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Dissolved 232Th is added to the ocean though the partial dissolution of lithogenic materials such as
aerosol dust in the same way as other lithogenically sourced and more biologically important trace metals
such as Fe. Oceanic 230Th, on the other hand, is sourced primarily from the highly predictable decay of
dissolved 234U. The rate at which dissolved 232Th is released by mineral dissolution can be constrained
by a Th removal rate derived from 230Th:234U disequilibria, assuming steady-state. Calculated fluxes of
dissolved 232Th can in turn be used to estimate fluxes of other lithogenically sourced dissolved metals
as well as the original lithogenic supplies, such as aerosol dust deposition, given the concentration and
fractional solubility of Th (or other metals) in the lithogenic material. This method is applied to 7 water
column profiles from the Innovative North Pacific Experiment (INOPEX) cruise of 2009 and 2 sites from
the subtropical North Pacific. The structure of shallow depth profiles suggests rapid scavenging at the
surface and at least partial regeneration of dissolved 232Th at 100–200 m depth. This rapid cycling could
involve colloidal Th generated during mineral dissolution, which may not be subject to the same removal
rates as the more truly dissolved 230Th. An additional deep source of 232Th was revealed in deep waters,
most likely dissolution of seafloor sediments, and offers a constraint on dissolved trace element supply
due to boundary exchange.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The ocean is the ultimate receptor of eroded material from
the continents. In the remote surface ocean, this process occurs
only through deposition of eolian mineral dust (referred to also
as aerosol dust or simply as dust) (Rea, 1994) and in some cases
dust is a dominant source of soluble micronutrients necessary for
biological productivity (Martin and Gordon, 1988). Quantification
of aerosol dust input to the surface ocean has progressed in re-
cent years using a combination of remote sensing and modeling
techniques (Mahowald et al., 2005), but these models nonetheless
are better constrained with observational tracer-based approaches
using, for instance, dissolved Al (Measures and Brown, 1996) and
more recently dissolved Th (Hsieh et al., 2011). The partial dissolu-
tion of hemipelagic sediments, or more generally, margin sediment
exchange processes, may also contribute to the ocean budget of
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dissolved trace metals of paleoceanographic interest such as Nd
(Lacan and Jeandel, 2005), Hf (van de Flierdt et al., 2004), as well
as 232Th (Roy-Barman, 2009). The importance of boundary ex-
change processes has been difficult to assess because knowledge of
the rates involved in the biogeochemical cycle of these elements is
lacking.

The long-lived thorium isotopes (232Th and 230Th: half-lives,
14.01 Ga (Holden, 1990) and 75.69 ka (Cheng et al., 2000), re-
spectively) offer a way to determine rates of lithogenic element
cycling in seawater. The shorter-lived, 230Th, is radiogenic, with a
well-quantified source from 234U dissolved in seawater. To deter-
mine 230Th production, 234U concentrations are estimated using
measured salinity and published estimates of the salinity–U re-
lationship in North Pacific seawater (Chen et al., 1986) and the
seawater 234U/238U ratio (Andersen et al., 2010). More than 99.8%
of Th in seawater, however, is 232Th, a primordial isotope added to
seawater in the dissolved pool through the partial dissolution of
lithogenic materials (Santschi et al., 2006). Thorium (and therefore
all Th isotopes) is highly insoluble in seawater and is rapidly re-
moved from solution by scavenging onto particulate matter (Moore
and Sackett, 1964).

http://dx.doi.org/10.1016/j.epsl.2013.09.025
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/epsl
mailto:cthayes@mit.edu
http://dx.doi.org/10.1016/j.epsl.2013.09.025
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epsl.2013.09.025&domain=pdf


C.T. Hayes et al. / Earth and Planetary Science Letters 383 (2013) 16–25 17
Fig. 1. Map of the locations from which dissolved Th data is presented in the paper overlain with the model-derived atmospheric dust deposition estimates of Mahowald et
al. (2005). Schematic representations of the Subarctic Front (SAF), the Kuroshio Extension (KE) and Oyashio Current (OY) are included as drawn by Harrison et al. (2004) and
Chen (2008).
The rate of Th removal by scavenging, equivalent to the inverse
of the Th residence time, τTh, can be quantified using measure-
ments of dissolved 230Th, assuming steady-state against production
by uranium decay. Production of 230Th is given by the activity of
234U (in units concordant with the 230Th units) multiplied by the
radioactive decay rate of 230Th, λ230. We take inventories of both
230Th and its production due to 234U decay to calculate residence
time as a function of integrated depth (Eq. (1a)). This residence
time is applied to the integrated inventory of dissolved 232Th to
estimate the cumulative flux of 232Th due to mineral dissolu-
tion (Hirose and Sugimura, 1987), from the surface to depth, z.
A concentration, [232Th]litho, and fractional solubility, STh, of Th in
the lithogenic material can then be used to estimate the flux of
lithogenic material which produced the observed dissolved inven-
tory (Eq. (1b)), as described by Hsieh et al. (2011). In the surface
of the open ocean, this lithogenic flux is generally assumed to be
dissolution of aerosol dust, but near ocean margins, including the
seafloor, an apparent lithogenic flux could arise from the partial
dissolution of hemipelagic or resuspended pelagic sediments.

τTh(z) =
∫ z

0 dissolved 230Th dz∫ z
0 activity 234U ∗ λ230 dz

(1a)

Lithogenic flux(z) =
∫ z

0 dissolved 232Th dz

τTh(z) × [232Th]litho × STh

= Dissolved 232Th flux(z)

[232Th]litho × STh
(1b)

Using depth profiles of dissolved 230Th and 232Th from the
North Pacific, this study aims to: (1) quantify dust deposition
at sites under the influence of the Asian dust plume, (2) criti-
cally evaluate the paired-Th isotope method for lithogenic fluxes
in seawater, and (3) use deep water 232Th fluxes to demonstrate
a deep source of dissolved 232Th, with implications for boundary
exchange.

