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Abstract

Following the launch of ESA’s Soil Moisture and Ocean salinity (SMOS) mission it has
been shown that brightness temperatures at a low microwave frequency of 1.4 GHz
(L-band) are sensitive to sea ice properties. In a first demonstration study, sea ice
thickness has been derived using a semi-empirical algorithm with constant tie-points.5

Here we introduce a novel iterative retrieval algorithm that is based on a sea ice ther-
modynamic model and a three-layer radiative transfer model, which explicitly takes
variations of ice temperature and ice salinity into account. In addition, ice thickness
variations within a SMOS footprint are considered through a statistical thickness distri-
bution function derived from high-resolution ice thickness measurements from NASA’s10

Operation IceBridge campaign. This new algorithm has been used for the continuous
operational production of a SMOS based sea ice thickness data set from 2010 on. This
data set is compared and validated with estimates from assimilation systems, remote
sensing data, and airborne electromagnetic sounding data. The comparisons show
that the new retrieval algorithm has a considerably better agreement with the valida-15

tion data and delivers a more realistic Arctic-wide ice thickness distribution than the
algorithm used in the previous study.

1 Introduction

Satellite-based observation of ice thickness is still very challenging. The first satel-
lite borne observations of ice thickness were conducted with satellite radar altime-20

ters carried on European Remote Sensing satellites (ERS-1 and ERS-2) (Laxon et al.,
2003) and thermal imagery from Advanced Very High Resolution Radiometer (AVHRR)
(Yu and Rothrock, 1996; Drucker et al., 2003). The altimeter observations were fol-
lowed by the ICESat laser altimeter from 2003 to 2009 (Kwok and Cunningham,
2008) and since 2011 by the CryoSat-2 radar altimeter (Laxon et al., 2013). The25

radar and laser altimeters have large uncertainties for ice thickness less than 1 m
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(Laxon et al., 2003; Kwok and Cunningham, 2008). Therefore, they are more suitable
for the detection of thick ice. The altimeter ice thickness charts typically have a one
month temporal resolution and a 100 km spatial resolution.

Thin ice thickness up to around 0.5 m with 1 km spatial resolution can be estimated
with thermal imagery based ice surface temperature (Ts) together with atmospheric5

forcing data through ice surface heat balance equation (Yu and Rothrock, 1996; Maeky-
nen et al., 2013). The major drawback with the Ts based thickness retrieval is the re-
quirement for cloud-free conditions, and thus, there may be long temporal gaps in the
thickness chart coverage over a region of interest. In addition, discriminating clear-sky
from clouds is difficult in winter night-time conditions (Frey et al., 2008).10

Passive microwave radiometer data from Special Sensor Microwave Imager (SSM/I)
(37 and 85.5 GHz channels) and Advanced Microwave Scanning Radiometer-Earth
Observing System (AMSR-E) (36.5 and 89 GHz channels) sensors have been used to
estimate thickness of thin ice up to 10–20 cm (Martin et al., 2005; Tamura et al., 2007;
Nihashi et al., 2009; Tamura and Ohshima, 2011; Singh et al., 2011). The spatial reso-15

lution of the radiometer thin ice thickness charts (6.25 to 25 km) is much coarser than
that from thermal imagery, but daily Arctic and Antarctic coverage is possible. The thin
ice thickness retrieval algorithms are linear or exponential regression equations be-
tween polarization ratios (PR) or V- to H-polarization ratio (R) and AVHRR or Moderate
Resolution Imaging Spectroradiometer (MODIS) thickness charts. Naoki et al. (2008)20

suggested that the observed decrease of near ice surface salinity as a function of ice
thickness, which results in modification of the ice dielectric properties and further ice
emission, is the main reason for the observed brightness temperature vs. ice thickness
relationship. In addition, the brightness temperature vs. ice thickness relationship is
more pronounced for H-polarization and for a lower frequency (e.g. 10.7 GHz). Nihashi25

et al. (2009) found out that PR at 37 GHz cannot detect thin ice when it is covered with
snow. An analysis of ship-borne radiometer data at 19, 37 and 85 GHz over various thin
ice types indicated that a limitation in the thin ice thickness estimation can be attributed
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to the presence of snow or dense frost flower coverage (> 60 %) on the ice surface
(Hwang et al., 2007).

The Soil Moisture and Ocean Salinity (SMOS) mission of the European Space
Agency (ESA), which was launched in November 2009, measures for the first time
globally Earth’s radiation at a frequency of 1.4 GHz in the L-band (Mecklenburg et al.,5

2012). The footprint varies from about 35 km to more than 50 km. Besides soil mois-
ture and ocean salinity information, for which SMOS was originally designed, L-band
radiometry on SMOS can also be used to obtain the sea ice thickness, which is due
to the large penetration depth in sea ice (Kaleschke et al., 2010, 2012). In contrast
to IceSat and CryoSat-2 measurements, SMOS-derived ice thickness has less uncer-10

tainty in the thin ice range, but an exponentially increasing uncertainty for ice thickness
thicker than 0.5 m. In our study we consider ice thickness less than 50 cm as thin ice.
SMOS-derived ice thickness can thus complement the measurements from CryoSat-2
to achieve Arctic-wide sea ice thickness estimations (Kaleschke et al., 2010, 2012).

The semi-empirical SMOS ice thickness retrieval algorithm applied previously in15

Kaleschke et al. (2012) (hereinafter Algorithm I) is

TB(dice) = T1 − (T1 − T0)e−γdice , (1)

where dice is the ice thickness, T1 and T0 are two constant tie points which were
estimated from the observed SMOS brightness temperatures over open water and20

thick first year ice during the freezing period of 2010 in the Arctic, and γ is a constant
attenuation factor which was derived from a sea ice radiation model (Menashi et al.,
1993) for a representative bulk ice temperature and bulk ice salinity in the Arctic.

The advantage of Algorithm I is the retrieval of ice thickness from the brightness
temperature (TB) without any auxiliary data set. However, the TB measured by a L-25

band radiometer over sea ice depends on the dielectric properties of sea ice which
are functions of ice temperature and ice salinity (Kaleschke et al., 2010). Although the
change of TB caused by the sea ice thickness variation is much larger than that caused
by the variation of ice temperature and ice salinity, the typical variability of these two
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parameters in the Arctic can induce up to 30 K difference in TB (Kaleschke et al., 2012).
This means the assumption of constant retrieval parameters could cause considerable
errors in the regions where these parameters strongly differ from the assumed constant
values.

Ice temperature and ice salinity measurements are rare and they are not contin-5

uously available on a daily basis in the Arctic. An alternative solution is therefore to
derive these two parameters from auxiliary data during the sea ice thickness retrieval.
Under the assumption of thermal equilibrium, the ice surface temperature can be esti-
mated from the surface air temperature. Therefore, we use a heat flux balance equation
and use the surface air temperature from atmospheric reanalysis data as a boundary10

condition. Ice salinity can be estimated from the underlying sea surface salinity (SSS)
with an empirical function (Ryvlin, 1974). With these two parameters we can calculate
brightness temperature with the sea ice radiation model (Menashi et al., 1993). How-
ever, both ice temperature and ice salinity are in turn functions of ice thickness. Thus,
we need to apply a linear approximation method to simultaneously retrieve ice thick-15

ness and estimate suitable ice temperature and salinity values. This algorithm is called
Algorithm II hereinafter.

In the radiation model of Menashi et al. (1993) a plane ice layer is assumed. How-
ever, due to sea ice deformation in natural sea ice, a broad scale of ice thicknesses
occurs within one footprint of SMOS. The brightness temperature measured by SMOS20

at each footprint is a mixture of brightness temperatures from different ice thicknesses,
and possibly open water. As SMOS brightness temperature is more sensitive to ice
thicknesses less than 0.5 m (Kaleschke et al., 2012), SMOS-derived ice thickness un-
der the assumption of a plane ice layer tends to represent the lower end of the ice
thickness distribution within the footprint. A possible solution for the corresponding un-25

derestimation of ice thickness is to correct the retrieved ice thickness using an ice
thickness distribution function. The correction of ice thickness retrieved from Algorithm
II using this function is called Algorithm II* in this study.
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Here we compare the three different SMOS ice thickness retrieval algorithms in the
Arctic. The plane layer ice thicknesses retrieved from Algorithm I and II are compared
with independent data to examine if the method that considers variable ice temperature
and ice salinity improves the accuracy of the ice thickness retrieval. Thereafter, sea
ice thickness uncertainty is estimated with the better algorithm on a daily basis. The5

growth of the sea ice cover as seen by SMOS during a freezing period in the Arctic is
also discussed.

