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The intracellular ubiquitin-proteasome system is a key regulator of cellular processes involved in the controlled
degradation of short-living or malfunctioning proteins. Certain diseases and cellular dysfunctions are known to
arise from the disruption of proteasome pathways. Trace metals are recognized stressors of the proteasome sys-
tem in vertebrates and plants, but their effects on the proteasome of invertebrates are notwell understood. Since
marine invertebrates, and particularly benthic crustaceans, can be exposed to high metal levels, we studied the
effects of in vitro exposure to Hg2+, Zn2+, Cu2+, and Cd2+ on the activities of the proteasome from the clawmus-
cles of lobsters (Homarus gammarus) and crabs (Cancer pagurus). The chymotrypsin like activity of the protea-
some of these two species showed different sensitivity to metals. In lobsters the activity was significantly
inhibited by all metals to a similar extent. In crabs the activities were severely suppressed only by Hg2+ and
Cu2+ while Zn2+ had only a moderate effect and Cd2+ caused almost no inhibition of the crab proteasome.
This indicates that the proteasomes of both species possess structural characteristics that determine different
susceptibility to metals. Consequently, the proteasome-mediated protein degradation in crab C. pagurus may
be less affected by metal pollution than that of the lobster H. gammarus.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Industrial processes aremajor sources of anthropogenicmetal pollu-
tion in the environment (Järup, 2003; Rainbow, 2007). Pollution often
occurs locally, and variation among regionsmay depend on the compo-
sition and quantity of industrial discharges, as well as on the distance to
the point source of pollution (Soto-Jiméneza and Páez-Osuna, 2001;
Yuan et al., 2012; Gao et al., 2013). Trace metals such as cadmium
(Cd), mercury (Hg), lead (Pb), nickel (Ni), or copper (Cu) are common
persistent pollutants in estuarine and coastal waters and sediments.
Over the last several decades considerable increases in the concentra-
tions of these metals have been reported in marine environments
alongside severe impacts on ecosystems. For example,metal concentra-
tionsmay reach ~80 μg · L−1 cadmium,more than 1mg· L−1 copper, or
500 ng · L−1 mercury in marine surface waters depending on the site
(US Department of Health and Human Services, Toxicological profiles,
http://www.atsdr.cdc.gov/). These levels are often hundreds of times
more concentrated than those from pristine control regions.

Metals are not naturally degradable in the marine environment and
hence bio-accumulate and/or biomagnify along the food chains, often
+49 471 4831 1776.
rowski).
with severe health consequences for higher trophic level organisms
(Mance, 1987; Storelli and Marcotrigiano, 2003; Jung and Zauke,
2008; Bánfalvi, 2011; Ramakritinan et al., 2012). Toxic effects of metals
mainly depend on the metal speciation and bioavailability, but also on
the means of uptake, accumulation, and excretion rates of the organ-
isms. The toxicity of borderline and class B metals (such as Cu, Zn, Cd
and Hg) is linked to their high affinity to sulfur- and nitrogen-rich com-
pounds including cysteinyl and histidyl residues of proteins (Vallee and
Ulmer, 1972; Eichhorn, 1976; Nieboer and Richardson, 1980). Hence,
intracellular proteins are vulnerable to binding by metal ions, which
may damage these proteins and impair their functions. However, essen-
tial trace metals such as Cu or Zn also act as important constituents of
metalloenzymes (Lehninger, 1950) and only become toxic at high
concentrations.

Cellular homeostasis requires the accurate regulation of cellular
processes, and is crucial for cell proliferation, apoptosis, and even im-
mune or stress responses. One key regulator of these processes is the
ubiquitin–proteasome system (Fig. 1). This system is responsible for
the precise degradation of more than 80% of short-living or
malfunctioning proteins (Baumeister et al., 1998; Voges et al., 1999;
Ciechanover, 2005). A disruption of this systemhas been linkedwith se-
vere cellular dysfunctions and diseases (Ciechanover and Brundin,
2003; Powell et al., 2005). Class B metals are known stressors of the
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Fig. 1. Structure and function of the 20S and the 26S proteasome. The barrel-like structure consists of the catalytic core (20S proteasome) towhich up to two regulator unitsmay be bound
forming the 26S proteasome. The core complex comprises 28 subunits organized in four stacked rings. In eukaryotes the two outer rings consist of 7α-subunits while the two inner rings
consist of 7 ß-subunits. The two inner ß-rings form a central chamber carrying in total six proteolytic active sites (indicated by yellow stars). Each of the two catalytic sites possesses the
same cleavage preference after which they are named: chymotrypsin-like (Chy-like), trypsin-like (Try-like) and caspase-like (Cas-like) activities. In-vivo, the 20S core complex degrades
mainly oxidatively damaged proteins in an ubiquitin-independent manner while the 26S proteasome degrades only short-living ubiquitinated proteins.
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proteasome system.Metal ions can impair proteasome function directly
or indirectly by respectively binding to the proteasome complex or by
the generation of oxidative stress (Figueiredo-Pereira and Cohen,
1999; Grune, 2000; Pena et al., 2008).