2. Materials and methods

Sampling for dissolved (< 0.45 μm) 232Th and 230Th took place
at seven locations (Fig. 1) during the SO202-INOPEX cruise of
July–August 2009 (Gersonde, 2012). In this manuscript, Th, 232Th
and 230Th refer to the dissolved phase unless otherwise noted.
Sampling and analysis of thorium isotopes were carried out by
GEOTRACES-compliant (intercalibrated) methods (www.geotraces.
org), described fully by Anderson et al. (2012).

Four-to-five liter water samples were analyzed in batches of
10–12. Procedural blanks were determined by processing 4–5 L
of Milli-Q water in an acid-cleaned cubitainer acidified to pH ∼ 2
with 6 M HCl as a sample in each batch. For a measure of repro-
ducibility, an aliquot of an intercalibrated working standard solu-
tion of dissolved 232Th and 230Th, SW-STD 2010-1 referred to by
Anderson et al. (2012), was added to a separate cubitainer with
5 L of Milli-Q water (acidified to pH 2) and also processed like
a sample in each batch. Total procedural blanks were 7.1–24.3 pg
232Th and 0.8–1.6 fg 230Th. These blanks are equivalent to 3–30%
and 1–20% of the measured seawater 232Th and 230Th signals. Re-
producibility of the 232Th (∼ 990 pg/g) and 230Th (∼ 250 fg/g)
concentrations in SW-STD 2010-1 over several years has been 4.7%
and 1.3%, respectively.

Concentrations of 230Th were corrected for in-growth due to
uranium decay during sample storage (1–2 years). In order to use
230Th: 234U disequilibrium to derive a Th residence time, 230Th
concentrations must also be corrected for a proportion of 230Th
released by the dissolution of lithogenic materials. This is based
on concurrent measurements of 232Th, assuming a lithogenic ratio
230Th/232Th = 4.0 × 10−6 mol/mol (Roy-Barman et al., 2009). Our
INOPEX results and complete method descriptions are available
at PANGAEA (http://doi.pangaea.de/10.1594/PANGAEA.811760) and
BCO-DMO (http://osprey.bcodmo.org/dataset.cfm?id=14254&flag=
view).

3. Results and discussion

3.1. Shallow dissolved 230Th–232Th profiles

The INOPEX depth profiles of 230Th are discussed in detail else-
where (Hayes et al., 2013). The observed near-linear increases in
concentration with depth (Fig. 2) reflect the effects of reversible
scavenging (Bacon and Anderson, 1982) whereby 230Th, produced
uniformly in the water column, is concentrated at depth through
cycles of adsorption and desorption with sinking particles. This
behavior, especially in the upper 1000 m, has been observed in
almost all other 230Th profiles from the region (Nozaki et al., 1981,
1987; Nozaki and Nakanishi, 1985; Roy-Barman et al., 1996).
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Fig. 2. Shallow depth profiles of dissolved 232Th and 230Th from the INOPEX stations along coordinates of water depth (top) and potential density (bottom). The profiles in
the left four panels are located along 40◦N (Fig. 1) and are expected to receive a higher dust input than the stations whose profiles are plotted in the right four panels,
according to the Mahowald et al. (2005) model.

Fig. 3. Hydrographic parameters calculated from CTD measurements for the INOPEX stations. Fluorometer measurements (arbitrary units) were only available from some
stations.
Our results for 232Th are more novel. At each of the seven IN-
OPEX sites, most noticeably at the 4 stations near 40◦N, where
we expect the highest dust input (Fig. 1) (Mahowald et al., 2005),
232Th increases in concentration with depth from 10 m (within the
mixed layer) to a local subsurface maximum between 100–200 m
depth (Fig. 2). These well-defined subsurface maxima in 232Th
lead us to discuss three possible explanations which are impor-
tant in evaluating the paired-Th isotope method for lithogenic
supplies: (1) lateral advection or eddy-diffusion of 232Th at the
subsurface maxima, (2) seasonality of eolian-232Th deposition,
and (3) non-steady-state Th scavenging and regeneration dynam-
ics.
3.1.1. Hydrographic influences
The subsurface 232Th maxima could in principle reflect an ad-

vective/diffusive input, for instance, of water recently in contact
with detrital sediment. This influence is addressed in two ways:
hydrographic context (Fig. 3) and advective–diffusive scaling argu-
ments in comparison to Th residence times. Each station was ob-
served with a warm, fresh and shallow (17–35 m, Table 1) mixed
layer, typical of summertime in the subarctic Pacific (Ohno et al.,
2009). The mixed layer depth criterion is a 0.125 kg m−3 change
in potential density with respect to the surface (Levitus, 1982;
Suga et al., 2004). The North Pacific mixed layer has great sea-
sonal variability, however, with much deeper mixed layers in win-
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Table 1
Dissolved Th residence times and fluxes (steady-state rates of supply and removal) calculated for the mixed layer (ML), and by integrating from the sea surface to 500 m
water depth. Mixed layer depths (MLD) were determined as the depth at which potential density became 0.125 kg m−3 greater than at the surface from CTD (Fig. 3) at the
time of sampling.