The paper is structured as follows. In Sect. 2 we describe the SMOS brightness
temperature and the auxiliary data sets. The baseline of Algorithm II is described in
Sect. 3. In Sect. 4 we discuss the uncertainties and bias of the retrieved ice thickness.10

After that we present in Sect. 5 our method to correct the retrieved ice thickness, which
is based on the assumption of a plane ice layer, with an empirically determined ice
thickness distribution function. The comparison of ice thicknesses retrieved from differ-
ent algorithms is discussed in Sect. 6. Ice thickness growth and distribution as seen by
SMOS during the freeze-up period in the Arctic are shown in Sect. 7. A further com-15

parison of SMOS-derived ice thickness with that derived from MODIS in the Kara Sea
is presented in Sect. 8. Finally, summaries and discussions are given in Sect. 9.

2 Data

Three different data sets are used for the retrieval of sea ice thickness in Algorithm
II. The basis of the retrieval is the brightness temperature measured by the SMOS L-20

band radiometer. This data set is described in Sect. 2.1. For the estimation of bulk ice
temperature (Tice) we use surface air temperature (Ta) from Japanese 25 yr Reanalysis
(JRA-25) data which are described in Sect. 2.2. The SSS climatology, which is used
for the calculation of bulk ice salinity (Sice), is presented in Sect. 2.3. Finally, MODIS
ice thickness charts over the Kara Sea for the verification of the SMOS ice thickness25

are presented in Sect. 2.4.
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2.1 SMOS brightness temperature data

2.1.1 L1C data

The SMOS payload Microwave Imaging Radiometer using Aperture Synthesis (MI-
RAS) measures in L-band the brightness temperatures in full polarization with inci-
dence angles ranging from 0◦ to 65◦. All four Stokes parameters are obtained. It has5

a global coverage every three days (Kerr et al., 2001), whereas daily coverage up to
85◦ can be expected in the polar regions. Brightness temperature is taken every 1.2 s
by hexagon-like, two-dimensional snapshots which have a spatial dimension of about
1200 km across (Kerr et al., 2001). The geometric distribution of incidence angles and
radiometric accuracy within the alias-free areas of a snapshot is shown in Fig. 1. The10

footprint varies from about 35 km at nadir view to more than 50 km at incidence angles
higher than 60◦. Each snapshot measures one or two of the Stokes components in the
antenna reference frame. Horizontally and vertically polarized brightness temperatures
are measured by separate snapshots.

The SMOS L1C data are given on the Discrete Global Grid (DGG) system. The15

DGGs are fixed Earth grid coordinates of the ISEA 4–9 hexagonal grid centers which
have a spatial distance of 15 km (Indra, 2010). Most of the pixels in the Arctic are
covered by several overflights during one day. Therefore, for our daily product we collect
at each DGG grid point all brightness temperatures measured during one day, together
with other information like the incidence angles.20

2.1.2 Radio frequency interference

SMOS measurements are partly influenced by Radio Frequency Interference (RFI)
which comes from radars, TV and radio transmission (Mecklenburg et al., 2012). The
detection of the RFI sources and the mitigation of RFI influence are critical steps for
the further retrieval of geophysical parameters. The RFI influence depends on the25

incidence angle, polarization, and ascending and descending modes of the satellite
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(Camps et al., 2010). A closer look into RFI contaminated snapshots shows that RFI
can either completely or partly destroy a snapshot (Camps et al., 2010). For simplifica-
tion we apply a threshold value for both horizontally and vertically polarized brightness
temperatures. If either of them exceeds 300 K within one snapshot, this snapshot is
considered as RFI contaminated. Brightness temperatures higher than 300 K can not5

be expected in the Arctic and Antarctic.
According to this RFI filter, strongly RFI affected regions are the region northeast

of Greenland and parts of the Canadian Arctic Archipelago. Figure 2 shows the RFI
induced data loss based on our RFI filter. The data loss in the figure is defined as the
ratio between the number of RFI contaminated measurements and the number of total10

measurements. As can be seen from Fig. 2, the RFI situation in the Arctic region has
improved much since 2010.

2.1.3 Brightness temperature intensity

Over sea ice the first Stokes parameter (intensity) is almost independent of incidence
angle in the incidence angle range of 0–40◦ (Fig. 3). The intensity is the average of15

the horizontally and the vertically polarized brightness temperatures, i.e. it is equal to
0.5(TBh +TBv). The intensity is independent of both geometric and Faraday rotations
and robust to instrumental and geophysical errors (Camps et al., 2005). We can avoid
additional uncertainties caused by the transformation from the antenna reference frame
to the Earth reference frame by using the intensity. Since each snapshot measures ei-20

ther horizontally or vertically polarized brightness temperature, we use consecutive
snapshots with an acquisition time difference of less than 2.5 s to calculate the inten-
sity. The advantage of using near nadir view measurements is the smaller footprint
associated with low incidence angles. Furthermore, by using the whole incidence an-
gle range of 0–40◦ we get more than 100 brightness temperature measurements per25

day for most of the pixels in the Arctic, and by averaging over a lot of measurements we
can significantly reduce the uncertainty of the retrieval. The daily averaged brightness
temperature intensities in the Arctic and in the Antarctic are interpolated with nearest
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neighbor algorithm and gridded into the National Snow and Ice Data Center (NSIDC)
polar stereographic projection with a grid resolution of 12.5 km. We use this grid resolu-
tion because other products that we use as auxiliary data in the retrieval are also given
in this resolution. We call this product L3B brightness temperature. In the following we
use TB to indicate the daily averaged brightness temperature intensity. The data have5

been processed with about 24 h latency for both hemispheres and available since Jan-
uary 2010. The L3B TBs are the basis of our sea ice thickness retrieval with Algorithm
I and II and can be obtained from icdc.zmaw.de.

2.2 JRA-25 reanalysis data

For estimating the ice surface temperature, we extract the 2 m surface air temperature10

and the 10 m wind velocity data from JRA-25 atmospheric reanalysis data and interpo-
late them into the polar stereographic projection with 12.5 km grid resolution. JRA-25
reanalysis data provide various physical variables in 1.125◦ resolution every six hours.
The data have been produced by the Japanese Meteorological Agency using the lat-
est numerical analysis and prediction system. The data are available from 1979 to the15

present (Onogi et al., 2007). Various studies have been carried out to compare the
JRA-25, ERA40 and NCEP data sets. Good agreements were found between JRA-25
and ERA40 (Onogi et al., 2007).

2.3 Sea surface salinity climatology

The SSS information is needed to estimate the bulk ice salinity which is an input param-20

eter of the radiation model of sea ice. There are global ocean salinity products derived
from SMOS brightness temperatures. Ocean salinity is one of the two applications
SMOS was originally designed for. However, SMOS-derived ocean salinity is not avail-
able for the ice covered regions in the Arctic. Thus, we use a SSS climatology based on
the outputs of an ocean-sea ice model. SSS weekly climatology is computed based on25

the daily output from a high-resolution numerical simulation of the Atlantic and Arctic
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Oceans’ circulations using the MIT general circulation ocean-sea ice coupled model
(Marshall et al., 1997). The model is configured for the Atlantic Ocean north of 33◦ S,
including all Atlantic marginal seas and the Arctic Ocean up to the Bering Strait, and is
integrated at the eddy-resolving resolution of approximately 4 km. The vertical resolu-
tion of the model varies from 5 m in the upper ocean to 275 m in the deep (100 vertical5

levels are used). Bottom topography is interpolated from the ETOPO2 database and ini-
tial temperature and salinity conditions from a 8 km resolution integration of the same
model (to achieve a good degree of spin-up), which in turn starts from the WOA09
climatology. The model is forced at the surface by fluxes of momentum, heat and fresh-
water computed internally in the model with the help of the 6 hourly atmospheric state10

from the ECMWF/ERA-Interim Reanalysis (Dee et al., 2011) and bulk formula. At the
open northern (Bering Strait) and southern (33◦ S) boundaries, the model is forced
by a 1◦ resolution global solution. The K-Profile Parameterisation (KPP) formulation is
used for the parameterization of vertical mixing, with a background vertical viscosity
coefficient of 1×10−4 m2. The vertical diffusion employed amounts to 1×10−5 m2 s−1.15

Unresolved horizontal mixing uses a bi-harmonic diffusion/viscosity of 3×109 m4 s−1.
The overall good performance of the above model configuration (integrated at 8 km
resolution), assessed through comparisons with in-situ measurements, can be found
in Serra et al. (2010); Brath et al. (2010); Dmitrenko et al. (2012). We choose to use
a model climatology and not Polar science center Hydrographic climatology (PHC) to20

benefit from the dynamical oceanographic structures realistically resolved in the model,
which leads to spatial and seasonal variability of SSS.

