the nearest neighbors. They are, however, not235

always sufficient for oceanic applications, calling for higher-order or gradient236

reconstructions.237

On the conceptual level, the procedure is similar to that of structured-238

mesh FV codes such as MITgcm (Marshall et al. (1997)). The mesh unstruc-239

turedness, however, makes reconstructions and limiting less straightforward240

and involves noticeably higher computational effort.241

Note that in contrast to CG FE no horizontal connections are introduced242

for vertical derivatives. This makes FV approach better suited for hydrostatic243

codes.244
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2.3. Discontinuous FE245

Discontinuous finite elements can be considered as a generalization of both246

FV and CG FE approaches. One gets a weak formulation by integrating over247

elements interiors with some appropriate test function M and requiring the248

result to hold for all M from some functional space. In this case the result is249 ∑
ni

(

∫
(M∂tT −Fh∇M −Fv∂zM)dΩni−

∫
QMdS1iδ1n +

∫
MFndSin) = 0,

(5)
where n and i number the elements in vertical and horizontal directions, and250

integration in the last term is over the surface of element. The (polynomial)251

representation for T is restricted to element interiors, and is discontinuous252

across the elemental boundaries. Because of this, the elements are discon-253

nected and (5) is incomplete unless certain continuity penalties are added to254

the weak formulation. More commonly, the fluxes F are considered to be the255

‘numerical’ fluxes. They provide the only way the elements are connected.256

They combine flux estimates from elements sharing the face with relevant257

continuity constraints to ensure accuracy and stability. A simple example is258

the upwind estimate when the flux is taken as a boundary limit on the re-259

spective upwind element (additional constrains are still necessary to properly260

tackle the diffusion terms).261

As compared to the FV method, the high-order polynomials of the dis-262

continuous Galerkin (DG) FE method spare the need of reconstructions. As263

compared to continuous elements, mass matrices now connect only local de-264

grees of freedom (DOF) inside elements, which makes their direct inversion265

feasible. This is, however, achieved through a noticeably increased number266

of degrees of freedom inside elements. Because of incurring computational267

burden practical applications of discontinuous elements in ocean modeling268

are rare (see, e.g. Dawson et al. (2006), Blaise et al. (2010), Comblen et269

al. (2010), Kärnä et al. (2013)).270

2.4. Mimetic approach271

A general approach to unstructured polygonal meshes, combining use-272

ful sides of FV and FD methods, came under the name of mimetic finite273

difference. Mimetic discretization methods create discrete versions of par-274

tial differential operators that are exact in some sense, or mimic (hence the275

name) the properties of continuous operators. These, for example, include276

the requirement that the discrete operators of divergence and gradient are277
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negative adjoint of each other in the energy norm, as well as the requirements278

that ∇×∇T = 0 or ∇× (k× u) = −∇ · u hold on the discrete level, where279

k and u are, respectively, a unit vertical vector and the horizontal veloc-280

ity, which is needed to obtain the discrete vorticity balance from discretized281

momentum equations. Certain FV and FE discretizations are mimetic, but282

many implementations used in ocean modeling are not. The symmetry be-283

tween gradient and divergence is achieved by selecting an appropriate scalar284

product and defining one operator as the negative adjoint of the other one,285

which is automatically the case for CG FE. The maintenance of (potential)286

vorticity and enstrophy balances depends on how the discrete vorticity is287

defined and cannot be achieved in many cases.288

While the topic has a long history, in the context of atmospheric modeling289

it in fact appears already in Arakawa’s works (see Arakawa (1966), Arakawa290

and Lamb (1981)) dealing with the maintainance of energy and enstrophy291

balance on C-grids. Of current model development efforts known to the au-292

thor the C-grid based approach used by MPAS (as described by Ringler et al.293

(2010)) and the ICON-ocean (P. Korn, private communication) are mimetic.294

The quasi-B-grid (cell-vertex) approach described in Danilov (2012) can be295

made mimetic too. Cotter and Shipton (2012) introduce the families of mixed296

finite elements that satisfy conditions of finite element exterior calculus with297

build-in mimetic properties, and Cotter and Thuburn (2012) offer a more298

theoretical introduction to the topic. There is vast literature on mimetic299

differencing outside the atmospheric/ocean modeling (see, e.g., Hyman and300

Shashkov (1997), Subramanian and Perot (2006) and references therein).301

3. Unstructured meshes and the vertical coordinate302

3.1. Vertical coordinate303

Unstructured meshes do not offer new solutions for the vertical repre-304

sentation as compared to regular meshes. For one thing, nodes must be305

vertically aligned to facilitate computations of hydrostatic pressure and min-306

imize aliasing of horizontal pressure gradients by the vertical one. The ICOM307

group was exploring the possibility of fully 3D unstructured meshes, moti-308

vated by the task of 3D mesh adaptivity. Although feasible in principle309

(Kramer et al. (2010)), this approach encounters difficulties in solving for310

pressure in situations relevant for ocean large-scale dynamics. Assuming the311

vertical alignment, the ‘unstructuredness’ relates only to the surface mesh.312

The surface mesh defines prisms which are further cut into smaller prisms by313
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layer surfaces. These can be geopotential, terrain-following, isopycnal or any314

their combination, same as in finite-difference models. In finite-element (FE)315

codes a further subdivision step is sometimes made: each mesh prism is split316

into three tetrahedra (FESOM, ICOM). ’Partial’ or ’shaved’ cells and also317

the z∗ coordinate are possible in FV codes. In all cases the ALE (arbitrary318

Lagrangian Eulerian) approach can easily be applied (see Donea and Huerta319

(2003) for general exposition, and White et al. (2008b) and Ringler et al.320

(2013) for FE and FV applications, respectively).321

Still, the unstructuredness opens some new perspectives. First, the sur-322

face triangular mesh can be generated so that it includes certain discretized323

isobaths corresponding to the level surfaces. In that case one can get smooth324

bottom representation on z-coordinate grids if shaved cells are used. There325

will be improvement even with full cells because many local steps will be326

avoided. In practical terms, however, this approach can only be used in re-327

gional configurations (see Wang et al. (2008) for illustration). On global328

scale the continental margin represents an obvious difficulty unless one can329

afford resolution on a kilometer scale, yet certain alignment of mesh and330

topography is feasible. Much in the same vein, on terrain following meshes331

one can locally increase the horizontal resolution over the steep parts of the332

bottom. This makes the hydrostatic consistency requirement less demanding.333

Second, one can easily combine terrain-following levels above some iso-334

bath and z-coordinate below it. The unstructured character of mesh assists335

in doing it seamlessly. Such functionality is suggested by SELFE (Zhang and336

Baptista (2008)) and FESOM (Wang et al. (2008)).337

Third, many FE unstructured-mesh models assume some polynomial338

(e.g., piecewise-linear) representation for fields not only in the horizontal,339

but also in vertical direction, as is the case with SELFE, FESOM, SLIM.340

In that case the horizontal partial derivatives at constant z are known on341

elements and the code may work on meshes with generalized vertical levels342

without the need of transforming to the new vertical coordinate. This is the343

approach of SELFE, SLIM, FESOM. All what is required is an appropriately344

constructed mesh, the code remains without changes. Clearly, the horizontal345

gradients can still be aliased by the vertical ones on elements with vertices at346

more than two levels, leading, among others, to pressure gradient errors. For347

this reason these models apply algorithms minimizing pressure gradient errors348

by default. Among the models mentioned above, FVCOM, TELEMAC and349

ADCIRC do transform to the terrain following vertical coordinate, UnTRIM,350

SUNTANS and the model by Stuhne and Peltier (2006) are formulated on351
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z-coordinate meshes, and other models allow both approaches.352

Noteworthy, the bottom may contain elements with acute angles pointing353

into the land or ocean on ‘full-cell’ z-coordinate meshes based on surface354

triangulation. They should be avoided, with implication that some trimming355

of the bottom is frequently required.356

3.2. Surface unstructured meshes357

A review by Greenberg et al. (2007) discusses numerous aspects of358

unstructured mesh design, which will not be repeated here. Goals pursued by359

coastal and large-scale modelers are different, and so are typical meshes used360

by them. Figure 1 illustrates schematically the difference in approaches. In361

coastal tasks dynamics are tidally dominated, and mesh is refined in shallow362

areas according to the speed of long gravity waves (left panel). Shallow363

areas are of less interest for large-scale simulations and the mesh is refined in364

areas where dynamics are of particular significance (right panel). Web site of365

FVCOM offers numerous examples of coastal meshes and related simulations,366

and Wang et al. (2012), Hellmer et al. (2012) and Wekerle et al. (2013) give367

examples of studies performed with FESOM on meshes with focus on Arctic368

Ocean, Antarctic Ice Shelf and Canadian Arctic Archipelago respectively.369

Figure 1: Mesh design for coastal (left) and global (right) simulations. In the first case
the element size follows the phase speed of long surface gravity waves, but this can be
overridden by geometrical requirements at the coast, in estuaries or in the vicinity of
topography. In the second case the zeroth-order approximation is simply the refinement
in area where dynamics are studied. Other refinements may be necessary too (not shown).