Marine invertebrates, such as bivalves and crustaceans, are of high
ecological and economic importance (e.g. Costello et al., 2010;
Boudreou and Worm, 2012; FAO, 2012). Many of these species serve
as sentinel organisms formonitoring environmental pollution in estuar-
ies and coastal areas (Najle et al., 2000; Mirza et al., 2012). However,
studies investigating the effects of class B metals on proteasome activi-
ties in marine crustacean species are sparse. To address this gap in our
knowledge, we studied the in-vitro effects of Cu2+, Zn2+, Hg2+ and
Cd2+ on the proteasome activity in two common decapods species,
European lobster (Homarus gammarus) and edible crab (Cancer
pagurus). The results demonstrate species-specific sensitivity of thepro-
teasome of lobsters and crabs to metals, and provide a basis for future
contributions to our understanding of sub-cellular effects of metals
and their toxicity in marine decapods.

2. Materials and methods

2.1. Animal collections

European lobsters (H. gammarus) were purchased from a seafood
merchant (CuxFisch Ditzer GmbH, Cuxhaven, Germany). The animals
were captured off the Danish North Sea coast. Body lengths andmasses
of the animals were 15 to 20 cm and 500 to 550 g, respectively. Edible
crabs (C. pagurus) were collected from bottom trawls with R/V Uthörn
off the island of Helgoland (German Bight, North Sea). Carapace widths
and body masses ranged from 10 to 15 cm and 250 to 450 g,
respectively.

2.2. Preparation of extracts

Muscle tissues were dissected from the chelae of adult H. gammarus
and C. pagurus, shock frozen in liquid nitrogen, ground to a fine powder
bymortar and pestle, and stored at−80 °C until further analysis. About
1.2 g of the powdered tissue sampleswere resuspended in 4mL of assay
buffer (0.05M Tris–(hydroxymethyl) aminomethane, 0.025MKCl, 0.01
MNaCl, 0.001MMgCl2, pH 8.0). The suspensionswere homogenized on
ice with an ultrasonic cell disruptor (Branson, Sonfier B15) and centri-
fuged for 35min at 13,000 g (4 °C). The supernatantswere used directly
for ultracentrifugation on a glycerol density gradient.

2.3. Glycerol density ultra-centrifugation

The proteasome fraction was partly cleaned up by glycerol density
ultracentrifugation. Linear glycerol gradients of 20mL glycerol (ranging
from 10% to 40%) were prepared in assay buffer (50 mM Tris, 40 mM
KCl, 5 mMMgCl2, 2 mM ATP) with a gradient maker (Pharmacia Biotec,
80-1315-58) using polycarbonate tubes (Beckman Coulter, 355618).
Crude muscle extracts (4 mL) were applied onto the gradients and
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centrifuged for 15 h at 67,000 g at 4 °C with an ultracentrifuge
(Beckman Coulter L7-80) equipped with a 70 Ti fixed-angle rotor. Frac-
tions of 2mL eachwere taken along the density gradient from the top to
the bottom of the tubes and transferred into reaction tubes. The pellets
were resuspended in 300 μL assay buffer and also transferred into reac-
tion tubes. All fractions were placed on ice.