Figure 4 shows the mean and standard deviation of weekly SSS from October to
April, based on 8 yr of daily model output. SSS in the Laptev Sea, parts of the Kara
Sea, and the Baltic Sea is much lower than in the central Arctic due to the influence of25

river run-offs. On the contrary, in the Baffin Bay, the Greenland Sea, and the Barents
Sea the SSS is higher than in the central Arctic. The mean weekly SSS in the Baltic
sea varies in the range of 4–10 gkg−1 which agrees well with the observed climatology
given in Janssen et al. (1999). As the ice salinity is correlated with SSS, the variability of
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SSS should be considered in the retrieval when we calculate Arctic-wide ice thickness
distributions.

2.4 MODIS ice thickness charts

MODIS ice thickness charts covering an area of 1500km×1350 km over the Kara
Sea and the eastern part of the Barents Sea have been calculated. The derivation5

of the charts and their uncertainty estimation are described in detail in Maekynen et al.
(2013). The total number of the charts is 120 and they cover two winters (November
to April) in 2009–2011. The spatial resolution of the charts is 1 km and they show ice
thickness from 0 to 99 cm. The external forcing data for solving the ice thickness from
the surface heat balance equation come from a numerical weather prediction (NWP)10

model HIRLAM (HIgh-Resolution Limited Area Model) (Kaellen, 1996; Unden, 2002).
Only night-time MODIS data are employed. Thus, the uncertainties related to the ef-
fects of solar shortwave radiation and surface albedo are excluded. For the cloud mask-
ing of the MODIS data, in addition to the different cloud tests (Frey et al., 2008), also
manual methods are used in order to improve the detection of thin clouds and ice fog.15

The cloud masking is conducted with 10km×10 km blocks to identify larger cloud-free
areas and to reduce errors due to the MODIS sensor striping effect. In the ice thickness
chart calculation an average snow thickness (hs) vs. ice thickness (hi) relationship is
used. The thickness of the snow layer is assumed to be:

hs = 0m for dice < 0.05m20

hs = 0.05×dice for 0.05m ≤ dice < 0.2m

hs = 0.09×dice for dice ≥ 0.2m

This relationship is based on Doronin (1971) and the Soviet Union’s Sever expe-
ditions data (NSIDC, 2004). The typical maximum reliable ice thickness (max 50 %25

uncertainty) is estimated to be 35–50 cm under typical weather conditions (air temper-
ature Ta < −20 ◦C, wind speed Va < 5 ms−1) for the MODIS data. The accuracy is best
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for the 15–30 cm thickness range, around 38 %. These figures are based on Monte
Carlo method using estimated or guessed standard deviations and covariances of the
input variables to the thickness retrieval. No in-situ data are available for the thickness
accuracy estimation.

3 Sea ice thickness retrieval Algorithm II5

Algorithm I is described in detail in Kaleschke et al. (2012), we will here introduce the
retrieval Algorithm II. As in Algorithm I we use the daily mean brightness temperature
intensity TB averaged over 0–40◦ incidence angle range.

3.1 The sea ice radiation model

The basis of the SMOS ice thickness retrievals Algorithm I and II is the sea ice radiation10

model adapted from Menashi et al. (1993). While for Algorithm I the radiation model is
used to calculate the constant attenuation factor γ for a representative Tice and Sice in
the Arctic, in Algorithm II the model is used to calculate TB at variable Tice and Sice.

The sea ice radiation model consists of a plane ice layer bordered by the underlying
sea water and air on the top. The model does not include a snow layer. The TB over15

sea ice depends on the dielectric properties of the ice layer which are a function of
brine volume (Vant et al., 1978). The brine volume is a function of Sice and Tice (Cox
and Weeks, 1983).

For a thin ice layer, the ice temperature gradient within the ice can be assumed to be
linear (Maaß, 2013a). Assuming that the water under sea ice is at the freezing point, we20

can calculate Tice with 0.5(Tsi+Tw), where Tsi is the snow-ice interface temperature and
Tw is the freezing sea water temperature. The Tsi is calculated with a thermodynamic
model with Ta as boundary condition. The thermodynamic model is presented in the
next section.
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Sice is estimated using the empirical function of Ryvlin (1974)

Sice = Sw(1−SR)e−a
√

dice +SRSw, (2)

where Sw is the SSS, dice is the ice thickness (here in cm), SR is the salinity ratio of
the bulk ice salinity at the end of the ice growth season and the SSS, a is the growth5

rate coefficient which varies from 0.35 to 0.5. Ryvlin (1974) suggests to use 0.5 for
a and 0.13 for SR. However, Kovacs (1996) compared the Ryvlin empirical equation
with observed data in the Arctic and suggests to use 0.175 for SR instead of 0.13. In
our model we use 0.175 for SR which seems to fit better to the observation data in
the Arctic. Cox and Weeks (1983) give another empirical relationship between Sice and10

dice in the Central Arctic. The two empirical relationships have similar values for first
year ice and a water salinity of Sw = 31 gkg−1 (Kovacs, 1996). The Sice in Eq. (2) is
a function of the underlying SSS, and can therefore be applied to regions outside the
central Arctic where SSS is much lower.

The ice thickness retrieval with SMOS data is limited by the saturation of TB. We15

consider TB to reach saturation if the change of TB with dice is less than 0.1 K per
cm. Thus, TB of an ice layer with a Tice of −2 ◦C and a salinity of 8 gkg−1 reaches
its saturation for ice thicknesses of less than 20 cm, for example. This means that the
maximal retrievable ice thickness dmax under warmer conditions can be as low as a few
centimeter. On the contrary, under cold conditions and a low ice salinity, which is typical20

for coastal regions with river run-off, L-band TB emanates from a thicker ice layer. TB
reaches its saturation much more slowly and dmax can be as high as 1.5 m (Figs. 5 and
6). Therefore, SMOS ice thickness retrieval is more suitable for cold conditions and low
ice salinity. If the ice temperature varies between −5 ◦C and −10 ◦C, which is typical for
the Arctic in winter, the difference of retrieved ice thicknesses can be as high as 20 cm.25

The influence of ice salinity on the ice thickness retrieval increases with decreasing ice
salinity (Maaß, 2013a). For example, under a Tice of −10 ◦C the dmax at 1 gkg−1 Sice

can be twice of that at 5 gkg−1 Sice.
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3.2 The thermodynamic model

In Algorithm II Tice is estimated at each step from the dice and Ta. For this purpose
thermal equilibrium is assumed at the surface of the ice layer and the heat fluxes are
calculated with a thermodynamic model based on Maykut (1986). Although we neglect
snow layer in the sea ice radiation model, we consider its thermal insulation effect in the5

thermodynamic model when we calculate the Tice. It is shown in Maaß et al. (2013b)
that the impact of a snow layer on the TB is partly caused by its insulation effect on the
ice temperature. The insulation effect of a snow layer increases with snow thickness.
Linear temperature gradient profiles are assumed for the ice and snow layers in the
model.10

Under the assumption of thermal equilibrium, the incoming and outgoing heat fluxes
compensate each other. During winter season, surface melting can be neglected.
Therefore the heat balance at the surface of a slab ice layer with thickness dice and
a layer of snow with thickness hs on top can be described as