The notions of the Voronoi diagram (tessellation) and Delaunay trian-370

gulation are frequently invoked with respect to unstructured meshes. For a371

finite set of points {pn} in the Euclidian plane the Voronoi cell Vk correspond-372

ing to point pk consist of points whose distance to pk is less than or equal to373
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the distance to other points. It is obtained from intersection of lines equidis-374

tant to neighboring points and presents a convex polygon. Its vertices are375

called Voronoi vertices. The Delaunay triangulation is dual to the Voronoi376

diagram and is obtained by connecting triples of points pk associated to a377

Voronoi vertex. This vertex is the circumcenter for such a triangle. It has the378

property that there is no other point within the circumscribed circle, which379

helps to reduce the occurrence of triangles with small angles. The relation380

between the Voronoi tessellation and Delaunay triangulation is illustrated in381

the right panel of Fig. 1, where the dark squares are the Voronoi vertices.382

Generalization to spherical geometry is straightforward.383

Most popular type of surface tessellation is via a Delaunay triangulation384

and models mentioned above use it. Triangular elements enable smooth rep-385

resentation of coastlines in a fairly straightforward way. There are numerous386

triangular mesh generators, both free and commercial, and we mention here387

GMSH (Lambrechts et al. (2008)), the simple generator by Persson and388

Strang (2004) and its more advanced implementation ADMESH (Conroy389

et al. (2012)) by the way of example. Depending on applications and dis-390

cretization algorithms, models have different requirements to mesh quality391

and smoothness (resolution change rate). For example, models like UnTRIM392

and SUNTANS require the so-called orthogonal meshes where circumcenters393

are inside respective elements, which is sometimes too restrictive in complex394

geometries.395

Local mesh nonuniformity and anisotropy may increase residual errors396

in the representation of operators in a general case on static meshes (but397

adapting meshes can benefit from stretching in along-flow direction). Ideally,398

mesh triangles should be as close to equilateral as possible. Local mesh399

quality can essentially be improved by slightly displacing the nodes and re-400

triangulating the mesh, for example, following the procedure of Persson and401

Strang (2004). Mesh resolution is assigned as a rule in terms of density402

function. However, it is rather difficult to foresee all needed features, let403

alone the difference in requirements for coastal and large-scale applications.404

In practical terms it means that no generator suits modeler’s needs 100%405

and in all cases multiple trials are required.406

Triangles are most widely, but not solely, used elements. The early ver-407

sion of ICOM was formulated on an (unstructured) surface quadrilateral408

mesh, and the current MPAS effort is build on unstructured Voronoi meshes.409

A simple iterative procedure (Ringler et al. (2008)) in this case allows410

constructing elements in which centroids and generating points coincide (a411
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centroidal Voronoi tessellation) while the size of elements follows some goal412

function. It leads to quasi-hexagonal meshes. Quadrilateral elements have413

to be strongly deformed in complex geometries to fit boundaries or refine414

the resolution, and with purely hexagonal elements the boundary is always415

castellated (but smooth coastline can be recovered by allowing pentagons).416

Many models formulated with finite-volume (FV) method (e. g. FVCOM417

or UnTRIM) can in principle be generalized to work on meshes composed of418

different polygons (see illustration in Casulli and Walters (2000)), but we419

are only aware of coastal applications of UnTRIM that use such an approach.420

This direction seems to be promising, as the meshes composed of, for421

example, triangles in transition zones and quasi-regular quadrilaterals in fine422

parts may allow substantial improvement in the quality of local advection423

schemes by relatively simple means. Yet it remains to see whether it will be424

matching the expectations in practice.425

Strong inhomogeneity in the mesh resolution may cause undesirable ef-426

fects like wave reflections (see, e.g., cautions expressed in Griffies et al.427

(2000)). Should it happen, it would imply that the mesh smoothness is in-428

appropriate for the problem under study. Unstructured meshes do not offer429

miracles — one has to ensure first and foremost that residuals in represen-430

tation of differential operators remain sufficiently small. Rigorous studies of431

possible effects of inhomogeneity in ocean context are lacking thus far. We432

note, however, that error analyses routinely applied with adaptive meshes433

can prove valuable in this context. We also note that dissipative operators434

are commonly scaled with resolution, so that one always tries to rather damp435

than reflect or scatter the perturbations.436

4. Main discretization types and their properties437

Historically, the development of unstructured-mesh ocean models was438

driven by coastal oceanography tasks, and was initially based on the FE439

method. FV codes started to appear later, and large-scale applications fol-440

lowed even later. The development in most cases was dictated by practical441

tasks while theoretical understanding was lacking. The situation is much442

improved now and properties of numerous discretizations are well studied.443

The goal here is to briefly mention existing approaches, and sketch a gen-444

eral picture. The preference is given to low-order discretizations. Only their445

horizontal part is discussed as most important.446
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We note that the order of spatial convergence depends on the selected447

discretization. In the FE case, one expects to have the second order for448

linear fields, and the first order for element-wise constant fields. For the449

FV method, linear reconstructions are expected to provide the second order.450

Superconvergence with respect to particular wave propagation tasks (Bernard451

et al. (2008)), and reduced convergence rate on nonuniform meshes (Hanert452

et al. (2009), Bernard et al. (2009)) can sometimes be observed.453

4.1. Placement of variables454

Figure 2 illustrates the horizontal placement of variables on some low-455

order finite elements, with arrow indicating the position of normal velocities.456

Figure 3 introduces finite-volume discretizations, captions to figures explain457

the details. Below the discretizations will be listed in pairs, first the rep-458

resentation for velocity and then for scalar variables (elevation, pressure,459

temperature and salinity).460

4.1.1. Finite-elements461

Continuous P1−P1 elements (QUODDY, ADCIRC, FESOM, ICOM) and462

RT0 − P0 elements (triangular C-grid as used by UnTRIM and SUNTANS463

is just a special case) have been used most widely. In the P1 − P1 case all464

DOFs are located at nodes, and fields are linearly interpolated on elements.465

In the second case RT0 is the lowest-order Raviart–Thomas element (Raviart466

and Thomas (1977)). The normal velocity is specified at edges and the full467

velocities on triangles is the sum over edges468

ut =
∑
e

ueφe, φe = (x− xe)/he, (6)

where e lists edges of triangle t, ue is the normal velocity on the edge, xe is469

the radius-vector drawn to the vertex opposing edge e, and he is the distance470

from the vertex to the edge (the height of triangle). It is easy to see that the471

normal velocity is continuous across the edges, but tangent velocity is not.472

The elevation is P0, i. e., elementwise constant.473

Less frequent choice is P nc
1 −P1 discretization (used in SLIM by White et474

al. (2008a) and also by Danilov et al. (2008)) in which case the velocity is475

represented with so-called non-conforming test functions Nnc
e that equal one476

on edge e and vary linearly to -1 on an opposing vertex (Hua and Thomasset477

(1984)). The velocity is only continuous at edge midpoints. Notice that RT0478

and P nc
1 −P1 elements are already ‘partly’ discontinuous, and care should be479
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Figure 2: Placement of variables for several FE discretizations. Dark circles show the loca-
tion of velocity or scalar variables, and the arrows show the location of normal velocities.
The upper row, from left to right: (P1) Linear continuous representation, variables are
at vertices; (PDG

1 ) Same location, but linear representation is restricted to elements and
hence discontinuous across the edges, as a consequence each vertex hosts many DOF (6 in
most cases); (Pnc

1 ) Nonconforming linear representation, variables are at mid-edges, their
basis functions change from 1 to -1 on an opposing vertex, continuity is maintained only
at mid-edges. The lower row, from left to right: (RT0) Linear representation of velocity
in terms of radial functions (6), the normal velocity is uniform on edges and continuous
across them; (P2) Quadratic continuous representation, DOFs are at vertices and mid-
edges; BDM1 The velocity is linear on elements, normal velocity is linear and continuous
at edges. P0 (not shown here) is discontinuous and implies elementwise constant fields.

taken with respect to properly writing the discretized equations (see, e. g.,480

Hanert et al. (2005) and Comblen et al. (2010)).481

For discontinuous Galerkin PDG
1 − PDG

1 discretization linear representa-482

tion is confined to triangles (working applications are reported by Dawson483

et al. (2006), Blaise et al. (2010) and Kärnä et al. (2013)). Bernard et484

al. (2007) discuss higher-order possibilities. Since on good quality meshes485

in most cases 6 triangles meet at each vertex, PDG
1 representation implies a486

6-fold increase compared to CG P1 representation in the number of DOFs487

in the horizontal direction. The factor is reduced if we compare polynomials488

of higher order, being 3 and 20/9 for the quadratic and cubic cases respec-489

tively. In essence, it characterizes clustering of DOFs in space which is rather490

high for the low-order DG discretizations on triangular meshes. As a result,491

they do not necessarily offer spatial resolution matching their higher com-492
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Figure 3: Placement of variables and control volumes for several FV discretizations. The
circles, squares and dark squares mark, respectively, the vertices, centroids and circum-
centers. The cell placement of variables implies centroids except for C-grids, when circum-
centers are used. The control volumes are the elements proper. For vertex placement of
variables, the control volumes are obtained by connecting either centroids with mid-edges
(median-dual control volumes, left panel) or the circumcenters (right panel). The latter
case corresponds to the Voronoi dual meshes. In that case the mesh is made of Voronoi
cells (polygons with vertices at dark squares; they are hexagons in most cases). On tri-
angular C-grids the normal velocities (not shown) are located at mid-edges. On Voronoi
(quasi-hexagonal) meshes (right panel) they have the same location, but are normal to
edges of hexagons, which are the lines connecting circumcenters of triangles.

putational cost with respect to their CG counterparts. This already hints493

that the DG FE method needs high-order elements to fully demonstrate its494

potential.495

P0 − P1 and PDG
1 − P2 elements are two choices well suited to represent496

the geostrophic balance (because the pressure gradient and rotated pressure497

gradient lie in the velocity space). The lower-order one is used by FVCOM498

in the FV implementation. The higher-order one is currently used by ICOM-499

Fluidity. Its performance on the level of barotropic shallow water equations500

was explored by Cotter et al. (2009), Comblen et al. (2010) and Cotter501

and Ham (2011). Notice that it requires more than 3-fold increase in the502

number of DOF compared to the lower-order one.503

There are many other possibilities yet they are without a practical record.504

Rostand and Le Roux (2008) considered generalizations of RT0 − P0, one505

with P1 elevation (RT0 − P1), and two others, where the velocity is repre-506

sented by Brezzi–Douglas–Marini elements (BDM1, the normal velocity is507

linear and continuous at edges), and elevation as P0 and P1 respectively.508
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Spurious elevation modes were identified for P1 representations, and noise in509

the velocity field was observed for BDM1 on unstructured meshes. There510

is no obvious recommendation with respect to these elements. Cotter and511

Shipton (2012) proposed to enrich BDM1 and work with BDFM1-PDG
1 pair,512

but no practical tests are known to us. Comblen et al. (2010) explore several513

discontinuous formulations such as P nc
1 −P nc

1 and PDG
1 −P1 in shallow-water514

tests. Of them P nc
1 − P nc

1 looks promising because it needs twice less DOFs515

than PDG
1 − PDG

1 but behaves rather similarly.516

Le Roux et al. (2007) explored rather exotic variants such as P nc
1 − P0517

and P2 − P0 but found them unsuitable for modeling surface inertia-gravity518

waves. The physical reason is that the stencil of P nc
1 functions spans only two519

neighboring triangles sharing an edge, it is too small to compute gradients of520