2.4. Measurements of proteasome activities

The chymotrypsin-like, trypsin-like, and caspase-like activities of
the 20S/26S proteasome were determined with the fluorogenic sub-
strates Suc–Leu–Leu–Val–Tyr–AMC (Bachem, I-1395), Boc–Leu–Arg–
Arg–AMC (Bachem, I-1585), and Gly–Pro–Leu–Asp–AMC (Enzo Life Sci-
ence, BML-AW9560), respectively. Verification that solely proteasome
activity contributed to the measured proteolytic activity was achieved
by running parallel assays containing the highly specific proteasome in-
hibitor epoxomicin (PeptaNova, 4381) (Meng et al., 1999; Götze et al.,
2013). All assays were performed in 96-well plates in a total volume
of 50 μL per assay, containing 40 μL of assay buffer (0.05 M
Tris(hydroxymethyl)-aminomethane, 25 mM KCl, 10 mM NaCl, 1 mM
MgCl2, and 2 mM adenosine triphosphate (ATP), pH 8.0 at 30 °C) and
5 μL of sample extract. Reactions measuring total proteolytic activity
also contained 2.5 μL of dimethylsulfoxide (DMSO), while the reactions
measuring the proteasome-inhibited proteolytic activity contained
2.5 μL of 1 mM epoxomicin dissolved in DMSO (final concentration in
the assay 50 μM). The reactions were initiated by the addition of 2.5 μL
of substrate (10mM; final concentration in the assay 0.5mM). The initial
fluorescence values were immediately read in a microplate fluorometer
at 355 nm excitation and 460 nm emission (Fluoroscan Ascent, Thermo
Scientific). The reaction was allowed to proceed for 1 h in the dark at
30 °C in a microplate incubator (CAT, SH26) before the plate was read
again. The difference in the relative fluorescence units (RFU) between
the final and the initial reads served as ameasure of the enzyme activity.
The amount of the released product, 7-amino-4-methylcoumarin
(AMC), was calculated on the basis of a standard curve, and expressed
as U · g−1

protein (U = μmol AMC · min−1). The protein content was
determined after Bradford (1976) with a commercial dye reagent
(BioRad, 500-0006) and bovine serum albumin as standard.

To test the sensitivity of theproteasome to tracemetals (Hg2+, Zn2+,
Cu2+, and Cd2+), the chymotrypsin-like proteasome activities were
measured as described above in theproteasome-enriched pellet fraction
obtained by thegradient ultracentrifugation. The assayswere conducted
in the metal-free assay buffer or in the buffer supplemented with 10 to
100 μMof Cu2+, Zn2+, Hg2+ andCd2+ (added as the respective chloride
salts). The chymotrypsin-like proteasome activities in the presence of
metals were calculated relative to the corresponding control assays
(without metal additions) and expressed as mean activity (%) ± the
standard error of the mean (SEM) of three replicates (n = 3).

2.5. Statistics and graphs

The percent data were arcsin square root transformed and analyzed
with a one-way ANOVA and Tukey post-hoc test. Significant differences
between species, and/or the metals are indicated in graphs by different
letters when p values were below 0.05. For each metal and species the
halfmaximal inhibitory concentration (IC50)was calculated by applying
the sigmoidal function:

y ¼ minþ max−minð Þ
1þ x

EC50

� �Hillslope
:

Calculations and graph were done with the computer program
SigmaPlot/Sigma Stat. 12.0.
3. Results

3.1. Proteasome activities in lobsters and crabs

Theproteasome (20S/26S) of both specieswas effectively purified by
glycerol-density ultracentrifugation. Proteasome activity was present in
the last quarter of the gradient with increasing activities towards the
pellet (Fig. 2). The highest activities towards all three substrates
(representing the chymotrypsin-, trypsin-, and caspase-like activity)
were found in the pellets, in accordance with the calculated sedimenta-
tion coefficient of the 20S/26S proteasome at the applied conditions.
Furthermore, all three activities were completely (100%) inhibited by
epoxomicin proving that solely proteasome activity was measured.

H. gammarus had higher average activities of all catalytic sites of
the proteasome than C. pagurus (Fig. 3). However, a significant dif-
ference between the two species was only found for the trypsin-
like activity (p = 0.002). For both crustaceans trypsin-like activities
(TRY) were the highest, followed by chymotrypsin-like (CHY) activ-
ities and last by caspase-like (CAS) activities. In H. gammarus the
trypsin-like activity amounted to 0.0058 ± 0.0022 U · g−1

prt, the
chymotrypsin-like activity to 0.0250 ± 0.0011 U · g−1

prt, and the
caspase-like activity to 0.0010 ± 0.0006 U · g−1

prt (all mean ± SEM;
Fig. 3a). The trypsin-like activity was significantly higher than the two
other activities (TRY to CHY: p = 0.04 and TRY to CAS: p = 0.004).
The chymotrypsin-like activity and the caspase-like activity did not dif-
fer from each other. In C. pagurus the trypsin-like activity amounted to
0.0009 ± 0.0003 U · g−1

prt, the chymotrypsin-like activity amounted
to 0.0006 ± 0.0002 U · g−1

prt, and the caspase-like activity amounted
to 0. 0002 ± 0.0001 U · g−1

prt (Fig. 3b). In the crab, activities were
not significantly different from each other.