Station MLDa τTh τTh
232Th flux 232Th flux

(m) (ML, yrs) (500 m, yrs) (ML, μg m−2 yr−1) (500 m, μg m−2 yr−1)

SO202-5 18 0.7 ± 0.3 4.7 ± 0.1 0.33 ± 0.07 2.26 ± 0.07
SO202-24 35 0.7 ± 0.2 4.9 ± 0.1 0.52 ± 0.04 2.00 ± 0.05
SO202-32 26 1.2 ± 0.2 3.7 ± 0.1 0.82 ± 0.05 3.50 ± 0.10
SO202-36 24 1.0 ± 0.3 3.3 ± 0.1 0.76 ± 0.10 5.48 ± 0.23
SO202-39 19 0.8 ± 0.3 3.6 ± 0.1 0.24 ± 0.05 4.64 ± 0.16
SO202-41 22 1.1 ± 0.3 4.0 ± 0.1 0.84 ± 0.10 4.74 ± 0.15
SO202-44 17 0.8 ± 0.3 4.2 ± 0.1 0.92 ± 0.16 4.70 ± 0.14
ALOHA 50b 2.2 ± 1.3 6.4 ± 1.2 0.34 ± 0.06 1.06 ± 0.26
SAFe 15 2.2 ± 0.5 5.2 ± 0.4 0.12 ± 0.03 1.03 ± 0.09

a MLD in the region of SO202 stations is highly seasonal. Data here was collected in late summer while winter mixed layers can exceed 200 m (see Section 3.1.2).
b CTD data was not available from the 1994 cruise from which this data was collected by Roy-Barman et al. (1996). Surface samples were taken from 25 m depth and

noted to be within the mixed layer. We chose 50 m mixed layer based on climatology (Church et al., 2013).
ter. In particular, in the western North Pacific between 30–45◦N,
mixed layer depths can often exceed 200 m (Ohno et al., 2009;
Oka et al., 2007).

These deep mixed layers lead to the formation of various
mode waters. North Pacific Subtropical Mode Water (STMW, σθ =
25.0–25.7 kg m−3) (Bingham, 1992; Hanawa and Suga, 1995),
known to be enriched in Al (Measures et al., 2005), outcrops or
forms south of the Kuroshio Extension (generally south of 36◦N,
Fig. 1) (Chen, 2008; Oka et al., 2007). STMW is therefore not likely
to influence the INOPEX sites (north of 38◦N), although there is
the possibility for cross frontal mixing in this region of high eddy
kinetic energy (Ducet et al., 2000).

North Pacific Central Mode Water (CMW, σθ = 25.9–26.5
kg m−3) and Transition Region Mode Water (TRMW, σθ = 26.4–
26.6 kg m−3) form from the deep winter mixed layers north of the
Kuroshio Extension and south of the Subarctic Front (Hanawa and
Talley, 2001; Oka et al., 2011), encompassing the region of sta-
tions SO202-36 through -44 (Fig. 1). The subsurface 232Th maxima
(at SO202-36 through -44) occur in the potential density layers,
σθ = 25.7–26.5 kg m−3 (Fig. 2), overlapping with CMW and TRMW.
These mode waters could receive detrital trace metal inputs from
the Kuril–Kamchatka margin and/or the Okhotsk Sea via the Oy-
ashio Current (Morton, 2010).

In the case of SO202-44, the subsurface 232Th maximum co-
incides with a slight intrusion of higher O2 waters (Fig. 3), in-
dicative of a recently ventilated mode water (Measures et al.,
2006) and suggestive that this station may be partially influ-
enced by detritally enriched CMW. North Pacific Intermediate Wa-
ter (NPIW), which also forms near the subarctic boundary is no-
table in our profiles as a salinity minimum at 250–500 m depth,
σθ = 26.8 kg m−3 (Talley, 1993). NPIW, however, is below the sub-
surface peaks in 232Th. While we cannot rule out lateral trans-
port processes based on hydrography alone, we now consider the
timescales necessary for lateral transport.

Ocean dispersion transports non-conservative elements if the
transport processes occur on a timescale shorter than the resi-
dence time of the element. The Th residence time in the upper
500 m (Table 1) at the INOPEX sites is 3–5 years. We expect hori-
zontal eddy diffusivity, KH, at a typical rate of 103 m2 s−1 (Kawabe,
2008), to reach roughly 500 km lateral extent within that timescale
(�x = √

2KHτTh, parameterizing eddy diffusivity as a random-walk
process). Station SO202-5 is 312 km from the Kamchatka mar-
gin and SO202-24 is 310 km from the nearest Aleutian coast,
and therefore these stations will be influenced by any strong Th
sources at those coasts by eddy-diffusion alone. Station SO202-44
is 850 km from the Japanese margin. This is longer than our esti-
mated diffusion length but does not necessarily imply the station
is isolated from coastal input. Rather the diffusion length is an
e-folding length, meaning any coastal to open concentration dif-
ference in 232Th will be reduced by 2.71 over that distance. Ad-
ditionally, advective processes will occur on even faster timescales
and over longer distances.

Drifter floats suggest eastward ocean velocities at ∼ 500 m
depth in the region of SO202-44 on the order of 1 cm/s (Iwao et
al., 2003). Thus advection could carry a Th signal from the Japanese
margin to SO202-44 in as little as 2.7 yrs, less than the 500-m
Th residence time. Nonetheless, the similarity of the 232Th pro-
files at SO202-36 through -44 argues against this possibility as one
would expect attenuation of an advective signal with distance from
the source. Stations SO202-32, -36, -39 and -41 are > 1100 km
(> 3.5 yrs travel time for a 1 cm/s current) from any coast and are
much less likely to be influenced by coastal sources of Th.

We cannot rule out the influence of coastal input, or lateral
sources in general, from observations of 232Th/230Th alone. In fu-
ture studies we suggest combined measurements of Th isotopes
and 228Ra. This isotope builds up in coastal water in contact with
sediments, which contain its parent, 232Th (Moore, 2000). The half-
life of 228Ra (5.75 yr) is similar to the residence time of Th in
surface waters. Thus it is well suited to trace offshore transport on
relevant timescales. The rapid attenuation of the ratio of 228Ra to
the long-lived 226Ra (half-life of 1600 yrs) within ∼ 300 km of the
coast of Fukushima, Japan (Charette et al., 2013) suggests, there-
fore, that a significant fraction of coastal Th will not be transported
offshore much further than this. Nevertheless, paired measure-
ments of offshore gradients in 228Ra and 232Th are recommended
for future studies to better constrain potential sedimentary sources
of 232Th.