P0 elevation, hence noise. In the other case the velocity degrees of freedom521

associated with edges suffer from the same problem.522

Since P1−P1 discretization may develop pressure modes, some modifica-523

tions have been proposed with an enriched velocity space. One choice is the524

so-called MINI-element, where an additional basis function localized on ele-525

ment is introduced (frequently it is a cubic bubble that equals one at centroid526

and zero at the element boundary). Another possibility is P1isoP2− P1 pair527

(Le Roux et al. (1998)) where additional nodes are introduced at mid-edges,528

and each triangle is split in four for linear velocity representation (abbrevia-529

tion P1isoP2 reflects the fact that the number of DOF involved in this case530

is equal to that of quadratic P2 representation). With, perhaps, the excep-531

tion for TELEMAC (that uses quasi-bubble stabilization) we are unaware of532

other applications.533

4.1.2. Finite-volume discretization534

As mentioned above, there are two basic variable placements — cell cen-535

tered and vertex-centered. In the first case the control volumes are the mesh536

elements (triangles, quads or hexagons). In the second case one commonly537

uses median-dual control volumes obtained by connecting centroids of ele-538

ments with mid-edges (left panel of Fig. 2). Szmelter and Smolarkiewicz539

(2010) suggest to apply the second type of variable placement in geospheri-540

cal context on triangular meshes. Because of its stencil it turns to be very541

close to P1 − P1 FE discretization and shares the same difficulties (see fur-542

ther). MIKE 21 & MIKE 3 Flow Model FM (http://www.mikebydhi.com)543

use cell-centered placement of all variables. FVCOM uses staggered repre-544

sentation, its velocities are at centroids, but scalar quantities are at vertices.545

17



This is very similar to the P0 − P1 FE case, with the difference that mass546

matrices are diagonal. We also note that the so-called ZM-grids on hexagonal547

surface meshes (Ringler and Randall (2002)) are very close to this discretiza-548

tion. The cell-vertex triangular discretization would be identical to ZM if the549

median-dual control volumes are replaced by the ‘orthogonal’ ones obtained550

by connecting circumcenters.551

A special class of codes uses C-grid ideology on triangular meshes, keep-552

ing normal velocities at edges, and scalar fields at circumcenters (UnTRIM,553

SUNTANS and the model by Stuhne and Peltier (2006)). As concerns the554

scalar equations, the approach is FV. However, with respect to momentum555

equations, it applies finite-differences (computations of pressure gradient)556

and, in some codes, also FV (computations of momentum advection and vis-557

cosity). It presents a particular variant of mass matrix lumping of the FE558

RT0 − P0 case. Same variable placement is used by the mimetic approach559

explored within ICON project (P. Korn 2011, personal communication). In560

that case one uses reconstruction (projection) operators from normal veloc-561

ities on edges to full velocities on elements (P) and back (PT ), and another562

set for the reconstruction to vertices (used for the Coriolis force). The sim-563

plest implementation of such operators coincides with that of Perot (2000).564

The key difference of mimetic approach from the pure C-grid is that PTPve,565

where ve are normal velocities on edges, and not ve, satisfy the continuity566

equation.567

Unstructured-mesh C-grids are not limited to triangles and both quadri-568

lateral and hexagonal C-grids offer clear advantages over triangles (see, Gassmann569

(2011) for comparison of triangular and hexagonal C-grids). For Voronoi570

meshes Thuburn et al. (2009) and Ringler et al. (2010) proposed the571

approach with mimetic properties, which will be referred further as TRiSK.572

Its essence lies in the reconstruction procedure for the tangential velocity573

component which allows to construct differential operators which mimic the574

behavior of their continuous analogs. This approach is pursued by MPAS ini-575

tiative and shows a very robust performance. Gassmann (2012) offers some576

modifications to vorticity reconstruction that is motivated by atmospheric577

applications.578

4.2. Simple general view579

A question naturally arises as why so many approaches have been pro-580

posed. A very rough answer is that neither is perfect, and our aim here is to581

explain this situation on an elementary level.582
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We begin with mentioning that there are two geometrical aspects asso-583

ciated with triangular and hexagonal meshes: (i) the disparity between the584

number of DOFs used to represent the horizontal velocity and scalar fields585

for most of staggered discretizations and (ii) the presence of DOFs with dif-586

ferent neighborhood (like vertex and edge DOFs for P2 elements) which may587

lead to ‘grid imprinting’ in eddy-dominated regimes aimed by large-scale ap-588

plications. Here we mean the potential danger of noise from the build-in589

non-uniformity on the mesh scale in eddy-dominated regimes. This issue,590

however, remains unexplored.591

For quadrilateral-grid models formulated on the Arakawa A, B or C grids592

the number of DOFs for the horizontal velocity is related to those of a scalar593

field as 2:1. Although the pressure modes are known to exist on A and B594

grids, and the Coriolis operator may have null-space on C-grids, these issues595

can be well handled on B and C-grids. Linearized shallow-water equations on596

an f-plane, discretized on A-, B- or C-grids, support one geostrophic and two597

inertia-gravity modes, as in the case of continuous equations. Additionally,598

the ratio of 2:1 implies that the spatial resolution of velocity and scalar fields599

is the same. Let us look from this perspective on the situation on triangular600

and hexagonal meshes. If the number of vertices N on a triangular mesh is601

sufficiently large, the numbers of triangles and edges are approximately 2N602

and 3N , respectively. On hexagonal meshes, if N is the number of hexagons,603

2N is the approximate number of vertices and 3N is that of edges. It is thus604

straightforward to see that the discretizations discussed above correspond to605

ratios given in Table 1. References there should help to find information,606

they do not reflect priority. The numbers correspond to degrees of freedom607

needed by discretizations on the level of shallow water equations.608

From this table it follows that with exception of the recently proposed609

BDFM1 − PDG
1 , only the discretizations with same (collocated) representa-610

tion for velocity and scalars (P1−P1, its FV analog — vertex-based discretiza-611

tion of Szmelter and Smolarkiewicz (2010), cell-cell, PDG
1 −PDG

1 and recently612

proposed P nc
1 − P nc

1 ) realize this ratio. Note that except for P1− P1 and the613

cell-cell case (aiming at coastal applications) all other still need additional614

(PDG
1 − PDG

1 ) or fundamental efforts toward full ocean models. The rest of615

discretizations are ‘unbalanced’. RT0−P0 and triangular C-grid possess too616

large scalar spaces, while all other discretizations have too many velocities.617

A large velocity space is as a rule needed to avoid the null space of gradient618

operator (pressure modes) which is the major drawback of P1 − P1 FE and619

vertex-based FV discretizations (as well as other collocated discretizations).620
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Table 1: Ratio of degrees of freedom (horizontal velocity : scalar field)

Discretization Ratio Reference
P1 − P1 2N : N ADCIRC,FESOM,ICOM
vertex-vertex 2N : N Szmelter and Smolarkiewicz (2010)
cell-cell 4N : 2N MIKE 21
PDG
1 − PDG

1 12N : 6N Blaise et al. (2010)
P nc
1 − P nc

1 6N : 3N Comblen et al. (2010)
BDFM1 − PDG

1 12N : 6N Cotter and Shipton (2012)
Tri-C-grid 3N : 2N Casulli and Walters (2000)
RT0 − P0 3N : 2N Walters et al. (2009)
Hex-C-grid 3N : N Ringler et al. (2010)
PDG
1 − P2 12N : 4N Cotter and Ham (2011)
RT0 − P1 3N : N Rostand and Le Roux (2008)
BDM1 − P0 6N : 2N Rostand and Le Roux (2008)
cell-vertex 4N : N FVCOM
P0 − P1 4N : N Le Roux et al. (2007)
Hex-ZM-grid 4N : N Ringler and Randall (2002)
P nc
1 − P1 6N : N Hanert et al. (2005)

MINI-P1 6N : N Le Roux et al. (2007)
BDM1 − P1 6N : N Rostand and Le Roux (2008)
P2 − P1 8N : N Le Roux et al. (2007)
PDG
1 − P1 12N : N Comblen et al. (2010)

One expects spurious numerical modes for ‘unbalanced’ discretizations,621

and it is indeed so. A dominant part of the discussion of element pairs in the622

literature relies on linearized barotropic shallow water equations. Assuming623

regular triangulation and plane geometry, one examines the behavior of a624

Fourier mode, similarly to the analyses on reqular quadrilateral meshes. Ad-625

ditional insight is provided by selecting unstructured meshes of limited size626

and performing analyses of dicrete operators. Le Roux (2005), Le Roux et627

al. (2007), Le Roux and Pouliot (2008), Bernard et al. (2008), Bernard628

et al. (2009), Hanert et al. (2009), Walters et al. (2009) and Cotter629

and Ham (2011) (see also references therein) explore different aspects of630

gravity and Rossby wave propagation for various discretization types, and631

Thuburn (2008) gives the analysis for hexagonal meshes. Recent study by632

Le Roux (2012) provides an excellent summary of the effect of spurious iner-633
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tial modes. The details are too numerous to be given here and would require634

a review on their own. Briefly, except for pathological discretizations like635

P nc
1 −P0, the rest are capable of representing waves with desirable properties636