3.2. Effects of metals

The effect of metal ions was determined for the chymotrypsin-like
activity of the proteasome since this catalytic site has a prominent role
for the overall protein breakdown (Rock et al., 1994; Heinemeyer
et al., 1997). Accordingly, inhibition of this site will affect cells (organ-
isms) more severely than inhibition of the two other catalytic sites.
Our study revealed that metal ions inhibited this catalytic site in a
species- and concentration-dependentmanner (Fig. 4). The lobster pro-
teasome was more sensitive towards all investigated metals than the
crab proteasome. In H. gammarus, the activity was strongest inhibited
by mercury (Hg2+) with a complete inhibition at 100 μM Hg2+. The
other three tested metal ions, Cu2+, Zn2+, and Cd2+ caused 76.0–
78.6% inhibition of the chymotrypsin-like proteasomal activity at
100 μM (Figs. 4, 5). The degrees of inhibition by Cu2+, Zn2+, and Cd2+

were not significantly different from each other, while inhibition by
Hg2+ was significantly stronger than by any of the other three metals
(p b 0.04).

Similar to the lobster, the proteasome of C. pagurus was the stron-
gest inhibited by Hg2+ (100% inhibition at 100 μM). The second most
potent inhibitor was copper with a 66.3% ± 3.5% reduction of the
chymotrypsin-like proteasomal activity at 100 μM. Zinc had only a
weak effect on the proteasome activity with 39.1% ± 8.5% at 100 μM.
Cadmium had no significant effect on the chymotrypsin-like activity
of the crab proteasome (Figs. 4, 5).

3.2.1. Effect of Hg2+

Mercury caused the strongest inhibition of the chymotrypsin-like
proteasome activity in both species (Fig. 4a and b). In the lobsters,
10 μMHg2+ significantly decreased the activity to 43% residual activity
(Fig. 4a; p= 0.03). At 25 μMHg2+only 8.2%±5.8% of the initial activity
remained. Concentrations of more than 25 μM completely inhibited all
activity (p = 0.001). The chymotrypsin-like activity of C. pagurus was
not significantly inhibited below 25 μMHg2+ (Fig. 4b). At 25 μM the ac-
tivity decreased to 16%± 16% of the initial activity (p b 0.001). At more
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than 25 μM Hg2+ no activity remained. The half maximal inhibitory
concentration (IC50) of mercury on the chymotrypsin-like activity was
reached at 10.8 μM ± 0.7 μM in the lobster and at 13.4 μM ± 3.4 μM
Hg2+ in the crab.

3.2.2. Effect of Zn2+

Zinc ions affected the chymotrypsin-like activity of either species
in a different way (Fig. 4c and d). In lobsters, the activity decreased
significantly to 57.7 ± 11.3% in the presence of 10 μM Zn2+

(Fig. 4c; p = 0.002), and only 21.4% ± 11.7% of the residual activity
remained in the 100 μM Zn2+ treatment. The proteolytic activity at
100 μM Zn2+, however, was not statistically different from the
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activity measured at 10 μM Zn2+. The chymotrypsin-like activity of
C. pagurus was less affected by Zn2+ than the activity of H. gammarus
(Fig. 4d). The activity remained unaffected up to a concentration of
25 μM Zn2+. There was a slight reduction in activity at 50 μM Zn2+,
and a significant decrease at 100 μM Zn2+ (69.3% ± 8.5%; p = 0.003).
In H. gammarus, the IC50 of zinc was reached at 11.3 μM ± 9.0 μM
Zn2+, and in C. pagurus at 56.1 μM ± 19.4 μM Zn2+.

3.2.3. Effect of Cu2+

The chymotrypsin-like activity ofH. gammarus decreased significant-
ly to 66.2% ± 9.6% in the presence of 10 μM Cu2+ (Fig. 4e; p = 0.02).
Higher Cu2+ concentrations caused a stronger, although not significant,
C. pagurus
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decrease of activity. At 100 μM Cu2+ only 22.1 ± 5.09% of the initial ac-
tivitywas left. In contrast, the chymotrypsin-like activity ofC. pagurusde-
creased slowly but not significantly up to 25 μM Cu2 (Fig. 4f). At 25 μM
Cu2 the activity decreased significantly to 64.1% ± 17.1% (p = 0.02).
The IC50 in H. gammarus was reached at 12.3 μM ± 3.2 μM Cd2+ and in
C. pagurus at 40.0 μM± 11.1 μM Cd2+.
3.2.4. Effect of Cd2+