(1−α)Fr − I0 + FLin − FLout + Fs + Fe + Fc = 0 (3)15

where Fr is the incoming shortwave radiation, α is the albedo of the snow/ice layer,
I0 is the part of the incoming shortwave radiation that is transmitted into the ice, FLin
is the incoming longwave radiation, FLout is the outgoing longwave radiation, Fs is the
sensitive heat flux, Fe is the latent heat flux, and Fc is the conductive heat flux.20

The radiative and turbulent fluxes (1−α)Fr − I0, FLin, FLout, Fe, and Fs are calculated
as in Maykut (1986). For simplification we assume constant values for the cloud cover
C, the relative humidity r , and the bulk transfer coefficients for sensible and latent heat
flux Cs and Ce estimated from the reanalysis data. However, these parameters can
be obtained from the auxiliary data that will be delivered with SMOS L1C data in the25

future.
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The conductive heat flux Fc is given by

Fc =
kiks

kihs +ksdice
(Tw − Ts) (4)

where ks is the thermal conductivity of snow, Tw is the freezing point of sea water. ks

is set to 0.31 Wm−1 K−1 according to Yu and Rothrock (1996). The thermal conductivity5

of ice ki can be expressed as (Untersteiner, 1964)

ki = 2.034+0.13
Sice

Tice −273
, (5)

where Sice is in gkg−1 and Tice is in K. Tice can be calculated with

Tice = 0.5(Tsi + Tw), (6)10

where Tsi is the snow-ice interface temperature calculated with

Tsi =
Ts +

kihs
ksdice

Tw

1+ kihs
ksdice

. (7)

To calculate Tsi we need to know ki. However, ki is in turn a function of Tice. As15

an approximation we first calculate ki with 0.5(Ts + Tw) instead of Tice and use this ki
to calculate Tice and Tsi. Ts is estimated with leastsquare method for each dice under
thermal equilibrium assumption.

3.3 Retrieval steps

As discussed in Sect. 3.1, the challenge of using variable Tice and Sice in the Algo-20

rithm II is that both of them are in turn functions of dice. The algorithm is based on the
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forward model consisting of the radiation and thermodynamic model. Therefore, we
approximate dice by repeating the radiation and the thermodynamic model until a con-
vergence point is found for the solution (Fig. 7). In this process, at each step Tice and
Sice are calculated for the respective dice approximation. The starting point of the iter-
ation is the dice retrieved with Algorithm I, which uses a constant Tice of −7 ◦C and Sice5

of 8 gkg−1. At each iteration step, we use dice, Tice, and Sice to calculate TB with the
radiation model. The calculated TB is then compared with that observed by SMOS. To
minimize the difference between the observed and the calculated TBs, the new dice is
estimated with a linear approximation method. We define two stopping criteria for the
iteration: a brightness temperature difference of less than 0.1 K, or an ice thickness10

difference of less than 1 cm. The first criterion represents half of the optimal accuracy
of daily averaged measurements. We apply the first criterion if the ice is thicker than
30 cm and otherwise the second criterion. The dmax is determined with the same crite-
ria for the saturation of TB, i.e. that the TB change is less than 0.1 K per 1 cm dice. We
define a saturation factor15

STB = dice/dmax. (8)

If the saturation factor reaches 100 %, it indicates that the dmax can be considered
as the minimum ice thickness of the pixel.

4 Assessment of uncertainties20

4.1 Systematic errors

In both algorithms we assume 100 % ice coverage for simplicity. TB over ice-sea water
mixed areas can be described as

TB = TBwater × (1− IC)+TBice × IC, (9)
25
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where IC is the ice concentration, TBwater and TBice are the TBs over sea water and
ice, respectively.

SMOS TBwater shows a stable value of about 100.5 K with a standard deviation of
about 1 K in the Arctic region. With this constant TBwater, we can calculate TBice using
ice concentration charts from passive microwave radiometer data. During the winter5

most of the ice covered area in the Arctic has IC higher than 90 % (Andersen et al.,
2007). The passive microwave radiometer IC charts have an uncertainty of 5 % in the
winter time (Andersen et al., 2007). At high concentrations, correcting the retrieved
ice thickness with IC data set with an uncertainty of 5 % can cause higher errors than
the 100 % ice coverage assumption. Therefore, we assume in the retrievals a 100 %10

ice coverage. The possible underestimation of ice thickness due to this assumption is
investigated with the simple semi-empirical function used in the Algorithm I. Figure 8
shows that the bias caused by this assumption increases exponentially with decreasing
ice concentration. If we assume a SMOS TB of 220 K, the bias can be very high even
for IC of more than 80 %. At lower brightness temperatures the bias caused by this15

assumption is less than a few centimeters.

4.2 Sea ice thickness uncertainties

There are several factors that cause uncertainties in the sea ice thickness retrieval:
the uncertainty of the SMOS TB, the uncertainties of the auxiliary data sets, and the
assumptions made for the radiation and thermodynamic models.20

For our purpose we average TB over the incidence angle range of 0–40◦. Due to
the large amount of measurements in one day this can significantly reduce the uncer-
tainty of TB by dividing standard deviation of TB with square root of the number of
measurements during one day at each pixel. This uncertainty is less than 0.5 K in the
Arctic except for the strongly RFI affected regions. The uncertainties of Tice and Sice de-25

pend on the uncertainties in the Ta and SSS. Both Ta and SSS are derived from model
outputs. Due to the sparse observations in the polar regions Ta and SSS themselves
contain large uncertainties.
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A first estimation of SMOS retrieved ice thickness uncertainty is made with Algorithm
II based on the std(TB), std(Tice) and std(Sice). The std(TB) is calculated at each pixel
with standard deviation of all available TB measurements divided by the sqrt(number
of TB measurements) for each day. The std(Sice) is calculated based on the std(SSS)
chart (see Fig. 4) and dice. The estimation of std(Tice) is rather difficult because it de-5

pends not only on the Ta but also the assumptions made in the thermodynamic model.
As a first approximation we assume 1 K for the std(Tice) which is estimated with the vari-
ations in Ta. More investigations should be conducted to better estimate the uncertainty
in Tice in the future.

In Table 1 we show an example of estimated ice thickness uncertainties for condi-10

tions where Tice varies from −10 ◦C to −2 ◦C and Sice varies from 2 gkg−1 to 8 gkg−1.
We assume a standard deviation of 0.5 K, 1 K, and 1 gkg−1 for TB, Tice, and Sice, re-
spectively. The ice thickness uncertainty caused by std(TB) is rather small for thin ice
less than 50 cm, and increases exponentially for thicker ice. The uncertainty caused by
std(Tice) is higher than that caused by std(TB) with an increasing trend with increasing15

ice thickness. Sice uncertainty has little impact on the ice thickness retrieval for saline
ice with a Sice of more than 5 gkg−1. However, for less saline ice, which is typical for
example in the regions with river run-off, std(Sice) has much more impact on the ice
thickness uncertainty than the other two parameters for dice less than half a meter.

5 The effect of the subpixel-scale heterogeneity on the thickness retrieval20

(Algorithm II* post-processing)

Natural sea ice is usually not a uniform layer of level ice with a plane geometry, as it was
assumed in the emissivity model, but behaves fractally on a wide range of scales. Sea
ice deformation patterns are often described using self-similar functions such as the
lognormal distribution (Erlingsson, 1988; Key and McLaren, 1991; Tan et al., 2012).25

A theory of sea ice thickness distribution was developed by Thorndike et al. (1975).
Models which include ice growth and deformation may be used to simulate the evolu-
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tion of the thickness distribution (Thorndike, 1992; Godlovitch et al., 2012). A common
feature of simulations and empirical observations is the exponential tail resulting from
dynamic deformation processes. The inherent skewness of the thickness distribution
results in a considerable underestimation of sea ice thickness when the retrieval model
is based on a plane sea ice layer. In the following we use airborne sea ice thickness5

measurements in order to parameterise the thickness distribution function and to in-
vestigate the effect of the subpixel-scale heterogeneity on the thickness retrieval.

NASA’s Operation IceBridge (OIB) airborne campaigns obtained large scale profiles
of sea ice thickness derived from a laser altimeter system (Kurtz et al., 2013). The
footprint size of a single laser beam is about 1 m and the vertical accuracy is given10

as 6.6 cm. The sea ice thickness is estimated from the freeboard by accounting for
the snow thickness and assumptions about the densities of ice and snow. The snow
thickness is retrieved using a snow-depth radar simultaneously. Here we use the OIB
“quicklook” data as obtained from a NSIDC website.