(accuracy and sensitivity to mesh structure vary between discretizations).637

However, many of them support spurious numerical modes. Different from638

the pressure modes on the Arakawa A and B-grids, emerging for isolated639

wave numbers, here we encounter spurious numerical branches. The most640

important question is about their consequences.641

There are additional subtleties related to the ability of discretizations to642

maintain the geostrophic balance as explained by Le Roux et al. (1998) and643

Bernard et al. (2008). For example, it turns out that unstabilized P1 − P1644

representation is suboptimal for that on deformed meshes (yet it is never645

used without stabilization). Some details will be presented further.646

Unfortunately, the presence of spurious branches for ‘unbalanced’ dis-647

cretizations may have implications beyond the shallow water equations, so648

that full 3D setups are required to learn about them. ‘Balanced’ collo-649

cated discretizations are analogous to A-grids and need special measures650

to suppress pressure modes. Finally, the ‘balanced’ mixed discretizations651

like BDFM1 − PDG
1 , may suffer from ‘grid imprinting’ in strongly nonlinear652

regimes, as it introduces two types of velocity degrees of freedom. This also653

concerns some ‘unbalanced’ discretizations listed above. There is a parallel654

discussion of certain issues mentioned here in the atmospheric community,655

and a review by Staniforth and Thuburn (2011) provides many relevant656

details.657

This highlights the difficulties, and we just add some details.658

4.2.1. Spurious modes659

Table 3.1 in Le Roux et al. (2007) and Table 3 in Le Roux (2012)660

list numerical (physical and spurious) modes for many discretizations, the661

latter reference also presents general rule to compute the number of spurious662

inertial modes. Here we only give some illustrations.663

RT0−P0 and triangular C-grid support four coupled inertia-gravity modes664

(see Le Roux et al. (2007), Gassmann (2011)), two of which can be iden-665

tified with physical modes if the Rossby radius is well resolved. Otherwise666

the separation into physical and spurious parts fails. In typical barotropic667

simulations the external Rossby radius is well resolved, and spurious modes668

are not excited. But situation is different when dynamics are baroclinic. The669

horizontal divergence that corresponds to eigenvectors of spurious modes (or670
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any of four modes if resolution is coarse) shows a checkerboard pattern, which671

projects on the field of vertical velocity. Accordingly, these discretizations672

become a questionable choice for large-scale ocean modeling (see Danilov673

(2010)), despite their obvious algorithmic simplicity and despite the fact674

that they are widely used for coastal simulations. To suppress numerical675

modes, some form of divergence averaging is needed. Averaging of velocity676

and elevation gradient by the operator PTP in ICON-ocean may serve this677

purpose. These measures effectively reduce the resolution and modify the678

sense in which the local volume conservation has to be understood.679

The discretizations with large velocity space support in many cases only680

spurious inertial velocity modes (as is the case with P nc
1 − P1, P

DG
1 − P2,681

P0 − P1, or cell-vertex scheme of FVCOM — i. e., the discretizations with682

full horizontal velocity vectors). On their own these modes are not dangerous683

in linear problems if damped by dissipation in the momentum equations (yet684

may become dangerous if excited by nonlinear dynamics). Le Roux (2012)685

shows that they are in many cases responsible for the reduced convergence686

in solutions without dissipation.687

The hexagonal C-grid has two coupled geostrophic modes which are sen-688

sitive to the implementation of Coriolis operator. Only if special care is689

exercised, the geostrophic modes become stationary on an f -plane, but there690

still remain two coupled branches of Rossby waves if the Coriolis param-691

eter varies. Luckily, one of them is close to the physical mode at small692

wavenumbers (see Thuburn (2008), Thuburn et al. (2009)). Similarly, the693

generalizations introduced by Rostand and Le Roux (2008) all have cou-694

pled geostrophic modes, which should have implications for Rossby waves.695

The general feature of discretizations introducing only normal components696

of velocity is the absence of inertial modes.697

4.2.2. Momentum advection698

The too large velocity space size of certain discretizations has further-699

reaching implications in eddying regimes, when momentum advection is no700

longer small. Indeed, the mere fact that the velocity space is too large implies701

that it resolves scales smaller than those of pressure gradient. In turn, due702

to nonlinearity, even smaller scales are produced. They have to be effectively703

removed to maintain numerical stability, which in practice requires designing704

special algorithms (see, for example, Danilov et al. (2008) for P nc
1 −P1 case705

and Danilov (2012) for cell-vertex discretization; see also discussion of ZM706

grid by Ringler and Randall (2002)). Standard Laplacian viscosity is fre-707
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quently insufficient (cell-vertex) or should be unrealistically high (P nc
1 −P1).708

One runs into a paradoxical situation: the extra velocity DOFs, needed to709

prohibit pressure modes, must in the end be filtered out; there is no real ben-710

efit from keeping them. Le Roux (2012) recommends using discretizations711

with collocated scalars and horizontal velocities suggesting that it is easier to712

stabilize against pressure modes than to remove the consequences of inertial713

modes.714

We note that the measures to stabilize the momentum advection may715

depend on the form it is written. For the flux form, upwinding and flux716

limiting can be used to dissipate grid-scale velocity. For the vector invariant717

form, filtering can be done for the relative vorticity and kinetic energy. It718

should also be taken into account that the relative vorticity and kinetic energy719

are defined at different locations than the velocity. This alone may lead to720

filtering, as is the case for the cell-vertex discretization, see section 7.3.721

4.2.3. Pressure modes and summarizing remarks722

The frequently used ‘balanced’ P1 − P1 (or vertex-vertex) discretization723

has no obvious problem with the momentum advection but is notoriously fa-724

mous for its pressure modes linked to the non-trivial null space of the discrete725

gradient operator. Although the null space can be removed if the boundary726

condition of impermeability is imposed weakly (Hanert and Legat (2006)) or727

can be absent on irregular meshes, in practice such codes still require some728

form of stabilization (there are several variants, and ADCIRC, FESOM and729

ICOM implementation by Piggott et al. (2008) exemplify different possi-730

bilities; see Le Roux et al. (2012) for the analysis of consequences of one731

particular method). The origin of difficulty is easy to grasp — even if the732

true null-space is absent, the operator occurring in the discrete wave equation733

(GTHM−1G, whereH denotes vertical integration, M the mass matrix andG734

the gradient) still has small eigenvalues. (For diagonally approximated mass735

matrices it turns out to be defined on a stencil involving neighbors of neigh-736

bors, so it does not penalize features on the mesh scale.) The system fails if737

such scales are triggered, for example, through inhomogeneous topography,738

especially on z−coordinate meshes. Notice that DG FE P1 discretization and739

recently suggested (discontinuous) P nc
1 − P nc

1 Comblen et al. (2010) handle740

these difficulties by using upwinding of fluxes. Although stabilizations can741

be tuned to be at minimum compatible with the code stability, they always742

have implications for energetic consistency and, in certain variants, also for743

volume and tracer balances.744
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Summing up, it is rather difficult to suggest an equivocally winning745

discretization among those having practical records. Judged by supported746

modes and bearing in mind tasks of large-scale ocean modeling, preference747

should be given to pairs without pressure or divergence modes, i. e. C-grid748

on hexagonal meshes or PNC
1 − P1 or cell-vertex FV on triangular meshes.749

Neither of them is, however, balanced, and the last two require special mea-750

sures to suppress the manifestations of too large velocity space. PDG
1 −PDG

1751

is balanced but needs to gain in numerical efficiency and prove its skill in752

large-scale setups. This, arguably, explains why unstructured-mesh model-753

ing community in its significant part cannot converge to just a couple of754

discretizations (such as B or C-grids on regular quadrilaterals) and continues755

to search for more sophisticated variants (such as PDG
1 − P2 in Cotter and756

Ham (2011), P nc
1 − P nc

1 in Comblen et al. (2010) and recently proposed757

BDFM1 − PDG
1 in Cotter and Shipton (2012); the last two, however, wait758

for practical records).759

The real situation proves to be even more complicated. In FE hydrostatic760

models the representation of elevation dictates the representation for other761

scalars, as discussed in the next section. This introduces some unwanted762

features on continuous elements, making them a suboptimal option for future763

development.764

5. Conservation and consistency properties765

5.1. Notes on conservation766

Conservation properties of CG FE codes are based on the variational for-767

mulation, and of FV and DG FE codes, on their flux form. This implies768

that obvious balances (volume, tracer, momentum and, to a certain extent,769

energy) are guaranteed by construction. More delicate balances involving en-770

strophy are not always possible on the discrete level in CG FE codes working771

with the primitive equations (because the projection on test functions and772

curl operator not necessarily commute). Some FV discretizations can main-773

tain discrete vorticity balance if the momentum equations are written in the774

vector-invariant form (e. g., C-grid, see Thuburn et al. (2009) and Ringler775

et al. (2010), or cell-vertex, which can be proved in analogy to Ringler776

and Randall (2002)) and indeed respect mimetic properties, and some not777

(curl of pressure gradient ∇p is not necessarily zero for vertex-vertex ap-778

proach of Szmelter and Smolarkiewicz (2010)). Additional issues are linked779
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with maintaining symmetry between discrete gradient and divergence oper-780

ators (so that one is the minus transpose of the other in the energy norm),781

which is automatically achieved in CG FE codes, but requires care in the782

FV and DG FE cases. Note that this symmetry is broken in codes intro-783

ducing stabilization against pressure modes. Note also that in most coastal784

codes the momentum advection is taken in the flux form (see, e. g., Chen et785

al. (2003) or Fringer et al. (2006)), and this approach is also followed by786

FESOM Wang et al. (2008); MPAS-ocean uses the vector-invariant form of787

momentum equations and enstrophy conserving implementation, while the788

cell-vertex code in Danilov (2012) can use both forms. Merits of different789

momentum equation forms are discussed in Ringler (2011).790

It should be reminded that the local volume and tracer conservation in791

CG FE codes is expressed in a cluster-weighted form instead of flux form792

one is inclined to have. This leads to uncertainties in interpreting transports793

computed directly, as discussed by Sidorenko et al. (2009). Although un-794

certainties disappear as resolution is improved, they are frequently annoying795

in practice if weak transport variability is studied.796

5.2. Space consistency requirements in FE codes797

In hydrostatic FE codes the space selected for the elevation defines the798

horizontal representation of vertical velocity, tracers and pressure. In partic-799

ular, P1 or P2 continuous elevation means same continuous horizontal repre-800

sentation for the vertical velocity, temperature, salinity and pressure fields.801