3.1.2. Seasonality
The deposition of Asian dust over the North Pacific occurs sea-

sonally, the strongest events happening in spring (Duce et al.,
1980). This phenomenon has been documented through decadal
time-series measurements of aerosol-Al (Parrington et al., 1983)
and Fe (Johnson et al., 2003) in Hawaii, and aerosol-232Th in
Japan (Hirose et al., 2012). Variability in dissolved Fe in sur-
face waters at ALOHA station (Fig. 1) has also been attributed to
spring dust events (Boyle et al., 2005). Since the INOPEX sam-
ples were collected in July–August 2009, a time of low aerosol
index (http://toms.gsfc.nasa.gov/) in the North Pacific, typical of the
summer season, we need to account for how the seasonality of
aerosol-232Th input affects our observations. This is done in light
of our 230Th-based Th residence times.

The Th residence times calculated for the mixed layer at the
INOPEX stations are all roughly 1 yr (Table 1). This reflects an
apparent uniformity in scavenging removal of Th in the subarctic
Pacific (Hayes et al., 2013). To contrast the subarctic Pacific with
an environment of much lower scavenging intensity, we calculate
Th residence times in surface waters using the 230Th–232Th data

http://toms.gsfc.nasa.gov/
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available from the subtropical North Pacific (Anderson et al., 2012;
Roy-Barman et al., 1996). The SAFe station was occupied in May
2009 and ALOHA was occupied in September 1994 for the data
used here (see Fig. 1 for locations). Dissolved 230Th concentrations
from SAFe and ALOHA have been corrected for storage in-growth
and lithogenic inputs. CTD data was not available from the Sept.
1994-ALOHA cruise, so we have assumed a 50 m mixed layer based
on climatology (Church et al., 2013). The subtropical sites have a
mixed layer Th residence time of ∼ 2 yrs (Table 1).

In both the subarctic and subtropical North Pacific regions,
where mixed layer Th residence times are 1–2 yrs, seasonal 232Th
inputs can be expected to result in muted seasonal changes in
232Th concentrations. Additionally, we would also expect changes
in surface 230Th concentration due to short-term (weeks–months)
scavenging events to be muted by the filter of a 1–2 yrs running
average. However, Th residence times based on mixed layer 230Th
can be overestimated because of upwelling and vertical mixing of
higher 230Th–water from below (Luo et al., 1995). Strong seasonal
variations in the surface water 234Th from time-series studies in
the northwestern North Pacific (Kawakami and Honda, 2007) and
at ALOHA (Benitez-Nelson et al., 2001) also argue that a year-long
mixed layer Th residence time is an overestimate. In fact, a dis-
concerting result of applying 230Th-based residence times to 232Th
inventories in the mixed layer is an anomalously low 232Th flux
at SO202-39 because of an anomalously low 232Th concentration
in the mixed layer there (Table 1, Fig. 2), while one would ex-
pect consistent flux results for the proximal INOPEX stations in an
annually-smoothed average. Based on the available data, it is not
clear whether mixed-layer 230Th and 232Th concentrations will be
sensitive to seasonality or if this is a limitation of using the longer-
lived 230Th to document intra-annual changes. Future time-series
measurements should seek to elucidate this point.

3.1.3. Thorium cycling
Given the uncertainties in interpreting the mixed layer 230Th–

232Th results, we investigate how 232Th fluxes change as one inte-
grates deeper into the water column, and therefore over a longer
timescale. As described in Section 1, 230Th production due to 234U
decay, as well as 230Th and 232Th inventories, are all integrated
with depth to produce a residence time and flux that is represen-
tative of the water column between the surface and the chosen
depth of integration. To fully capture the subsurface 232Th max-
ima, we choose to integrate to 500 m depth. While by integrating
deeper into the water column we lose information about shorter
timescales which may be of interest, it reduces the potential uncer-
tainty in Th residence times due to vertical redistribution of 230Th,
accounts for seasonal variations in mixed layer depth and particle
cycling, and produces more geographically-consistent 232Th fluxes
(Table 1). Compared to the mixed layer calculations, Th residence
times over 500 m depth increase by a factor of 2–7 (implying
slower Th removal), while 232Th fluxes increase by a factor of 3–20.
In other words, 232Th inventories increase with depth by more
than is expected by the decrease in removal rate associated with a
larger integrated water column.

Increased flux with integration depth could be an artifact of
vertical mixing, which by causing an overestimation of the mixed
layer 230Th residence time could cause the mixed layer 232Th flux
to be underestimated (Eq. (1b)). To estimate upward flux of 230Th
by mixing, we calculate the vertical 230Th concentration gradient
across the mixed layer (between 10 and 100 m) and multiply
by a vertical mixing coefficient (Kv). For surface waters in this
region, we use Kv = 10−5 m2 s−1, as determined by Charette et
al. (2013). The resultant upward flux of 230Th by vertical mixing
(Kv ∗ d230Th/dz) for the INOPEX stations is 5–60% of in-situ pro-
duction of 230Th in the mixed layer. Thus, our Th residence times
may be overestimated by a factor of 1.05–2.5, and consequently the
mixed layer 232Th fluxes may be underestimated by the same fac-
tor. While the true Kv at these sites may have been > 10−5 m2 s−1,
this effect is most likely not a large enough to explain the relative
increase in observed 232Th fluxes when integrating to 500 m.

Similarly, vertical mixing can represent a supply or removal
term for 232Th in the mixed layer. Following an approach like that
described above for 230Th, for each station we calculate a flux of
232Th due to vertical mixing and compare it to the magnitude of
our original estimate of mixed layer dissolved 232Th flux (Table 1).
Results suggest that vertical mixing can range from a net source
of 232Th to the mixed layer, contributing a maximum of 50% to
the calculated 232Th flux at SO202-39, to a small net loss (only
at SO202-32, where the concentration of 232Th decreases below
the mixed layer and the loss by vertical mixing represents 5% of
the mixed layer 232Th flux). When 232Th is added to the mixed
layer by vertical mixing, the calculated flux of dissolved 232Th will
overestimate the supply due to dust dissolution. This counteracts
to some degree the underestimation of dust supply introduced by
vertical mixing of 230Th (see above). Therefore, we do not consider
vertical mixing a significant factor in our observation of increased
232Th flux with integration depth.