We assume that the sea ice thickness follows a lognormal distribution15

p(dice,µ,σ) =
1

diceσ
√

2π
e
− (log(dice)−µ)2

(2σ2) (10)

with the two parameters logmean µ and logsigma σ. Furthermore, we assume a con-
stant logsigma value σ to approximate the thickness distribution function with only one
independent variable. To test this assumption we split the 2012 and 2013 OIB Arctic sea20

ice thickness data in chunks of about 30 km length. We found that using constant val-
ues σ = 0.6±0.1 rejects less than 15 % of the chunks tested with Kolmogorov-Smirnov
statistics at a significance level of 95 %. The parameter σ increases with increasing
length of the chunks and converges to about 0.7 for the maximal number of samples.
The parameter σ changed only slightly from 0.692 to 0.695 while the mean thickness25

decreased considerably from 3.1 m to 2.2 m when considering the entire data sets of
the years 2012 and 2013, respectively (Fig. 9). One percent of the 2012 thickness data
(N1% = 3430) are above 10 m, and one permil exceeds 16 m with a maximum thickness
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value as large as 27.4 m which justifies the exponential tail of the distribution function.
The effect of the ice thickness distribution on TB is taken into account by the integration
over the thickness range according to the superposition principle

TB∗(dice) =

max(dice)∫
0

TB(dice)g(dice)ddice (11)

5

with the thickness distribution function g(dice) and the brightness temperature of
a single/plane-layer model TB(dice). The brightness temperature weighted with the
thickness distribution TB∗ suggests a sensitivity to ice thicknesses larger than dmax.
Here dmax and dice both refer to the single-layer thickness. The real mean thickness de-
noted as H is strongly underestimated if the retrieval does not account for the thickness10

distribution. The overall effect can be explained as an apparently deeper penetration
depth caused by the leading edge of the thickness distribution. The implementation of
a radiative transfer model that includes this effect is straightforward but computationally
expensive because of the integration. A post-processing look-up table for the single-
layer model has been generated to estimate an approximate correction factor. This15

method that converts the single-layer thickness dice to the mean thickness H is called
Algorithm II* hereinafter. Figure 10 shows that the involved correction factor increases
with increasing salinity and temperature.

A main uncertainty is the shape of the thickness distribution and its parameterisation
with a constant σ. This seems to be a reasonably good representation of the IceBridge20

thickness data. However, the data in the important thin ice range is only sparse. More
field data are required to further analyse the thickness distribution for thin ice on differ-
ent scales.
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6 Comparison of ice thicknesses retrieved with Algorithms I, II, and II*

In this section, we analyse the time series of ice thicknesses retrieved from the Algo-
rithm I, II, and II* at single grid points in the Laptev Sea and the Beaufort Sea (Point
1: 77.5◦ N, 137.5◦ E, Point 2: 71.0◦ N, 165.0◦ W, Point 3: 74.5◦ N, 127.0◦ E). The time
series begin on 15 October 2011. The time series of ice thickness extracted from two5

different sea ice assimilation systems are included for comparison. In addition, we show
time series of SMOS TB together with ice concentration and derived snow/ice surface
temperature.

One of the assimilation systems is the TOPAZ system. TOPAZ is an advanced data
assimilation system, using the Ocean model HYbrid Coordinate Ocean Model (HY-10

COM) and Elastic-Viscous-Plastic (EVP) ice rheology (Bertino and Lisæter, 2008).
TOPAZ has a resolution between 18 and 36 km with 22 isopycnal layers. The as-
similated observations are satellite-observed Sea Level Anomaly (SLA), Sea Surface
Temperature (SST), sea ice concentrations from AMSR-E, sea ice drift products from
CERSAT, and Coriolis in-situ temperature and salinity profiles. The TOPAZ system has15

been in operation since 1 January 2003. The major outcomes in terms of products are
weekly issued short term forecasts.

The other assimilation system is the Panarctic Ice Ocean Modeling and Assimilation
System (PIOMAS) (Zhang and Rothrock, 2003). It is based on a coupled ocean-ice
model forced with National Centers for Environmental Prediction Atmospheric Reanaly-20

sis data. PIOMAS assimilates satellite-observed sea ice concentration and sea surface
temperature data.

At Point 1, which is located in the north of the Laptev Sea, in the first 30 days Algo-
rithm I and II show very similar dice ranging from 0 m to about 0.3 m (Fig. 11). The TB
increases from about 100 K to about 230 K. In this TB range, dice is the dominant factor25

of TB variation (Kaleschke et al., 2012). In the next 30 days, TB increases to about
240 K, whereas dice increases from about 0.3 m to about 0.4 m in Algorithm I and to
more than 0.5 m in Algorithm II. From mid-December to the end of April, the TB shows
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little variability with a mean value of 237.4 K and a standard deviation of 1.9 K. In this
period, dice from Algorithm I shows a stable value around 0.35 m with a standard devi-
ation of 3 cm, which results from the constant parameters assumed in Algorithm I. On
the contrary, dice from Algorithm II shows an average value of 0.48 m with a standard
deviation of 11 cm. The strong variability in dice is mainly caused by Tice. A correlation5

coefficient R of −0.7 can be found between Tice and dice. In the total time period of 200
days, the dice from Algorithm II is on average 10 cm thicker than that from Algorithm
I. The ice thickness corrected with the thickness distribution function (Algorithm II*) is
about two times that of Algorithm II.

Simulated ice thicknesses from TOPAZ and PIOMAS show continuous ice growth10

during the time period, however, with more than half a meter span between them
(shaded area in the upper panel of Fig. 11). The ice thicknesses retrieved with Algo-
rithm II* correspond well with those from TOPAZ and PIOMAS in the first three months.
However, from March to April TOPAZ and PIOMAS show further growth in the ice thick-
ness, whereas SMOS shows rather constant or decreasing trends. The decreasing15

trend in dice corresponds to the decreasing dmax caused by the increasing Ts.
Point 2 is located in the Beaufort Sea, near Barrow. The first sea ice occurrence

happens in mid-November, one month later than at Point 1. A few days after the first
occurrence of sea ice, the ice concentration rapidly reaches nearly 100 % (Fig. 12). In
the following 80 days, the Ts decreases from about 270 K to 240 K, dice retrieved with20

Algorithm II* increases from a few centimeters to more than 1.5 m. In this period, the ice
thickness growth from SMOS Algorithm II* agrees well with that simulated by TOPAZ
and PIOMAS. Just as at point 1, after the three months freeze-up period the SMOS
retrieved dice reaches its maximum with a decreasing trend in April, which corresponds
to the increasing Ts.25

Point 3 is located north of the Lena Delta where frequent formation of polynyas can
be observed. The area is characterised by large interannual variations, being the con-
sequence of an enormous freshwater input from the Lena river and ice formation and
salt rejection processes taking place in polynyas offshore the fast ice edge. Anticyclonic
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wind conditions force the riverine water northwards and result in a stronger density
stratification in the eastern Laptev sea during winter. Cyclonic atmospheric circulation
deflects the freshwater plume of the Lena river eastward towards the East Siberian
Sea, thus causing higher salinity in the eastern Laptev Sea and the area around the
West New Siberian (WNS) polynya.5

The strong variability of ice thicknesses in SMOS and PIOMAS shows good correla-
tion (Fig. 13). The decrease and increase of ice thicknesses in SMOS and in the model
outputs are very likely caused by the drift of thick ice due to wind forcing and thin ice
formation in the polynya areas. From March to April, there is a large discrepancy be-
tween the model outputs and the SMOS-derived ice thickness. While PIOMAS shows10

an ice thickness of more than 2 m in April, SMOS-derived ice thickness is less than half
a meter.