Cadmium had different effects on the chymotrypsin-like activity of
the lobster and crab. (Fig. 4g andh). In lobsters the activity decreased sig-
nificantly in the presence of 10 μM Cd2+ to 57% ± 13.6% (p = 0.001).
Higher concentrations up to 100 μM Cd2+ continuously reduced the ac-
tivity down to 22% ± 13.6% at 100 μM Cd2+. The chymotrypsin-like



Hg2+

Max. IS: 100% a

IC50: 13.4 ± 3.4 M

Cu2+

Max. IS: 77.8 ± 5.1 % b

IC50: 12.3 ± 3.2 M

Zn2+

Max. IS: 39.1% ± 8.5 % c

IC50: 56.1 ± 19.4 M

Cd2+

Max. IS: 76.0 ± 10.5 % b

IC50: 14.7 ± 34.7 M

Cd2+

Max. IS: 17.6% ± 1.5 % d

IC50: not determinable

Zn2+

Max. IS: 78.6 ± 11.7 % b

IC50: 11.3 ± 9.0 M

Cu2+

Max. IS: 66.3 ± 3.5 % b

IC50: 40.0 ± 11.1 M

Hg2+

Max. IS: 100% a

IC50: 10.8 ± 0.7 M

H. gammarus              C. pagurus 

Fig. 5. Calculatedmaximum inhibitory strength (Max. IS) and IC50 of Hg2+, Zn2+, Cu2+, and Cd2+ for the lobster H. gammarus and the crab C. pagurus. Significant differences between the
max. IS of metals within the same species are indicated by the different letters when p b 0.05 (n = 3).

67S. Götze et al. / Comparative Biochemistry and Physiology, Part C 162 (2014) 62–69
activity of C. paguruswas not significantly inhibited by any of the applied
Cd2+ concentrations (p N 0.05). At 100 μM Cd2+ 82.5% ± 1.44% of the
initial activity remained. The IC50 for cadmium of H. gammarus was
reached at 14.7 μM± 34.7 μM Cd2+.
4. Discussion

The proper operation of the proteasome and associated pathways is
crucial for cellular function and stress resistance. Intracellular excess of
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borderline and class B metals has been shown to damage and modulate
these pathways in vivo with severe negative effects for organisms
(Amici et al., 2002; Kim et al., 2004; Pena et al., 2008; Yu et al., 2010;
Kanthasamy et al., 2012). Here we show for the first time that the in-
vitro functionality of crustacean proteasomes is impaired by metal
ions. The fraction that we separated by glycerol-gradient centrifugation
contained most likely both, the 20S and the 26S population of the pro-
teasome. Previous studies on crustaceans showed that both forms of
the proteasome are active under physiological conditions (Mykles,
1998, 1999a,b; Götze and Saborowski, 2011). Therefore, the use of a
mixed population of the proteasome appears suitable for our study.
The observed effects on the proteasomeswere surprisingly different be-
tween species, despite the fact that both crustaceans originate from un-
polluted benthic habitats of the North Sea and share similar life styles
and feeding modes. The proteasome of the crab C. pagurus displayed
wide variation in responses to different metal ions. It was severely
inhibited by Hg, while being less sensitive to Cu and Zn, and almost un-
affected by Cd. In contrast, all metals (Hg, Zn, Cu, and Cd) inhibited the
proteasome of the lobster, H. gammarus, to similar degrees.

Metal ions can bind to proteins of the regulatory complexes, as well
as to the core proteins of the proteasome complex (Fig. 1). In the core
proteins, especially the terminal threonine amino acids in the ß-sites,
and the Mg2+-containing catalytic centers, were identified to have
high affinities for various metal ions (Jover et al., 2008). Both essential
metals, Cu and Zn, showed different and species-specific inhibitory ef-
fects on the crustacean proteasomes. Copper is one of the most effective
metal proteasome inhibitors known for vertebrate species (Kim et al.,
2004; Milacic et al., 2008; Pena et al., 2008). This metal attacks the 20S
core complex at the chymotrypsin-like catalytic site (ß5) and affects
both the 20S and the 26S proteasome populations (Daniel et al., 2004).
Zinc interferes mainly with the JAMM domain of the 19S regulatory
complex, and inhibits predominantly the 26S proteasome (Cvek et al.,
2008). One possible explanation for the observed differences in the crus-
tacean proteasome sensitivity towardsmetalsmay be due to adaptive or
regulatory mechanisms. Especially the concentrations of essential
metals can be regulated within appropriate intracellular levels, for ex-
ample during elevated metal exposure (Stoeppler and Nürnberg,
1979; Rainbow and White, 1989). This regulatory capacity is often
species-specific anddepends onphysiological traits suchas osmoregula-
tory capacity, excretion rates, the ability to eliminatemetals through ec-
dysis, and induction of detoxification pathways (Engel, 1987; Viarengo
and Nott, 1993; Engel et al., 2001; Ahearn et al., 2004; Rainbow, 2007).
For example, the rockpool prawn, Palaemon elegans, is capable of main-
taining its internal concentrations of ~76 μg Zn g−1dry mass and
~125 μg Cu g−1 dry mass when exposed to up to 315 μg · L−1 Zn and
100 μg · L−1 Cu in seawater before a net accumulation starts
(Rainbow andWhite, 1989).