Lastly, we explore the possibility that the increase with integra-
tion depth of the calculated dissolved 232Th flux results from the
generation of operationally defined dissolved 232Th (< 0.45 μm)
from particulate 232Th by a process that does not significantly af-
fect the dissolved 230Th distribution involving colloidal particles
(0.02–0.45 μm). Truly dissolved, or soluble, species are also op-
erationally defined (< 0.02 μm). It has been shown in seawater
leaching experiments that Fe dissolved from aerosols is dominated
by the colloidal fraction (Aguilar-Islas et al., 2010) so it is rea-
sonable to hypothesize that Th dissolves from dust as colloids as
well. Each 230Th atom in the ocean however is produced from a
single decay event that releases it into solution. The average dis-
solved speciation of two Th isotopes may therefore be different,
230Th more soluble, 232Th more colloidal, because of their differ-
ing sources, with implications for their cycling in the water col-
umn. For instance, when colloidal 232Th is converted into truly
dissolved 232Th, this represents a net addition of dissolved 232Th
unaccounted for by the adsorption/desorption (reversible scaveng-
ing) reactions of 230Th.

Few data on marine colloidal 232Th/230Th exist. In two out of
three samples from the Gulf of Mexico, it was found that a larger
proportion of dissolved 232Th existed in the colloidal phase than
did the radiogenic 234Th (Baskaran et al., 1992). However, it is
worth noting that Baskaran et al. (1992) could not confidently ex-
clude 232Th contamination. In contrast, Roy-Barman et al. (2002)
found that the 232Th/230Th ratio did not change between dis-
solved (< 0.2 μm) and ultra-filtered (< 1 kDa) seawater from the
Mediterranean Sea, suggesting similar speciation of the 2 isotopes
in both colloidal and truly dissolved size-classes.

Apparently low 232Th concentrations in the mixed layer (most
dramatically for example at SO202-39) could be the result of rapid
removal by colloidal aggregation and/or biologically-mediated par-
ticle packaging followed by the sinking of these particles, with
which 230Th does not equilibrate. Colloidal material has a very
rapid turnover time (days to weeks) in the upper ocean (Moran
and Buesseler, 1992) and laboratory experiments have shown that
Th can be effectively regenerated from particles through protis-
tan grazing (Barbeau et al., 2001). Therefore, apparently high 232Th
concentrations at depth (the subsurface maxima) could represent
the disaggregation of those sinking particles into colloids or fully
regenerated as truly dissolved Th.

Regeneration of Th at 100–200 m depth has also been docu-
mented for the shorter-lived Th isotopes, as excess activities of
234Th (Buesseler et al., 2009; Maiti et al., 2010) and 228Th (Li et
al., 1980; Luo et al., 1995) over their soluble parent nuclides (238U
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Fig. 4. Full-depth profiles of dissolved 232Th and 230Th from the INOPEX sites. Measurement errors are smaller than or equal to the symbol size.
and 228Ra, respectively). While these isotopes are also products of
in-situ decay (not dust dissolution), because of their much shorter
half-lives (24.1 days and 1.9 yrs, respectively), their excess activities
below the euphotic zone require rapid regeneration of particulate
Th.

Perhaps the shorter-lived Th isotopes can capture rapid scav-
enging dynamics while 230Th does not. For instance, we do not
observe strong evidence for regeneration at depth in the 230Th
profiles, considering the near-linear depth profiles of dissolved
230Th (Fig. 2). Alternatively, 230Th concentration anomalies in pro-
file may be smoothed by vertical mixing, as 230Th displays larger
depth gradients in concentration than the other Th isotopes. Fu-
ture size-fractionated Th isotope studies in seawater will inform
us about differing removal rates among the thorium isotopes
(Marchal and Lam, 2012). For instance, the high depth-resolution
234Th–232Th–230Th–228Th data being collected by the GEOTRACES
program will help test the hypothesis that each dissolved Th iso-
tope is subject to similar removal rates. Identifying the chem-
ical composition of the colloids important for cycling Th (e.g.,
lithogenic versus organic) would also be of great interest.

3.2. Full water column 232Th profiles

Before applying the 232Th data to estimate lithogenic fluxes, it
is useful to consider the full-depth distribution of 232Th measured
in the INOPEX region (Fig. 4). Among stations SO202-36 through
-44, the 232Th profiles show concentration maxima above 500 m
depth, minimum concentrations at ∼ 1–3 km depth, and gener-
ally increasing concentrations within about 1 km of the seafloor.
The only previously reported full-depth profile of dissolved 232Th
from the subarctic Pacific (north of 38◦N), station AN-4 (39.6◦N,
145.5◦E) (Nozaki et al., 1987), did not sample above 1 km depth,
and showed Th concentrations 2–5 times greater (100–240 pg/kg)
than those observed at SO202-44 at similar depths. This may re-
flect higher Th input near the Japanese coast but also could be
related to differences in sampling and methodology as seawa-
ter Th analysis has progressed (Huh et al., 1989). Increasing Th
concentration near the seafloor has also been found in the sub-
tropical Pacific (Nozaki and Horibe, 1983; Okubo et al., 2012;
Roy-Barman et al., 1996). The average dissolved 232Th concentra-
tion for all the INOPEX samples is 33 pg/kg, higher than the aver-
age (∼ 15 pg/kg) observed in the subtropical Pacific (Okubo et al.,
2012; Roy-Barman et al., 1996) and tropical Pacific (Singh et al.,
2013).