Sea ice thickness measurements were carried out in this area during helicopter-
borne ice thickness surveys performed in the Laptev Sea during the Transdrift (TD) XX
campaign in April 2012. The helicopter-borne ice thickness measurements were made15

with an electromagnetic (EM)-Bird that utilizes the contrast of electrical conductivity
between sea water and ice to determine the distance to the ice-water interface (Haas
et al., 2009). An additional laser altimeter yields the distance to the uppermost reflect-
ing surface. Hence, the obtained ice thickness is the ice- plus snow thickness from the
difference between the laser range and the EM-derived distance. The accuracy over20

level sea ice is in the order of 10 cm (Pfaffling et al., 2007). Uncertainties in the ice thick-
ness measurements may arise from the assumption that sea ice is a non-conductive
medium. Over thin ice, this assumption may be invalid because the conductivity of
saline young ice can be significantly higher than that of older first-year or multi-year
ice. This can lead to an underestimation of ice thickness.25

The survey flight made on 20 April has a length of about 200 km and covers mostly
thin ice being formed in the WNS polynya and the Anabar-Lena polynya. A period of
strong and consistent offshore winds led to the development of an extensive thin ice
zone extending several hundred kilometres offshore. Point 3 is located in the middle of

5757

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/7/5735/2013/tcd-7-5735-2013-print.pdf
http://www.the-cryosphere-discuss.net/7/5735/2013/tcd-7-5735-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
7, 5735–5792, 2013

SMOS derived sea
ice thickness

X. Tian-Kunze et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

the flight track. Therefore, we use the EM-Bird measurements to validate the SMOS
derived ice thickness. During the flights, the EM-Bird recorded a total of 46386 mea-
surements with a mean value of 43 cm and a standard deviation of 33 cm. This agrees
well with the 31 cm ice thickness from SMOS Algorithm II*, considering that the EM-
Bird derived ice thickness is the sum of the thicknesses of the ice layer and the snow5

layer on top of it. The comparison shows that in the polynya area SMOS estimates the
ice thickness better than TOPAZ or PIOMAS.

After the time series comparison at single points, we compare the daily ice thickness
distribution from the three algorithms in the Arctic on 1 February 2013. As can be seen
in Fig. 14, the mean ice thickness considerably increases from Algorithm I to Algorithm10

II*. In the central Arctic covered with thick multi-year ice, the TB reaches its saturation.
Therefore, none of the algorithms can deliver reliable ice thickness information in the
thick multi-year ice area. If we consider only the pixels where TB has not reached
its saturation, ice thickness from Algorithm II* is on average 0.82 m, which is about
40 cm thicker than that from Algorithm II and 55 cm thicker than that from Algorithm I.15

However, the increase of ice thickness varies from region to region, depending on SSS
and weather conditions. For example, in the Laptev Sea where the SSS is much lower
than that in the central Arctic, the difference between Algorithm II and Algorithm I is
as large as half a meter. On the contrary, in parts of the Kara Sea and north of the
Barents Sea little change can be observed between Algorithm I and II. The increase20

of ice thickness in Algorithm II compared to Algorithm I is caused by the deviation of
estimated Tice and Sice from the constant values assumed in Algorithm I. To investigate
the contribution of Tice and Sice in the thickness retrieval separately we carried out two
tests with the data of 1 February 2013. In the first test Sice is assumed to be 8 gkg−1 as
in Algorithm I and we vary only Tice. In the second test Tice is assumed to be −7 ◦C as in25

Algorithm I and Sice is calculated from SSS. In both tests we assume a plane ice layer.
If we only consider the pixels where TB has not reached its saturation, the change of
ice thickness caused by Tice in Test 1 varies from −10 cm to more than 50 cm, with an
average of 11 cm. Larger change is found where cold air temperatures prevail. The ice
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thickness change caused by Sice from Test 2 is on average 3 cm. However, up to 20 cm
and 60 cm difference can be found in the Laptev Sea and in the Baltic Sea.

The comparisons show that Algorithm II* has a considerably better agreement with
the model outputs and the EM-Bird validation data than Algorithm I and II. Taking into
account the variability of ice temperature and ice salinity delivers better information5

about the Arctic-wide ice thickness distribution. Therefore, we use Algorithm II* to re-
trieve ice thickness in our operational data processing.

7 Ice thickness growth and distribution as seen by SMOS during the freeze-up
period

SMOS-derived ice thickness shows continuous growth and expansion of first year ice10

in the Arctic during the freeze-up period. Figure 15 shows the monthly mean sea ice
thickness from October 2012 to March 2013 retrieved with Algorithm II*. From October
to November, thin first-year ice extends to most areas of the East Siberian Sea, the
Laptev Sea, and the Beaufort Sea. In addition to the area expansion, also an increase
of ice thickness due to the thermodynamic growth can be observed. In December, first-15

year ice reaches a thickness of more than 1 m in the Laptev Sea and the Beaufort Sea.
In March 2013 large areas of thin ice with a thickness less than 40 cm are observed in
the Beaufort Sea which is caused by the opening of leads and polynyas in this period.

8 Comparison of SMOS and MODIS ice thickness charts in the Kara Sea

8.1 Sea ice thickness derived from MODIS data20

For the initial verification of SMOS-retrieved sea ice thickness we use MODIS ice thick-
ness charts for the Kara Sea. The validation area extends over 1500 km by 1350 km.
The area is suitable for SMOS ice thickness validation because even in the winter time
this area is frequently covered by thin first-year ice, which SMOS can best detect. To
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compare SMOS and MODIS ice thicknesses, we reduce the 1 km spatial resolution of
the MODIS thickness charts to the NSIDC grid resolution of 12.5 km by spatial averag-
ing.

We first compare ice thickness distributions from SMOS and MODIS for two selected
days (26 December 2010 and 2 February 2011), on which a sufficient amount of pixels5

with valid MODIS data is available. After that, we collect all pixels with valid MODIS data
from 30 days during the two winter seasons 2009–2010 and 2010–2011 and carry out
a pixel to pixel comparison. The 30 days are selected manually. MODIS ice charts with
strong cloud limitation are excluded. Similarly to Algorithm I and II, the MODIS sea ice
thickness retrieval assumes a plane ice layer. Therefore, by spatial averaging of MODIS10

data to a grid resolution of 12.5 km we use the modal mean of the MODIS ice thickness
instead of the arithmetic mean. For the comparison we use the plane layer SMOS ice
thickness, not the inhomogeneous mean ice thickness of Algorithm II*.

8.2 Daily comparison

Figure 16 shows the averaged MODIS ice thickness in a 12.5 km grid resolution, the15

SMOS ice thicknesses retrieved from Algorithm I and II, and the histogram of the three
ice thickness data in the Kara Sea on 26 December 2010. Ice concentration from the
same day (Fig. 17) shows near 100 % ice coverage in the ice-covered area except for
the marginal ice zone. We use here the ice concentration maps derived from SSM/I with
the ARTIST Sea Ice (ASI) algorithm. Both SMOS and MODIS show similar patterns20

of thin and thick ice distributions, whereas SMOS ice thickness from Algorithm I is
considerably lower than the other two in the thicker ice range. Surface air temperature
over the ice covered area varies from −30 to −20 ◦C (Fig. 17), providing favorable
conditions for both SMOS and MODIS ice thickness retrievals (Kaleschke et al., 2010;
Yu and Rothrock, 1996).25

The insulation effect of snow is considered in the SMOS Algorithm II and in the
MODIS ice thickness retrieval, but not in the SMOS Algorithm I. Surface temperature
and ice thickness are retrieved simultaneously in Algorithm II with the surface air tem-
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perature as a boundary condition. The SMOS-derived snow surface temperature is in
good agreement with that from the MODIS snow/ice surface temperature product (Hall
et al., 2004) (Fig. 17). The mean surface temperatures from MODIS and SMOS are
both 247 K, and the root mean square deviation (RMSD) is 4 K. Discrepancies can be
seen in the marginal ice zone and in the Ob estuary where the low salinities are not5

well represented by the ocean model. In the marginal ice zone with lower ice concen-
trations, SMOS strongly underestimates ice thickness, which leads to too warm surface
temperatures. The surface temperature is used in SMOS Algorithm II to calculate the
bulk ice temperature, which is a variable parameter in the radiation model to calculate
the emissivity of an ice layer.10

In total there are 4167 pixels in 12.5 km grids with valid MODIS ice thicknesses. For
these pixels MODIS has a mean thickness of 44 cm, whereas SMOS has an average
of 32 cm and 47 cm from Algorithm I and II, respectively. The correlation coefficient R
and RMSD between the SMOS Algorithm II and MODIS are 0.60 and 20 cm, whereas
for SMOS Algorithm I and MODIS they are 0.57 and 23 cm, respectively. If we only con-15

sider the 2679 pixels with a MODIS ice thickness less than 50 cm, mean ice thicknesses
of SMOS Algorithm I, SMOS Algorithm II and MODIS are 29 cm, 40 cm, and 29 cm re-
spectively. That means in the thin ice range Algorithm II overestimates ice thickness
compared to MODIS. The bulk ice temperature derived from the surface temperature
in Algorithm II is on average 263.6 K, which is 2.5 K lower than that assumed in SMOS20

Algorithm I. This can partly explain the ice thickness difference between Algorithm I
and II. The SMOS-derived ice thickness decreases with increasing ice temperature at
the ice temperature as low as −10 ◦C (Maaß, 2013a).