This has certain implications for CG FE discretizations, as partly mentioned802

in the foregoing analysis.803

First, because of horizontal connections introduced by continuous basis804

and test functions Ni, the computation of vertical velocity or hydrostatic805

pressure involves global matrices. Moreover, the iterative solution for pres-806

sure leaves in some cases a mode which makes the horizontal pressure deriva-807

tives too noisy (leaving aside the fact that the overall performance is slowed808

down). One way out on prismatic meshes lies in applying horizontal lump-809

ing in the operator parts of equations on vertical velocity w and pressure p,810

which removes the horizontal coupling (this requires some modifications in811

tracer and elevation equations for consistency, but leaves errors in the energy812

transfer). Additionally, if continuous linear functions are used in the vertical813

direction, odd and even vertical levels are coupled only at boundaries.814

Existing codes tackle these issues in a set of approximations. The horizon-815

tal lumping is applied in FESOM on prismatic meshes (Wang et al. (2008))816
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and in SLIM version by White et al. (2008a). FESOM uses the ansatz817

w = ∂zφ for the vertical velocity where φ is the vertical velocity potential,818

to override the odd-even decoupling and White et al. (2008a) resort to ver-819

tically discontinuous representation. ADCIRC also uses lumping, and finite-820

differences for the vertical part of the operator. On tetrahedral vertically821

aligned meshes, the operator part of ∂zzφ = −∇u connects only vertically822

aligned nodes if φ is linear. Yet the w found in this way has a tendency to823

noise unless the meshes are sufficiently smooth.824

As concerns the pressure, spline interpolation is needed to minimize pres-825

sure gradient errors on generalized meshes unless high-order polynomials are826

used in the vertical direction. This destroys the energetic (space) consistency827

of FE codes and introduces imbalances in the energy conversion. Wang et al.828

(2008) present details of FESOM algorithm which is largely finite-difference829

in the vertical direction. Ford et al. (2004) split pressure into two contribu-830

tions belonging to different spaces, so that the energetic consistency is also831

broken).832

Second, as we have already mentioned, global mass-matrices appear in CG833

codes. Although they yield to fairly inexpensive iterative solution procedures834

and substantially improve the performance of advection, they still slow down835

the performance. The implicit vertical diffusion leads to global matrices836

too. Horizontal lumping decouples horizontal directions from vertical, but837

destroys true conservation. On vertically aligned tetrahedral meshes, ∂zz838

couples only vertically aligned nodes for P1 continuous fields, but horizontal839

connections introduced by mass matrix still have to be resolved.840

We thus see that using continuous FE to represent scalar quantities is not841

free of complications: the horizontal connections of CG FE are at variance842

with the structure of hydrostatic codes. Note that issues discussed here are843

independent on how well the wave propagation is simulated by a particular844

pair on the level of shallow water equations. The existing CG FE ocean845

circulation models are always resorting to some compromise solutions. While846

practical, they destroy the mathematical beauty of the FE method, and in847

reality the rigorous variational formulation is lost. This statement does not848

rule out the CG methods, it only points that they are difficult to implement849

in a rigorous way.850

5.3. Hydrostatic vs. nonhydrostatic851

Because of predominantly vertical stratification of the ocean and small-852

ness of nonhydrostatic effects the current practice in ocean modeling treats853
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the nonhydrostatic part as a correction to the hydrostatic one, as proposed854

by MITgcm Marshall et al. (1997) and followed by SUNTANS, FESOM,855

and recently by FVCOM (Lai et al. (2010)). This requires that the hydro-856

static pressure and elevation lie in the same space as nonhydrostatic pressure857

correction.858

In nonhydrostatic FE codes the vertical velocity w belongs to the same859

space as the components of horizontal velocity, and the space for pressure860

can be selected independently. The logic of nonhydrostatic correction is then861

only compatible with equal interpolation for all variables.862

ICOM (Ford et al. (2004), Piggott et al. (2008)) does not follow863

the concept of nonhydrostatic correction, but still splits pressure into two864

contributions residing in different spaces to ease the solution.865

5.4. Geostrophic balance866

As related to large-scale flows, there is a natural question whether the867

discretizations discussed here are capable of maintaining the geostrophic bal-868

ance. The elementary aspect of this balance — the presence of stationary869

geostrophic mode in the dispersion relation of linearized f-plane shallow-870

water equations on regular triangular, quadrilateral and hexagonal meshes871

can be easily explored. Le Roux et al. (2007) and Le Roux (2012) con-872

sider many triangular discretizations discussed above and show that it is the873

case for most of them; an example of a pair that does not have a station-874

ary geostrophic mode is P2 − P0. A more difficult question is what happens875

when the mesh is irregular. TRiSK approach ensures the maintenance of876

stationary geostrophic mode by demanding that the discrete vorticity bal-877

ance is observed and additionally that vorticity dynamics are stationary if878

divergence equals zero (f-plane). For some FE discretizations the geostrophic879

balance can be proven for arbitrary meshes based on geometrical consider-880

ations. They include P0 − P1, P
DG
1 − P2 and the family of ‘finite element881

exterior calculus’, exemplified by BDM1−P0 and BDFM1−PDG
1 , see Cotter882

and Ham (2011) and Cotter and Shipton (2012).883

In a general case the kernel analysis and search for the smallest repre-
sentable vortices (SRVs) proves to be helpful (see Rostand and Le Roux
(2008) and Le Roux (2012)). Given the linearized shallow water equations
on f-plane,

∂U + fk×U + c2∇η = 0, ∂η +∇ ·U = 0,

one seeks for stationary solutions that simultaneously satisfy geostrophy and884

continuity. In a discrete form, such solutions have to satisfy CUh + Gηh =885
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0, GTUh = 0, where the distance is made dimensionless with the Rossby886

radius of deformation, C and G are, respectively, the Coriolis and gradient887

operators, and superscript h denotes the discrete representation. A SRV is a888

solution with minimum support. Clearly, such solutions lie in the null space of889

GTC−1G and thus can be considered as forming a basis for geostrophic flows.890

There should be sufficient number of them to ensure that the geostrophic bal-891

ance is well represented. Since the velocity mass matrices are diagonal for892

PNC
1 −P1 and P0−P1, their SRVs can easily be found geometrically by simply893

taking elevation be one at vertex i and zero otherwise. The resulting flow894

C−1Gηh has zero divergence. The task is more delicate for RT0 element as the895

Coriolis operator is not necessarily invertible in this case. However, a full set896

of SRV is found for it too. A problem occurs for those FE pairs that have con-897

tinuous velocities and non-diagonal mass matrices, like P1 − P1. In this case898

SRVs exist on regular meshes, but cease to exist on irregular meshes. Relat-899

edly, discrete geostrophic solutions suffer from non-zero residual divergence.900

This correlates with errors in the Rossby wave dispersion demonstrated for901

such discretizations by Rostand and Le Roux (2008) and also with the ab-902

sence of the discrete analogs of continuous identity ∇×∇η = 0. As concerns903

P1−P1 discretization, it is seldom used without stabilization, which, couples904

inertia-gravity and geostrophic modes even on uniform triangular meshes.905

Once again, the drawbacks do not necessarily rule out these discretiza-906

tions as viscosity, nonlinearity and nonstationarity always maintain some907

deviations from geostrophy. They, however, signal about potential problems908

for their use in large-scale ocean modeling.909

6. Advection schemes910

The availability and computational cost of advection schemes with desir-911

able properties offers one more criterion to judge about unstructured-mesh912

discretizations. Bearing in mind large-scale modeling tasks, one typically913

needs to maintain eddy dynamics on the fine part of computational mesh914

and preserve water-mass properties over large time intervals. Both demand915

advection schemes with low numerical dissipation and dispersion, which is916

often a synonym for higher accuracy. The question is what is possible to917

achieve with low-order discretizations.918

There is vast literature on advection schemes designed for unstructured919

meshes, yet they are frequently method-specific (a FV scheme, e. g., is as920

a rule inapplicable for FE discretization) and not necessarily generalizable921
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to three dimensions. A review by Budgell et al. (2007) analyzes the per-922

formance of some of them (belonging into FE, FV and DG FE classes) in923

two dimensions for low-order representations. It should be reminded that in924

the FE case the order of convergence is defined by the order of polynomial925

representation (it can be reduced if measures to maintain monotonicity are926

introduced), which is illustrated in Budgell et al. (2007). Importantly, the927

FE flux-corrected transport (FCT) scheme by Löhner et al. (1987) (CG P1)928

was found to keep the second order while providing monotonicity of solutions.929

A review by Cueto-Felgueroso and Colominas (2008) discusses FV schemes930

on unstructured meshes with order higher than two, which, in the absence931

of mass matrices, are as a rule necessary in practice in this case. There is932

no limit on the method order, and the argument is rather the computational933

cost of further error reduction.934

We briefly discuss several approaches related to CG FE and FV further.935

6.1. Streamline-upwind Petrov-Galerkin method936

Advection schemes of CG FE method are largely equivalent to central dif-937

ferencing. Consistent mass matrices reduce their dispersion and they show938

smaller phase errors than their FV counterparts. For practical usage they939

have to be augmented either with explicit isopycnal diffusion, FCT, or be sta-940