The “mid-depth-minimum” profile shape of the 232Th profiles
of SO202-32 through -44 is similar to that of Al in the North Pa-
cific (Measures et al., 2005; Orians and Bruland, 1986). As Orians
and Bruland (1986) pointed out for Al, we conclude that there
are two sources of Th to the ocean: one shallow due to dust
dissolution and one deep associated with sediment dissolution/re-
suspension; and one removal mechanism, scavenging throughout
the water column. At SO202-5 and SO202-24, 232Th appears to
increase in concentration continuously with depth, implicating a
full-depth sediment source from the nearby continental margin.
Resuspension of sediments by deep currents along the Aleutian
and Kurile margins (Owens and Warren, 2001) may enhance the
release of dissolved 232Th near the seafloor.

At all sites, the near-bottom source of dissolved 232Th is most
likely introduced by lateral mixing or advection along isopycnals
that impinge on the seafloor where sediment resuspension/disso-
lution occurs. Upward mixing of dissolved 232Th from the seafloor
directly underlying the sampling sites is most likely too slow in
comparison to lateral transport (Roy-Barman, 2009). We cannot at
this time, however, directly trace the source of this deep 232Th
input, as sediment resuspension appears to be spatially inhomo-
geneous (Hayes et al., 2013; Okubo et al., 2012) and high quality
data on dissolved 232Th from the North Pacific margins do not yet
exist.

To further dissect the Th cycle in the North Pacific, we cal-
culate the depth-integrated dissolved 232Th flux at all depths in
the INOPEX, ALOHA and SAFe profiles (Fig. 5). The 232Th flux al-
ways increases rapidly with integrated depth to at least 500 m
(Section 3.1). Excluding SO202-5 and SO202-24, which appear to
receive 232Th from the continental margin at all depths, the 232Th
fluxes do not increase greatly between 1 km and 3.5 km depth. We
interpret this regular pattern to indicate that after the dissolved Th
flux is generated due to dust dissolution above 1 km depth, little
new Th is added in the deeper water column, until within about
1 km of the seafloor where the flux begins to increase again due
to the bottom sediment source.

The full-depth dissolved 232Th flux at the subtropical sites is
3–4 times smaller than the INOPEX sites. This likely reflects the
greater aerosol-232Th input in the subarctic; however, the subarc-
tic Pacific may also be influenced by a greater sedimentary 232Th
source (boundary exchange).

3.3. Dissolved 232Th-based dust fluxes

Because 232Th fluxes change dramatically with integration
depth, it is necessary to justify the depth at which depth-
integrated dissolved 232Th fluxes best represent input from dust.
Originally we chose 500 m to integrate through features of the
232Th concentration profile that suggest rapid Th cycling in the up-
per water column. In general, the integrated 232Th fluxes reach an
asymptote with integration depth at 1 km. Importantly, between
100 m and 1000 m integration depth, the relative variation be-
tween the station fluxes remains similar (Fig. 5). Therefore the ex-
act integration depth within the zone of increasing 232Th flux may
be less important than choosing a standard depth, although this
will influence the apparent fractional solubility (see below). We
propose to continue using 500 m integration as a baseline for es-
timating open ocean dust fluxes from dissolved 232Th–230Th data.
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Fig. 5. Depth profiles of depth-integrated dissolved Th residence times (left, Eq. (1a)) and 232Th fluxes (right, Eq. (1b)) for the locations in Fig. 1. Error bars on the x-axes
are 3–5% in both cases and are omitted for clarity. Dissolved 232Th–230Th from ALOHA and SAFe were reported by Roy-Barman et al. (1996) and Anderson et al. (2012),
respectively.

Table 2
Apparent fractional Th solubilities derived by comparing model-derived dust deposition (Mahowald et al., 2005).

Station Model dust depositiona STh STh Dissolved Th-derived dust depositiond

(g m−2 yr−1) (ML, %)b (500 m, %)c (500 m, STh = 20%, g m−2 yr−1)

SO202-5 0.58 ± 0.12 3.9 ± 1.8 26.5 ± 6.7 0.77 ± 0.20
SO202-24 0.45 ± 0.09 8.0 ± 2.8 30.5 ± 7.7 0.69 ± 0.17
SO202-32 0.57 ± 0.11 9.9 ± 2.6 42.3 ± 10.7 1.20 ± 0.30
SO202-36 0.96 ± 0.19 5.4 ± 2.1 39.1 ± 10.0 1.88 ± 0.48
SO202-39 1.13 ± 0.23 1.5 ± 0.6 28.2 ± 7.1 1.59 ± 0.40
SO202-41 1.18 ± 0.24 4.9 ± 1.6 27.6 ± 7.0 1.62 ± 0.41
SO202-44 1.23 ± 0.25 5.1 ± 1.8 26.1 ± 6.6 1.61 ± 0.41
ALOHA 0.38 ± 0.08 6.1 ± 3.7 19.1 ± 7.6 0.36 ± 0.13
SAFe 0.45 ± 0.09 1.8 ± 0.5 15.7 ± 4.2 0.35 ± 0.09

a Dust deposition estimates extracted from the model results of Mahowald et al. (2005), assuming 20% uncertainty.
b Fractional solubility of Th using ML dissolved 232Th fluxes, assuming model dust deposition is correct and the concentration of Th in East Asian dust is 14.6 ± 0.2 ppm

(Serno et al., submitted for publication).
c Fractional solubility of Th using dissolved 232Th fluxes integrated from the sea surface to 500 m depth, assuming model dust deposition is correct and the concentration

of Th in East Asian dust is 14.6 ± 0.2 ppm (Serno et al., submitted for publication).
d Dust deposition estimates based on 232Th fluxes integrated from the sea surface to 500 m depth, assuming a fractional Th solubility of 20 ± 5% (see Section 3.3), and a

Th concentration in East Asian dust of 14.6 ± 0.2 ppm (Serno et al., submitted for publication).
This may need to be revised depending on the Th regeneration
signals observed, seasonality in mixed layer depth, or proximity to
advective/diffusive Th sources.