Similar results can be derived from another comparison on 2 February 2011 (see
Figs. 18 and 19). On this day, large areas of thin ice can be observed from SMOS and25

MODIS near the Kara Sea strait and in the estuaries. In both regions polynyas appear
frequently due to the strong wind forcing. Under cold air temperatures, the polynyas
are soon covered by thin ice. Both SMOS and MODIS show ice thicknesses in the
range of 20–40 cm in the polynyas with similar distribution patterns. Ice concentration
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is normally higher than 90 %, except for the marginal ice zone. Like on 26 Decem-
ber 2010, surface air temperature in the Kara Sea is as low as −30 ◦C. In total 4016
pixels have valid MODIS data. The mean ice thickness of SMOS Algorithm I, SMOS
Algorithm II, and MODIS for the pixels are 33 cm, 50 cm, and 47 cm, respectively. The
correlation coefficient and RMSD between the SMOS Algorithm II and MODIS are 0.615

and 21 cm, whereas between SMOS Algorithm I and MODIS they are 0.59 and 26 cm,
respectively. The mean surface tempertures from MODIS and SMOS are 246 K and
245 K, with a RMSD of 4 K.

8.3 Comparison with 30 days data from the two winter seasons

In total 33 and 87 days of MODIS validation data are available for the winter seasons10

of 2009–2010 and 2010–2011. However, many of them have only small areas with
usable MODIS data. Therefore, we selected out 30 days on that the data are not badly
affected by cloud coverage. Altogether 81350 pixels are available in 12.5 km resolution.
The histogram of the ice thicknesses (Fig. 20) shows better agreement between SMOS
Algorithm II and MODIS than between SMOS Algorithm I and MODIS for these pixels.15

The mean ice thicknesses derived from SMOS Algorithm II and MODIS are of the same
order, 44 cm and 42 cm, respectively, whereas SMOS Algorithm I shows on average
31 cm. If we restrict the comparison to the pixels with MODIS ice thicknesses less than
50 cm, the mean ice thickness from SMOS Algorithm II is about 13 cm higher than the
MODIS mean value (see Table 2).20

9 Conclusions

In this study we developed a new SMOS sea ice thickness retrieval algorithm (de-
noted as Algorithm II) in which we take into account variations of ice temperature Tice
and salinity Sice. Tice and Sice are estimated during the ice thickness retrieval from the
surface air temperature Ta of atmospheric reanalysis data and a model-based SSS25

5762

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/7/5735/2013/tcd-7-5735-2013-print.pdf
http://www.the-cryosphere-discuss.net/7/5735/2013/tcd-7-5735-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
7, 5735–5792, 2013

SMOS derived sea
ice thickness

X. Tian-Kunze et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

climatology as boundary conditions. Ice thicknesses retrieved from Algorithm II are
compared with that from an earlier semi-empirical algorithm (Kaleschke et al., 2012)
(Algorithm I) in which a constant Tice (−7 ◦C) and Sice (8 gkg−1) are assumed. The new
algorithm allows to retrieve considerably higher thickness for cold conditions and less
saline ice. The maximal retrievable ice thickness dmax can be estimated based on the5

Tice and Sice at each pixel. In contrast, we estimated dmax about 0.5 m as a constant
upper limit for the ice thickness retrieval with Algorithm I. In Algorithm II dmax varies
from a few centimeters to about 1 m depending on the Tice and Sice. A TB saturation
factor is defined as the ratio of dice to dmax for each pixel. A saturation ratio close to
100 % indicates that the retrieved ice thickness has to be considered as a minimum10

ice thickness and that the upper bounds of uncertainty cannot be constrained by the
SMOS measurement alone.

Natural sea ice exhibits a broad scale of ice thicknesses within one SMOS footprint
due to ice deformation. Algorithm II is based on an emissivity model including a plane
layer geometry which is not an adequate assumption for natural sea ice. Therefore,15

Algorithm II is statistically corrected assuming that the thickness of natural sea ice
follows a lognormal distribution. This version of the retrieval is denoted as Algorithm
II*. The statistical correction factor depends on Tice and Sice. For warm saline ice the
correction factor is higher than for cold less saline ice. The corrected ice thickness is on
average about twice as large compared to the plane layer assumption, which is similar20

to the general relation between modal and mean ice thickness.
The ice thickness from Algorithm II* agrees well with those from the assimilation

systems TOPAZ and PIOMAS in the three months after the first occurrence of sea
ice. However, from March to April TOPAZ and PIOMAS have much higher ice thickness
compared to the SMOS retrieval. The discrepancy goes along with the onset of surface25

warming and indicates a possible shortcoming of our retrieval method. We observe
a strong impact of Tice on the ice thickness retrieval when TB approaches saturation.
The emissivity model used here does not correctly account for vertical gradients of
temperature and salinity. The invalid assumption of a vertically homogeneous ice layer
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introduces significant uncertainties because the relative brine volume and thus the
permittivity depends on ice temperature and salinity (Maaß, 2013a). More work has
to be done to develop and test parameterisations that could account for the effects of
a vertically structured sea ice cover to further improve the emissivity model. However,
a validation with EM-Bird measurements in the polynya areas of the Laptev Sea in5

April 2012 shows very good agreement between EM-Bird and SMOS ice thicknesses,
whereas TOPAZ and PIOMAS overestimate the ice thickness by 0.5–2 m.

For further verification we compare our retrieval results with ice thickness derived
from MODIS thermal infrared data in the Kara Sea for several clear sky occasions.
The MODIS retrieval relies on a similar plane layer assumption as Algorithm I and II10

and represents the modal ice thickness. Because of the much larger footprint of SMOS
(∼40 km) compared to MODIS (1 km) we aggregate the MODIS retrievals on the SMOS
grid by taking the modal mean. The different integration times (SMOS: daily averages
vs. MODIS: single overpasses) introduce additional uncertainties. Nevertheless, the
ice thicknesses retrieved from SMOS and MODIS are very similar, with a considerably15

better agreement between SMOS Algorithm II and MODIS. The correlation coefficient
R between SMOS and MODIS data is about 0.6 for both Algorithm I and II.

The retrieval uncertainty is dominated by inaccurate assumptions and boundary con-
ditions obtained from auxiliary data, whereas the radiometric accuracy is well con-
strained and sufficient except for RFI-affected areas. Factors that affect the ice thick-20

ness retrieval include the ice concentration, ice salinity, ice temperature, snow thick-
ness as well as the statistical thickness distribution function. Sea ice concentration
data available from passive microwave sensors like the Special Sensor Microwave Im-
ager/Sounder (SSMIS) and the Advanced Microwave Scanning Radiometer 2 (AMSR2)
have an inherent uncertainty of about 2.5–5 % over high-concentration ice in winter and25

have strong limitations in new-ice areas (Andersen et al., 2007; Ezraty, 2002). Thus,
we do not correct for varying ice concentration because this would considerably in-
crease the noise and raise so far unresolved problems in regions where new ice is not
detected with traditional methods but with SMOS. The variability of the parent water
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salinity contributes only little to the overall uncertainty except for low-salinity areas. By
neglecting the growth-rate dependent salt inclusion in Ryvlin’s parameterization we in-
troduce additional errors that can not be quantified without the use of more advanced
sea ice thermodynamic models (Notz and Worster, 2009; Vancoppenolle et al., 2006).
The radiation model used in this study is adapted from Menashi et al. (1993) which5

is a simple one layer model without a snow layer. Although we consider the insulation
effect of snow, the radiative contribution of the snow layer to the overall brightness tem-
perature is neglected. This effect is investigated in Maaß et al. (2013b) with another
radiation model based on Burke et al. (1979).