bilized in the spirit of streamline-upwind Petrov-Galerkin method (SUPG).941

The latter is equivalent to high-order upwinding. In the simplest case the942

test function is selected as Mi = Ni +RNi = Ni + ε(u∇Ni +w∂zNi) where ε943

is the stabilization parameter with dimension of time. It is elementwise con-944

stant and is taken so that stabilization is on when advection dominates over945

explicit diffusion. The algorithm to select ε is a key ingredient, its optimal946

choice is not necessarily straightforward (some variants are cited in Budgell947

et al. (2007)). Our experience with FESOM which supports such a scheme948

is not in its favor. Partly the difficulty comes from disparity between u and949

w. The other part is the computational cost because the method leads to950

full 3D matrix problem. This method is frequently used in engineering. Its951

potential as applied to oceanographic tasks remains largely unexplored.952

6.2. FCT953

The FE FCT algorithm by Löhner et al. (1987) uses Taylor–Galerkin954

(Lax–Wendroff) approach with consistent mass matrices for the high order955

solution and adds artificial dissipation to obtain a low-order scheme. To a956

degree, the success of FESOM is based on this scheme which is explicit in957
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time and robust in performance. Generalization of FCT algorithm toward958

minimum possible dissipation is proposed by Kuzmin and Turek (2002).959

Practical difficulty of FE FCT as applied to continuous FE is that all960

nodes of numerical stencil contribute simultaneously to horizontal and verti-961

cal fluxes (flux here is the contribution of advection on a given element to its962

nodes). The limiting procedure is then based on maximum and minimum of963

low-order solution over the entire stencil, which mixes horizontal and vertical964

directions. Since vertical stratification is frequently much stronger, one can-965

not ensure that horizontal over- and undershoots are removed. As a result,966

true monotonicity is not reached. Further work in this direction is required.967

On tetrahedral meshes, 3D numerical stencils may vary substantially from968

node to node which leaves certain grid-scale noise in the low-order solutions969

obtained by the algorithm of Löhner et al. (1987). The algorithm by Kuzmin970

and Turek (2002) performs slightly better in this respect.971

FV implementations of FCT are not different from those on structured972

meshes. For geometrical reasons, there are more flux contributions to a scalar973

cell on vertex-based and hexagonal meshes than on quadrilateral meshes, and974

both horizontal directions have to be treated together. This explains why975

the FCT on unstructured meshes is more expensive than on regular meshes.976

6.3. High-order FV schemes977

The accuracy of FV advection schemes depends on how accurately the978

divergence of fluxes through the faces of control volumes is estimated. A979

widely used technology resorts to accurate field reconstructions. Consider980

reconstruction in the horizontal plane on control volume i of triangular mesh981

(vertical direction is not specific). One seeks the representation Ti(r) =982

Ti+(∇T )i ·(r−ri)+ ... on the cell around node i (for vertex-based scalars) or983

in element i (for cell-based scalars) imposing the strong constraint
∫
i
Tidr =984

SiTi and minimizing the deviations over neighboring control volumes. This985

requires solution of the constrained least squares problem. Here r and ri are986

radius vectors drawn, respectively, to an arbitrary point and either the vertex987

i or centroid of cell i, and Si is the control volume area. One needs to find in988

general case 3 unknowns for a linear reconstruction, six for the quadratic one989

and ten for the cubic. For vertex control volumes the nearest neighborhood990

as a rule includes six control volumes, which is sufficient for the second order991

reconstruction. For the cell control volumes, there are only three nearest992

neighbors (which share edges), and the next level is frequently sufficient for993

a cubic reconstruction. Ollivier-Gooh and Van Altena (2002) and Ouvrard994

30



et al. (2009) provide the general description of the method, and Skamarock995

and Menchaca (2010) report on test results on hexagonal meshes (similar996

to vertex triangular), with the conclusion that quadratic reconstruction is997

optimal judged by accuracy against the computational effort. Quadratic998

reconstruction formally leads the third order scheme.999

Simplest in this hierarchy are the scheme by Miura (2007) and the up-1000

wind scheme of FVCOM, which are based on a linear reconstruction. For the1001

vertex variable placement they are noticeably less accurate than the P1 FE1002

FCT scheme by Löhner et al. (1987). Indeed, since reconstructions operate1003

with a gradient on the entire control volume, they smooth actual gradients1004

on triangles removing the scales of the mesh size, and the rest is due to con-1005

sistent mass matrices in the FE case. This points to the need of higher-order1006

reconstructions in FV codes, in accordance with Skamarock and Menchaca1007

(2010). The scheme by Miura (2007) belongs to the so-called direct space-1008

time schemes which estimate fluxes by approximately computing the amount1009

of tracer in a volume of fluid that crosses the face during the time step. The1010

scheme proposed by Lipscomb and Ringler (2005) is similar in spirit but1011

relies on incremental remapping. While more computationally demanding,1012

it may incorporate limiting in the reconstruction phase, thus avoiding the1013

need and expense of FCT. Moreover, it will even become more economical in1014

applications working with many tracers as the geometric information needed1015

for remapping is computed only once per time step.1016

Another approach, described by Abalakin et al. (2002), exploits the1017

idea of gradient reconstruction in a manner that provides high accuracy of1018

not the flux, but flux divergence. The reconstruction mixes centered and1019

upwind estimates and is in fact used by many finite-difference schemes (like1020

Hundsdorfer and Spee (1995) or improved schemes by Webb et al. (1998)).1021

The approach ensures that the scheme is second-order but becomes third-1022

or higher-order on uniform meshes. Skamarock and Gassmann (2011) sug-1023

gest a very similar idea for hexagonal meshes, yet expressed differently, and1024

test it showing that it competes favorably with schemes based on high-order1025

reconstructions. Systematic studies of schemes mentioned in this section on1026

non-uniform meshes are absent.1027

7. More on practical examples1028

The discussion above explains why the development of unstructured-mesh1029

ocean circulation followed many roads. Indeed, the significance of many1030
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issues was appreciated through experimenting with the existing setups. Here1031

we return to the main available approaches, trying to minimize the repetition1032

of previous material.1033

As is clear from the discussion above, unstructured meshes maintain1034

analogs of Arakawa A (all arrangements with same placement of velocity1035

and scalars) and C grid discretizations. There is no true analog to B-grid or1036

C-D-grid, but the cell-vertex, ZM or P nc
1 − P1 discretizations resemble them1037

to some extent through staggering and keeping full horizontal velocities. We1038

will follow this template.1039

7.1. A-grids1040

FESOM, ADCIRC, QUODDY and previous versions of ICOM all have1041

an A-grid placement of variables in the horizontal plane. They all need1042

stabilization against pressure modes. Even in situation when the gradient1043

operator has a full rank, pressure modes are easily triggered by bottom to-1044

pography, especially on z-meshes. The methods used to suppress pressure1045

modes have much in common with that discussed by Killworth et al. (1991)1046

for the Arakawa B-grid. They modify the treatment of vertically integrated1047

(or full) continuity equation, which may have implications for the volume1048

conservation. The popular stabilization technique exploits the generalized1049

wave continuity equation instead of the true continuity. This is a frequent1050

option in coastal and tidal applications (e. g., ADCIRC). It introduces in-1051

consistency between 2D and 3D interpretations of continuity (for discussion,1052

see Massey and Blain (2006)). The stabilization used in FESOM (Wang et1053

al. (2008)) maintains volume and tracer conservation but on the expense of1054

some uncertainty in the momentum equations. ICOM/Fluidity uses nonhy-1055

drostatic solver and modifies full continuity equation when working with P11056

elements (Piggott et al. (2008)).1057

On the mathematical side, the need for stabilization is discouraging. In1058

addition to the volume and tracer conservation issues, stabilization is in-1059

compatible with exact energy balance on the discrete level. The imbalance1060

in the energy transfer between the available potential and kinetic energies1061

is not negligible in certain cases (see, e. g., Danilov (2012)). In prac-1062

tice, however, the drawbacks of stabilization are not immediately apparent.1063

ADCIRC enjoys obvious recognition as a tool for coastal applications. On1064

large-scales, FESOM shows robust performance and simulates under CORE-1065

I forcing (Sidorenko et al. (2011)) an ocean state similar to that of other1066

model participating in COREs (Griffies et al. (2009)).1067
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An FV implementation of P1 − P1 approach (vertex-vertex control vol-1068

umes) was tried by Danilov (2012), triggered by the work by Szmelter and1069

Smolarkiewicz (2010). It turns out to be more economical in terms of CPU1070

time, suggests more freedom with respect to advection schemes, yet needs the1071

same type of stabilization as FESOM on z-coordinate bottom. The cell-cell1072

setup of MIKE 21 & MIKE 3 is an alternative implementation of A-grid. We1073

do not have sufficient information to discuss it.1074

Because of nodal placement of P1 velocities, the no-slip boundary condi-1075

tion is the only safe option on z-meshes. This adds friction in narrow straits,1076

and in fact implies that straits need to be better resolved than on C-grids.1077

Imperfections of triangular A-grids prompted work on setups free of pres-1078

sure modes. Different ways are followed. The ADCIRC community explores1079

the potential of discontinuous methods (Dawson et al. (2006)), and the1080

same road is taken by SLIM (Blaise et al. (2010), Kärnä et al. (2013)). In1081

the framework of FESOM, P nc
1 − P1 discretization was tried (Danilov et al.1082

(2008)), together with the cell-vertex FV setups. They will be mentioned1083

further.1084

7.2. C-grids1085

UnTRIM, ELCIRC, SUNTANS, and the model by Stuhne and Peltier1086

(2006) follow the triangular C-grid ideology. Models that exploit RT0 − P01087

element are rather similar to them but more general. They introduce a mass1088

matrix for velocity. Walters et al. (2009) discuss two versions of mass matrix1089