In order to estimate dust flux from dissolved 232Th flux, esti-
mates of the 232Th concentration in dust and the fractional sol-
ubility of Th are necessary (Eq. (1b)). Dust sources have 232Th
concentrations in a narrow range of the average for the upper con-
tinental crust (McGee et al., 2007). A recent study determined an
end-member concentration for Th in East Asian aerosol dust of
14.6 ± 0.2 ppm (Serno et al., submitted for publication), making
it simple to apply a [Th]litho with confidence for estimating dust
fluxes (Eq. (1b)). It is possible that volcanic ash presents another
eolian source of dissolved 232Th to the water column. Although Th
solubility of volcanic ash is not known, the Th concentration of
volcanic material in marine sediments from this region is 2.2 ppm
(Serno et al., submitted for publication), much lower than that
of aerosol dust, and the contribution of volcanic material to the
lithogenic flux (as determined in the sediments) becomes small
with distance > 500 km from the coast (Serno et al., submitted for
publication). Contribution from volcanic ash therefore could cause
a small overestimate of dust deposition at stations SO202-5 and
-24, but it is expected to be negligible at other stations.

The fractional solubility, STh, is much more difficult to estimate
with available data. Previous studies have estimated this factor in
the range 1–20% (Arraes-Mescoff et al., 2001; Hsieh et al., 2011;
Roy-Barman et al., 2002). Following the approach of Hsieh et al.
(2011), by fixing a [Th]litho, and assuming the model-derived dust
deposition estimates of Mahowald et al. (2005) are correct (within
20% uncertainty), one can use Eq. (1b) and the calculated dissolved
232Th fluxes to estimate the fractional solubility. Using our mixed
layer fluxes, this technique implies STh = 2–10% for the INOPEX,
ALOHA and SAFe sites, similar to that found by Hsieh et al., while
using the 500-m fluxes we infer STh = 15–40% (Table 2, Fig. 6).
Increases in apparent solubility may be due to dissolution or re-
generation processes occurring at depth. For instance, lithogenic
particles may continue to be leached at subsurface depths by the
low pH microenvironments associated with microbial colonies or
zooplankton. However, given the refractory nature of Th, it seems
unlikely that STh can be as high as 40% under any oceanic con-
ditions. We suggest that such high apparent fractional solubility
indicates that the model-derived results underestimate the true
dust deposition in this region, although lateral supply of sedimen-
tary 232Th cannot be excluded entirely (Section 3.1.1).

An independent estimate of Th solubility can be derived by
comparing the measured upper water column 232Th flux to an
annually resolved measurement of aerosol-232Th flux on land,
Mt. Haruna, Japan (Hirose et al., 2010). After correction for local
sources, in 2007, the annual total 232Th flux was 27.6 μg m−2 yr−1.
The nearest dissolved 232Th flux (SO202-44) is 4.7 μg m−2 yr−1,
implying 17% Th solubility. We also compare our dissolved 232Th
fluxes to the total 232Th fluxes determined in the underlying sur-
face sediments at the INOPEX sites. The Holocene, eolian com-
ponent of sediment flux was determined with geochemical end-
members (terrigenous 4He, 232Th, and rare earth elements) and
230Th-normalized burial fluxes (Serno et al., submitted for publica-
tion). The eolian-232Th sediment fluxes compared with the 500-m
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Fig. 6. Dissolved 232Th fluxes as calculated for the mixed layer (triangles) and
fluxes calculated by integrating Th inventories from the surface to 500 m depth
(diamonds) from the locations in Fig. 1 against model-derived estimates of dust de-
position for the same locations (Mahowald et al., 2005). The dotted and solid lines
represent a constant fractional Th solubility of 5.5 and 20%, respectively, both as-
suming a Th concentration in East Asian dust of 14.6 ppm (Serno et al., submitted
for publication). Note break in y-axis.

dissolved 232Th fluxes indicate STh = 21 ± 11%. Based on these two
comparisons, we assume a fractional Th solubility of 20 ± 5%.

Our estimates of dust deposition to the North Pacific (Ta-
ble 2), derived by integrating 232Th inventories to 500 m, agree
with the model results (Mahowald et al., 2005) reasonably well
for the subtropical sites (∼ 0.4 g m−2 yr−1), while in the sub-
arctic our estimates are 1.3–2 times higher than predicted in
the model (∼ 1.6 g m−2 yr−1 for SO202-36 through -44). We can
also compare our 500-m dissolved 232Th-based dust estimates
with the Holocene dust deposition estimates from the underly-
ing sediment-232Th fluxes (Serno et al., submitted for publication),
while we acknowledge that both of these techniques are subject to
the uncertainty of lateral 232Th transport in the water column. At
4 of the 6 INOPEX sites where both water column and sediment
measurements were made, dissolved 232Th- and sediment 232Th-
based dust fluxes agree within error. This is encouraging since the
two techniques average over very different timescales (3–5 years
in 500 m water depth versus thousands of years in the sediments).

Dissolved Al has also been used to estimate dust deposition
in the North Pacific (Measures et al., 2005) in a similar way to
that described for Th, although for Al, a residence time, in addi-
tion to a fractional solubility, must be assumed. These Al results
from the subarctic suggest very low dust fluxes (< 0.3 g m−2 yr−1),
even lower than model-derived estimates. We hypothesize that the
assumed Al residence time in surface waters (5 yrs) is overesti-
mated, especially in the more productive subarctic Pacific (Shiller
and Bairamadgi, 2006).