A distinct advantage of the SMOS sea ice thickness retrieval is the daily coverage10

independent of clouds and the large sensitivity for thin ice. Thus, our SMOS product
is complementary to the sea ice thickness derived from CryoSat-2 and feasible for
operational usage. However, the thickness retrieval is strictly limited to cold periods
and not applicable during late spring and summer. Daily SMOS ice thickness charts
from 15 October to 15 April since 2010 are available via http://icdc.zmaw.de.15
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Table 1. Estimated ice thickness uncertainties caused by std(TB), std(Tice), and std(Sice).

dice std(TB)=0.5 K std(Tice)=1 K std(Sice)=1 gkg−1

0–10 cm less than 1 cm less than 1 cm less than 1 cm
10–30 cm less than 1 cm 1–5 cm 1–13 cm
30–50 cm 1–4 cm 2–10 cm 2–22 cm
more than 50 cm 4 cm–more than 1 m 7 cm–more than 1 m up to 40 cm
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Table 2. Comparison of SMOS and MODIS based ice thicknesses in the Kara Sea during the
30 days selected from the two winter seasons of 2009–2010 and 2010–2011.

pixels with MODIS ice thickness < 0.5 m all pixels

Number of pixels 51 716 81 350
mean MODIS 0.24 m 0.42 m

SMOS I 0.27 m 0.31 m
SMOS II 0.37 m 0.44 m

R SMOS I 0.64 0.61
SMOS II 0.63 0.62

RMSD SMOS I 0.11 m 0.25 m
SMOS II 0.19 m 0.22 m
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Fig. 1. Distribution of radiometric accuracy within a typical snapshot with incidence angles
[degree] as contour lines. The snapshot is gridded with 10 km spatial grid resolution.

5773

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/7/5735/2013/tcd-7-5735-2013-print.pdf
http://www.the-cryosphere-discuss.net/7/5735/2013/tcd-7-5735-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
7, 5735–5792, 2013

SMOS derived sea
ice thickness

X. Tian-Kunze et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

0 20 40 60 80 100

[%]RFI-filter induced data loss 

Oct.-Dec.  2010

12
0˚

150˚

180˚

50
˚

50˚

55
˚

55˚

0 20 40 60 80 100

[%]RFI-filter induced data loss 

Oct.-Dec.  2011

12
0˚

150˚

180˚

50
˚

50˚

55
˚

55˚

0 20 40 60 80 100

[%]RFI-filter induced data loss 

Oct.-Dec.  2012

12
0˚

150˚

180˚

50
˚

50˚

55
˚

55˚

Fig. 2. The improvement of RFI-induced data loss in the Arctic from 2010 to 2012.
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Fig. 2. The improvement of RFI-induced data loss in the Arctic from 2010 to 2012.
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Fig. 3. Vertically (V) and horizontally (H) polarized TBs and the first Stokes parameter as
a function of incidence angle calculated using a three layer model for sea ice with a thickness
of dice = 1 m, a bulk salinity of Sice = 8 gkg−1, and a bulk ice temperature of Tice = −7 ◦C.
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Fig. 4. Mean and standard deviation of weekly sea surface salinity for the winter period from October to
April, based on 8 years of daily model output.
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Fig. 4. Mean and standard deviation of weekly sea surface salinity for the winter period from
October to April, based on 8 yr of daily model output.
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Fig. 6. dmax under different Tice [◦C] and Sice [g kg−1].
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 <>

           

Initial d from Algorithm I 

 

d '=
(TBobs−T 0)

(TB−T 0)
⋅d

TB TBobs

T ice= f T (d ,T air) S ice= f S (d ,SSS )

TB= f TB(d ,T ice , S ice)

Fig. 7. Schematic flow chart of the retrieval steps. d and d ′ are the sea ice thicknesses from
the consecutive steps, TB and TBobs are calculated and observed brightness temperatures, T0
is the brightness temperature of sea water assumed to be 100.5 K.
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Fig. 8. The underestimation of ice thickness caused by the 100 % ice coverage assumption.
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Fig. 9. Sea ice thickness distribution derived from NASA’s Operation IceBridge data of 2012
(upper panel, σ = 0.692) and 2013 (lower panel, σ = 0.695). The y axis is the number of occur-
rence.
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Fig. 10. Relationship between the plane ice layer thickness dice and the mean inhomogeneous
ice layer thickness H at different Tice and Sice.
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Fig. 11. Time series of ice thickness derived from Algorithm I, II, and II*, together with dmax
and simulated ice thicknesses from TOPAZ and PIOMAS (upper panel) and time series of ice
concentration, snow (or ice in case of bare ice) surface temperature and SMOS TB (lower
panel) at Point 1 (77.5◦ N, 137.5◦ E).
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Fig. 12. Time series of ice thicknesses derived from Algorithm I, II, and II*, together with dmax
and simulated ice thicknesses from TOPAZ and PIOMAS (upper panel) and time series of ice
concentration, snow (or ice in case of bare ice) surface temperature and SMOS TB (lower
panel) at Point 2 (71.0◦ N, 165.0◦ W).
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Fig. 13. Time series of ice thicknesses derived from Algorithm I, II, and II*, together with dmax
and simulated ice thicknesses from TOPAZ and PIOMAS (upper panel) and time series of ice
concentration, snow (or ice in case of bare ice) surface temperature and SMOS TB (lower
panel) at Point 3 (74.5◦ N, 127.0◦ E).
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Fig. 14. SMOS ice thickness derived from retrieval algorithm I, II, and II* in the Arctic on 1 February
2013.
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Fig. 14. SMOS ice thickness derived from retrieval algorithm I, II, and II* in the Arctic on 1
February 2013.
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Fig. 15. Monthly sea ice thickness derived from Algorithm II* during the freeze-up period of October
2012 to March 2013 (from upper left to lower right) in the Arctic.
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Fig. 15. Monthly sea ice thickness derived from Algorithm II* during the freeze-up period of
October 2012 to March 2013 (from upper left to lower right) in the Arctic.
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Fig. 16. The averaged MODIS ice thickness in 12.5 km grid resolution (upper left), SMOS ice
thicknesses retrieved from Algorithm I (upper right) and II (lower left), and the histogram of the
three ice thickness data (lower right) in the Kara Sea on 26 December 2010.
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Fig. 17. SSM/I ice concentration [%] (upper left), JRA-25 surface air temperature [K] (upper right),
MODIS- and SMOS-based snow/ice surface temperature [K] (lower left and lower right) in the Kara Sea
on 26 December 2010.
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Fig. 17. SSM/I ice concentration (upper left), JRA-25 surface air temperature (upper right),
MODIS- and SMOS-based snow/ice surface temperature (lower left and lower right) in the
Kara Sea on 26 December 2010.
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Fig. 18. The averaged MODIS ice thickness in 12.5 km grid resolution (upper left), SMOS ice thick-
nesses retrieved from Algorithm I (upper right) and II (lower left), and the histogram of the three ice
thickness data (lower right) in the Kara Sea on 2 February 2011.
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Fig. 18. The averaged MODIS ice thickness in 12.5 km grid resolution (upper left), SMOS ice
thicknesses retrieved from Algorithm I (upper right) and II (lower left), and the histogram of the
three ice thickness data (lower right) in the Kara Sea on 2 February 2011.
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Fig. 19. SSM/I ice concentration [%] (upper left), JRA-25 surface air temperature [K] (upper right),
MODIS- and SMOS-based snow/ice surface temperature [K] (lower left and lower right) in the Kara Sea
on 2 February 2011.
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Fig. 19. SSM/I ice concentration (upper left), JRA-25 surface air temperature (upper right),
MODIS- and SMOS-based snow/ice surface temperature (lower left and lower right) in the
Kara Sea on 2 February 2011.
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Fig. 20. Histogram of SMOS (Algorithm I and II) and MODIS (in 12.5 km and 1 km grid resolu-
tion) ice thicknesses from all pixels of the 30 days.
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