lumping, one of which reduces the RT0 − P0 discretization to the triangu-1090

lar C-grid. The other one looks similarly, but replaces the distance between1091

circumcenters by the distance between centroids along the edge normal. Ref-1092

erences to earlier implementations can also be found there. Numerous coastal1093

applications performed with models based on triangular C-grids witness in1094

favor of this approach (they are not cited here). However, on long time scales,1095

as already mentioned, triangular C-grids generate strong noise in the field1096

of horizontal divergence and hence vertical velocity. The noise is rooted in1097

the too large size of the discrete horizontal divergence space, which leads to1098

coupling between spurious and physical modes of inertia-gravity waves men-1099

tioned earlier (Gassmann (2011), Danilov (2010)). This makes triangular1100

C-grid or RT0 models hardly suitable to large-scale ocean modeling unless1101

measures leading to divergence smoothing are applied. Such measures are1102

discussed by Wan et al. (2013) in the context of ICON-atmosphere (strong1103

biharmonic viscosity with specially selected amplitude), Wolfram and Fringer1104
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(2013) (implicit velocity filters) and they are also pursued by the mimetic1105

approach by P. Korn (private communication) utilized by ICON-ocean.1106

Triangular C-grids work only on orthogonal meshes (circumcenters are1107

inside triangles). The RT0 − P0 approach is formally free of this constraint1108

but on the expense of mass matrices. The second lumping scheme works for1109

general meshes too, but is less accurate (Walters et al. (2009)).1110

On hexagonal C-grids the number of scalar degrees of freedom is twice1111

smaller, and the divergence noise is not generated. For that reason they1112

present a potentially much better alternative than triangles as concerns large-1113

scale flows, and are in fact one of most promising discretizations for large-1114

scale modeling. It should be reminded that in the case of variable resolution1115

we are dealing with Voronoi meshes that may include some amount of other1116

polygons in addition to hexagons. The antisymmetry of Coriolis operator and1117

stationarity of geostrophic mode on arbitrary Voronoi meshes require care,1118

but they are well handled by the TRiSK reconstruction scheme (Thuburn et1119

al. (2009), Ringler et al. (2010)). This scheme is only zeroth-order accurate1120

on variable resolution meshes which demands that the mesh resolution varies1121

smoothly. Errors can be amplified locally, for example, when different types1122

of polygons meet together. A quasi-hexagonal C-grid unstructured-mesh1123

ocean is current focus of MPAS project, and the already available results1124

(Ringler et al. (2013) show that it has all necessary skills).1125

7.3. Quasi-B-grids1126

As mentioned above, there are no true B-grid analogs on triangular1127

meshes, and the name of quasi-B-grid will be applied to the approaches that1128

introduce full horizontal velocity vectors and staggering. On the FE side,1129

an example is furnished by P nc
1 − P1 elements, and on the FV side, by the1130

cell-vertex FV discretization.1131

The attention to P nc
1 −P1 discretization was drawn by a barotropic shallow1132

water model by Hanert et al. (2005). Later this discretization served as the1133

basis of 3D shallow-water model in the framework of SLIM (White et al.1134

(2008a)) and was also explored by Danilov et al. (2008) as an alternative1135

for FESOM P1 − P1 discretization.1136

The study by Hanert et al. (2009) explores further the convergence1137

properties ensured by this discretization in the shallow water context to note1138

that it drops from the second to first order for the elevation on unstructured1139

meshes. Bernard et al. (2009) similarly point to the high sensitivity of the1140

convergence rate to the mesh irregularity. As an aside, we remark that the1141
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same study demonstrates robust convergence behavior of P1−P1 element. An1142

explanation for the observed behavior is the very large size of velocity space,1143

supporting features unresolved by scalar fields. Indeed, Bernard et al. (2009)1144

partly recover the convergence rate when dissipation is introduced. Recent1145

study by Le Roux (2012) clearly demonstrates that the lack of convergence1146

is linked to spurious inertial oscillations maintained by this and some other1147

discretizations.1148

Additional illustration in favor of this statement is offered by Danilov et1149

al. (2008) who report difficulties with maintaining stable performance when1150

momentum advection is not negligible. The stability is gained by computing1151

the momentum advection in two steps. First, spatial filtering of velocity is1152

performed by projecting it from P nc
1 to P1 representation. Second, the P11153

velocity is substituted in (u∇)u at the second place. This highlights the main1154

practical problem of this and others discretizations with too large velocity1155

spaces — the need in tuning filtering and/or dissipation.1156

With this regularization the discretization shows a robust behavior. It1157

does not support pressure modes and its velocity mass matrix is diagonal1158

on z-coordinate meshes. This makes a P nc
1 − P1 code more mathematically1159

consistent than a P1−P1 code. However, three times larger velocity space has1160

impact on computational efficiency, and, more importantly, the horizontal1161

connections of P1 scalars calls for the same compromises as in P1 − P1 code.1162

In summary, it does not lead to apparent advantages. An obvious direction1163

here is to recast the scalar part in the FV way.1164

The cell-vertex discretization used by FVCOM and its large-scale imple-1165

mentation by Danilov (2012) have a smaller velocity space, yet it is still twice1166

as large as in the P1 case. With linear reconstruction upwind schemes used1167

to advect tracer and momentum in FVCOM the code proves to be a robust1168

performer in coastal applications. In large-scale applications on eddy resolv-1169

ing meshes less dissipative setups are required. This implies, in particular,1170

other advection schemes and filtering of momentum advection in order to1171

avoid excitation of velocity modes (Danilov (2012)). A solution that works1172

well lies either in computing the momentum advection first on scalar con-1173

trol volumes and then averaging to triangles or in using the vector-invariant1174

form. In the latter case, vorticity and energy are computed at scalar points,1175

which provides necessary averaging. Once again, the necessity of filtering is1176

a manifestation of unbalanced size of the velocity space.1177

In the end, the approach is noticeably faster than P1 − P1 code. Of dis-1178

cretizations with practical record this one suggests, in our opinion, a good1179
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compromise between speed, accuracy and mathematical consistency. It, how-1180

ever, is rather delicate with respect to momentum dissipation, and, except for1181

allowing for more general triangular meshes, does not offer clear advantages1182

against hexagonal C-grid (note that their scalar parts are rather similar).1183

7.4. Spherical geometry1184

Discretizations using full horizontal velocities need some coordinate sys-1185

tem, and the standard longitude-latitude representation in spherical coordi-1186

nates with the north pole shifted to Greenland is the easiest option (used in1187

FESOM). Szmelter and Smolarkiewicz (2010) show that the pole issue can1188

be circumvented for vertex-vertex FV arrangement by special mesh design,1189

and FVCOM employs a stereographic projection for some vicinity of geo-1190

graphic north pole (see Gao (2011)). More advanced technology is proposed1191

by Comblen et al. (2009) who introduce local coordinate frames at velocity1192

locations and on elements, and transform between them on each time step.1193

Although this approach involves some overhead, it enables better uniformity1194

(despite the unstructuredness, the directions of longitude-latitude coordinate1195

axes still must vary smoothly). Note that for low-order elements triangles1196

can be treated as locally flat, and in that case the technology of Comblen et1197

al. (2009) can most conveniently be implemented for P nc
1 and cell velocities.1198

For discretizations using normal velocities (C-grids) Stuhne and Peltier1199

(2006) propose to use a Cartesian framework associated to the center of1200

sphere. MPAS-ocean follows this approach too.1201

8. Discussion1202

The lack of balance between vector and scalar degrees of freedom in many1203

proposed discretizations entails complications that are either absent or less1204

expressed on regular quadrilateral meshes. These issues, together with the1205

availability of accurate advection schemes and the presence of horizontal1206

connections in CG FE vertical operators, have to be taken into account1207

when designing ‘future’ unstructured-mesh codes for the large-scale ocean1208

modeling. While the research continues, there already are solutions that1209

work well and have a certain practical record, illustrating the utility of the1210

concept.1211

Admittedly, for many discretizations stable performance is achieved through1212

special measures which destroy their mathematical ’beauty’. We hope that1213

examples above are sufficient to illustrate this message. This should not1214
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sound as warning against unstructured meshes, on the contrary, we would1215

rather like to stress the need for a stronger feedback between practice and the-1216

ory in learning about practical significance of spurious modes and the effective1217

resolution of discretizations with differently arranged degrees of freedom.1218

8.1. Discretization1219

The question about the ‘best’ unstructured-mesh discretization for large-1220

scale ocean modeling is still under debate and calls for a dedicated comparison1221

study. The opinions expressed in literature are as a rule based on shallow-1222

water equations and wave dynamics, leaving all other issues unattended. In1223

our opinion, because of hydrostatic nature of current ocean codes and the1224

computational cost, the preference should be given to FV implementations.1225

Among them the hexagonal C-grid (Thuburn et al. (2009), Ringler et al.1226

(2010), see also Gassmann (2012) for a different implementation) offers a1227

proven way to follow, and for triangular meshes, this can be the cell-vertex1228

FV approach. It demands less sacrifice with respect to the mathematical1229

structure than vertex-vertex discretizations (see Danilov (2012) for their1230

comparison). Although FE codes with CG discretization for scalar fields1231

are widely used and demonstrate robust performance in numerous practical1232

tasks, the main objection against them is the presence of horizontal connec-1233

tions in vertical operators. This concerns, for example, P1 − P1, P
nc
1 − P1 or1234

PDG
1 −P2 discretizations. While the latter is undoubtedly more accurate than1235

P1 − P1 pair and well suited for geostrophically dominated flows, its scalar1236

part requires iterative solvers in a general case. It remains to see whether the1237

resolved dynamics on PDG
1 −PDG

1 , P nc
1 −P nc

1 or the balanced BDFM1−PDG
11238

discretizations stands up for their higher computational costs. Relatedly and1239

more generally, discontinuous FE discretizations are still insufficiently stud-1240

ied. Low-order representations (like PDG
1 ) cluster their degrees of freedom at1241

vertex locations. This calls for high-order methods and larger computational1242

elements. How well such methods will behave in typical ocean applications1243

is an open question.1244

The performance of these and other setups is explored fairly well on the1245

level of shallow water equations. The important task is the intercomparison1246

of full 3D setups, aimed at learning about their numerical efficiency, robust-1247

ness in eddy-dominated regimes, spurious mixing and effective resolution in1248

comparison with regular-mesh codes. This may help to better assess the1249

potential of unstructured-mesh methods, and will suggest a different (from1250

wave-motivated) metrics to judge on the utility of certain approaches.1251
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8.2. Numerical efficiency1252