3.4. Dissolved metal fluxes based on dissolved 232Th fluxes

If 232Th sources can be used as a model for other lithogenic
trace metals (Me), one can estimate the flux of metals derived from
the same lithogenic source. This requires knowledge of the metal
to 232Th ratio of the source and the relative fractional solubility
(Eq. (2)):

Dissolved Me flux =
(

Me
232Th

)
litho

×
(

SMe

STh

)

× Dissolved 232Th flux (2)

The relative solubility of aerosol dust is also largely uncon-
strained, but it is currently being pursued in the GEOTRACES pro-
gram through leaching experiments (Morton et al., 2013). Rela-
tive solubilities may have an advantage over separately-determined
metal solubility during leaches in that they may be less sensi-
tive to artifacts relating to, e.g., the length of leaching, the type
of leach solution or adsorption to container walls. Relative solubil-
ity may also be less sensitive to the source of dust. For instance,
while fractional Fe solubility estimates range by orders of magni-
tude (Sholkovitz et al., 2012), the relative Fe/Th solubility may be
more consistent among dust with differing source regions or at-
mospheric histories.

Increases in the apparent solubility when considering the
longer-term processing of lithogenic particles, similar to that for
Th, have been reported for Fe (Boyd et al., 2010; Frew et al., 2006;
Hansard et al., 2009). On this basis, we infer a general similarity
in the dissolution of relatively insoluble lithogenic elements such
as Fe, Nd, etc. Assuming a Fe/Th ratio of the average continental
crust, 3262 g g−1 (Taylor and McLennan, 1985), and congruent dis-
solution (SFe/STh = 1), the 232Th flux data from the INOPEX sites
around 40◦N translates into a dissolved Fe flux due to dust dissolu-
tion of about 15 mg Fe m−2 yr−1. Applying our assumed SFe = 20%
to model estimates of natural mineral Fe deposition (Mahowald
et al., 2009) gives 5–10 mg Fe m−2 yr−1. This suggests, similar to
what was concluded for dust fluxes in Section 3.3, that models
currently underestimate the flux of soluble aerosol Fe, at least in
the INOPEX region.

Note that the dissolved 232Th flux and the 232Th-based dis-
solved Fe flux reflect the input of natural mineral aerosols. Total
dissolved Fe fluxes, on the other hand, especially in a region down-
wind of industrial nations such as Japan and China, will likely
have a significant anthropogenic component (Gao et al., 2007;
Luo et al., 2008). Furthermore, volcanic ash contains little Th, but
may be an important source of Fe (Duggen et al., 2010).

3.5. Bottom water 232Th fluxes as a constraint on boundary exchange

While depth-integrated dissolved 232Th fluxes arise primarily
from the input of aerosol dust in shallow waters, additional fluxes
near the seafloor appear to arise from the dissolution of post-
depositional sediments (Fig. 5). This may represent the boundary
exchange source of trace elements suspected to play a role for el-
ements of paleoceanographic interest such as Nd and Hf (Lacan
and Jeandel, 2005; van de Flierdt et al., 2004). As an attempt to
quantify this source, we take the difference in integrated 232Th
flux between the bottom of each profile and 1 km depth (below
which input from dust dissolution/regeneration processes atten-
uates). These results range from 1–5 μg 232Th m−2 yr−1 (Fig. 5),
representing ∼ 30% of the full-depth dissolved 232Th flux. This
probably underestimates the boundary exchange flux at SO202-5
and SO202-24 which may receive a sediment dissolution flux at
all depths.

Here we also assume crustal Nd/Th and Hf/Th ratios of 2.4 and
0.54, in g g−1 respectively (Taylor and McLennan, 1985), and con-
gruent dissolution. Of course, few data exist on SNd or SHf to test
these assumptions. A field study in the North Atlantic estimated
SNd = 20% (Tachikawa et al., 1999), consistent with our assump-
tion, while experimental leaches suggest smaller values SNd =
1–2% (Greaves et al., 1994) and 5–12% (Arraes-Mescoff et al., 2001).
Under our assumptions, the bottom water dissolved Th fluxes from
the North Pacific sites imply bottom fluxes of 2.4–12 μg m−2 yr−1

dissolved Nd and 0.5–2.7 μg m−2 yr−1 dissolved Hf (Eq. (2)). For
scale, the water column inventories (∼ 5 km depth) of dissolved
Nd and Hf in the North Pacific are 26 000 μg m−2 (Amakawa et al.,
2009) and 2100 μg m−2 (Firdaus et al., 2011), respectively. The res-
idence time of these elements is also still under investigation, but
for purposes of illustration, let us assume 500 yrs for both, within
the range of estimated values (van de Flierdt et al., 2004). Under
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steady-state, supply and removal fluxes for the full water column
cycles of Nd and Hf would then be 52 and 7.1 μg m−2 yr−1, re-
spectively. Therefore the boundary exchange fluxes calculated are
potentially significant (10’s of percent, similar to Th).

4. Conclusions and further work

The long-lived Th isotopes offer a unique and powerful tool to
evaluate the supply of trace elements from lithogenic sources. We
have identified, however, a number of sources of uncertainty that
must be addressed in future studies to further refine our estimates
of lithogenic fluxes. These include the lateral transport of 232Th
in the water column, seasonal effects of Th input and removal,
the chemical speciation and size-partitioning of 232Th and 230Th
in seawater, and fractional metal solubility.

Dissolved 232Th and 230Th distributions in the North Pacific
demonstrate that the oceanic Th cycle is relatively simple, with
two sources, including aerosol dust dissolution in shallow waters
and sediment dissolution/resuspension in bottom water, and one
removal mechanism, involving scavenging throughout the water
column. The delivery mechanism of dissolved Th from dust dis-
solution, however, is relatively complex, possibly involving rapid
export of colloidal Th and its subsequent regeneration or disaggre-
gation within 500–1000 m below the sea surface. This mechanism,
as well as the mechanism describing how Th is released from
sediment dissolution/resuspension at the seafloor, deserves further
investigation. Dissolved 232Th fluxes, nonetheless, can be applied to
estimate fluxes of other lithogenically sourced dissolved trace met-
als (such as aerosol-derived Fe or boundary exchange-derived Nd
or Hf), or fluxes of the parent lithogenic material (such as aerosol
dust) with reasonable accuracy.
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