Codes designed to work on unstructured meshes are as a rule slower than1253

their regular-mesh counterparts per degree of freedom. This is natural to1254

expect, and the hope is that it will be compensated by the possibility to1255

efficiently deploy these degrees of freedom. The question, however, lies in1256

the slowness factor. If an unstructured-mesh model is N times slower per1257

DOF, it will only be efficient against structured-mesh models if the refined1258

area occupies 1/N of the total area. In practice even this estimate may prove1259

to be too optimistic because nesting and generalized orthogonal grids allow1260

some flexibility in providing variable resolution on regular meshes.1261

Our experience with FESOM shows that it is characterized by N about1262

10 so that it becomes competitive against regular models in tasks that require1263

strong refinement in sufficiently small areas (like, for example, the Canadian1264

Arctic Archipelago, Arctic Ocean, or the ice cavities around the Antarctica).1265

Given that the refinement factor is large, the DOFs spend on representing1266

the global ocean can be less (or even much less) in number than the DOFs in1267

the refined region, so they are not necessarily damaging the performance. A1268

significant part of slowness comes from 1D storage (because of consistent mass1269

matrices) and the need for 3D neighborhood information (for tetrahedral1270

elements).1271

The appearing FV codes are substantially more efficient (see, e. g.,1272

Ringler et al. (2013), Danilov (2012)). They naturally rely on the vertical-1273

horizontal model of storage and need only the information on the horizontal1274

neighborhood. They are characterized by N about 2 to 4, which will allow1275

an efficient work with large refined areas. Note that with the tendency in1276

large-scale ocean modeling to use an increased number of vertical levels (50-1277

70) the additional cost of fetching the horizontal neighborhood information1278

becomes less and less important. What matters is the operations of reading1279

from and writing into memory, which are generally larger in number than on1280

structured quadrilateral meshes (for example, in both hex-C-grid and cell-1281

vertex setups the number of faces per scalar degree of freedom is larger by a1282

factor 1.5 than on quads, so that flux contributions are written to memory1283

more frequently). The larger count of floating-point operations is believed to1284

become less an issue for computer architectures to come. This allows one to1285

hope that DG codes will gain in efficiency in future, but at present they are1286

still too slow. The view expressed here reflects our current experience.1287

The computational efficiency is not the only factor, and the convenience1288

of introducing refinements in multiple regions may outweight some degree of1289
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slowness. Additional factors like mesh alignment with topography or coast-1290

lines or the reduced size of output may come into play too. The challenge1291

faced by the unstructured-mesh technology as applied to large-scale ocean1292

modeling is to propose easier to use, if somewhat slower, solutions with the1293

multiresolution functionality.1294

8.3. Advection schemes1295

Although high-order advection schemes are available for FV discretiza-1296

tion on unstructured meshes, many of them (such as the schemes proposed1297

by Skamarock and Gassmann (2011) or Abalakin et al. (2002)) will reach1298

their high order only if mesh is close to uniform, which has implications for1299

the smoothness of mesh transitions. Schemes that are less sensitive to mesh1300

non-uniformity (high-order reconstruction) are computationally more expen-1301

sive, so new solutions are continuously proposed, mostly in the atmospheric1302

community (see, i. e., recent scheme by Chen et al. (2012)) which may1303

be of interest to ocean codes too. Many questions here still wait for their1304

solutions. Among them are analyses of transport scheme performance in 3D1305

cases, and the concern here is the difference in spatial resolution for vertical1306

and horizontal velocity fields. Another issue is the impact of mesh nonunifor-1307

mity and orientation. Fully unexplored are questions of spurious diapycnal1308

mixing, especially in the context of mesh nonuniformity.1309

8.4. Parameterizations and resolution in general1310

Although these topics are outside the scope of this review, they need to1311

be mentioned, since they arise in practical applications of multiresolution1312

codes. The coefficients of horizontal viscosity and isopycnal diffusivity are1313

commonly scaled with the cell size (to an appropriate power), but what is the1314

optimal scaling on highly variable meshes? The Smagorinsky or Leith viscos-1315

ity parameterizations contain the scaling by construction, but other param-1316

eterizations may need more care. In particular, an obvious question is how1317

to switch on/off the eddy-induced transport parameterization of Gent and1318

McWilliams when the mesh resolution varies from coarse to eddy-resolving.1319

The current selection in FESOM, for example, is to vary the GM coefficient1320

with element size, but ideally a closure is required that monitors the level of1321

resolved eddy kinetic energy.1322

The question of how to apply the refinement is even more intricate. Ide-1323

ally, in large-scale applications, in addition to refining the region of interest1324

one also seeks to resolve other places known to influence the solutions, such1325
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as straits, or overflow sites. While including straits is straightforward, the1326

horizontal resolution alone is insufficient to model the descent of dense wa-1327

ter unless the vertical discretization and topography representation allow it.1328

Practical implementations combining the z-coordinate with local terrain fol-1329

lowing representation, as used by Timmermann et al. (2012) for ice cavity1330

studies, are possible, but need tuning. It is not a priori clear how wide the1331

transitional zones should be and to what extent by locally resolving a process1332

one gets an opportunity to correctly represent its impact on the large-scale1333

circulation. There are many related questions, and we are only at the begin-1334

ning of their analysis.1335

9. Conclusions1336

The unstructured-mesh models are becoming reality in large-scale ocean1337

modeling. We believe that the understanding available now is sufficient to1338

propose solutions that are good enough for many practical tasks. In par-1339

ticular, the finite-volume approaches (hex-C-grid and cell-vertex) described1340

above can be generally recommended.1341

Questions on how to improve the available technology making it more1342

efficient, accurate and easier to use still remain. The research will undoubt-1343

edly continue and may lead to new efficient approaches. However, many1344

oceanographic questions can already be addressed with the already existing1345

technology. In fact, even a slower method of FESOM is successfull for prop-1346

erly formulated problems (see, e. g., Wang et al. (2010), Wang et al. (2012),1347

Hellmer et al. (2012), Timmermann et al. (2012), Wekerle et al. (2013)).1348

The proposed finite-volume approaches open up new possibilities (see, e. g.,1349

Ringler et al. (2013)). In this respect it should be stressed that the feed-1350

back gained from running applications is not less important than theoretical1351

studies. It is hoped that it will increasingly guide future development, in1352

particular with respect to parameterizations. It is also hoped that it will1353

improve synergy between different groups by explicitly pointing at optimal1354

solutions.1355

It would be incorrect to expect that unstructured meshes will be broadly1356

used for large-scale ocean modeling in the very nearest future. It is likewise1357

incorrect to overlook their potential of seamless nesting for studies of ocean1358

dynamics and regional climate in coupled systems. The task is in backing1359

this expectation with new practical examples and easier to use solutions.1360
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ocean circulation on unstructured meshes: comparison of two horizontal1434

discretizations. Ocean Dyn. 58, 365–374.1435

Danilov, S., 2010. On utility of triangular C-grid type discretization for nu-1436

merical modeling of large-scale ocean flows, Ocean Dyn. 60, 1361–1369.1437

Danilov, S., 2012. Two finite-volume unstructured mesh mod-1438

els for large-scale ocean modeling. Ocean Modell. 47, 14–25,1439

doi:10.1016/j.ocemod.2012.01.004.1440

Dawson, C. N., Westerink, J. J., Feyen, J. C., Pothina, D., 2006. Continuous,1441

Discontinuous and Coupled Discontinuous-Continuous Galerkin Finite El-1442

ement Methods for the Shallow Water Equations. Intl. J. Num. Meth.1443

Fluids, 52, 63–88.1444

Donea, J., Huerta, A., 2003. Finite element methods for flow problems. John1445

Wiley and Sons.1446

Ford, R., Pain, C. C., Piggott, M. D., Goddard, A. J. H., de Oliveira, C. R.1447

E., Umpleby, A. P., 2004. A nonhydrostatic finite-element model for three-1448

dimensional stratified oceanic flows. Part I: Model formulation, Mon. Wea.1449

Rev., 132, 2816–2831.1450

43



Fox-Kemper, B., Menemenlis, D., 2008. Can large eddy simulation techniques1451

improve mesoscale rich ocean models? In: Ocean modeling in an eddying1452

regime, Ed. M. W. Hecht and H. Hasumi, Geophysical Monograph 177,1453

AGU, 319–337.1454

Fringer, O. B., Gerritsen, M., Street, R. L., 2006. An unstructured-grid,1455

finite-volume, nonhydrostatic, parallel coastal ocean simulator. Ocean1456

Modelling 14, 139–173.1457

Gao, G., 2011. An unstructured-grid finite-volume Arctic ice-ocean coupled1458

model (AO-FVCOM): development, validation and applications. A Dis-1459

sertation in Marine Science and Technology, University of Massachusetts1460

School of Marine Sciences.1461

Gasmann, A., 2011. Inspection of hexagonal and triangular C-grid discretiza-1462

tions of the shallow water equations. J. Comput. Phys. 230, 2706–2721.1463

Gasmann, A., 2012. A global hexagonal C-grid non-hydrostatic dynamical1464

core (ICON-IAP) designed for energetic consistency. Q. J. R. Meteorol.1465

Soc. 139, 152–175. doi:10.1002/qj.19601466

Greenberg, D. A., Dupont, F., Lyard, F. H., Lynch, D. R., Werner, F. E.,1467

2007. Resolution issues in numerical models of oceanic and coastal circu-1468

lation. Continental Shelf Research 27, 1317–1343.1469
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