H. gammarus has a natural concentration of ~10 μg Cu and 26 μg Zn
per gram wet mass of the muscle tissue (Barrento et al., 2008).
C. pagurus has similar Cu concentrations in its muscle tissue (~8 μg Cu
g−1 wet mass), but more than double the concentration of Zn (~60 μg
g−1wetmass) (Berge andBrevik, 1996). These Zn concentrations corre-
spond to ~0.5 mM in lobster and ~1.2 mM Zn in crab and are much
higher than the in-vitro concentrations investigated in our study. How-
ever, only a small fraction of the intracellular metals (including Zn)
occur in the free ionic form, with the vast majority being incorporated
into enzymes or bound by metal chelators such as metallothioneins
and glutathione (Andersen and Baatrup, 1988; Finney and O'Halloran,
2003). Nevertheless, the low sensitivity of the crab proteasome towards
Zn may reflect a possible physiological adaption to the naturally high
concentrations of Zn in the crabmuscle in vivo. Given the high biochem-
ical similarity between Zn2+ and Cd2+ and similar affinity of these ions
to intracellular targets (Zalups and Koropatnick, 2010), adaptation to
high intracellular levels of Zn may also explain the considerably higher
tolerance of the crab proteasome to Cd compared to that of the lobster.
Themechanisms of the effects of Zn or Cdon proteasomeactivity are not
yet fully understood and may involve direct binding to the proteasome
as well as indirect interactions caused by metal-induced oxidative
stress, release of essential metals from catalytic sites or intracellular
storage, and/or disruption of associated pathways (Funk et al., 1987;
Figueiredo-Pereira and Cohen, 1999; Pena et al., 2006). Our in-vitro
study indicates that both, Cd and Zn, may affect the chymotrypsin-like
proteasome activity directly, at least in lobsters. Differences in suscepti-
bility of the proteasome to Zn and Cd between crabs and lobsters indi-
cate potential structural differences at or around the binding sites for
these metals on the proteasome of the two species, and require further
investigation.

Of the four studied metals, mercury was the strongest inhibitor of
the proteasome activity in lobsters and crabs. More than 90% of activity
was suppressed at concentrations above 25 μM, which matches well
with the acute sublethal dose of water-borne mercury (LC50: 6 μM to
30 μM) for adult crustaceans (Connor, 1972; Eisler, 1981). Mercury
has been shown to interfere with the proteasome activities in other or-
ganisms, but the precise mechanisms of the binding of Hg and Hg-
induced inhibition of the proteasome are unknown (Yu et al., 2010).
Moreover, the effects of Hg on the proteasome depend on the mode of
exposure and differ between inorganic Hg2+ and organicmercury com-
plexes. Hg was shown to highly inhibit the proteasome in plants and
mammalian cell lines (Pena et al., 2008; Yu et al., 2010). However,
under in-vivo conditions toxic effects of MeHg may be counterbalanced
by a proteasome-mediated protection. Hwang et al. (2002) and Hwang
(2011) demonstrated in yeast and human cell lines that enhanced resis-
tance is mediated through enhanced expression of Cdc34 or Rad23 pro-
teins which are important for ubiquitination, and accordingly,
proteasomal degradation. Our study indicates that in crustaceans the
exposure to inorganic mercury may suppress also in-vivo significantly
the intracellular protein degradation. It is worth noting that, with the
exception of cadmium, the relative inhibitory strengths of these metals
on the crustacean proteasome correspond well to their respective de-
grees of toxicity measured for the whole organism. Marine crustaceans
are highly sensitive to mercury, copper, and cadmium, and only to a
lesser extent towards nickel or zinc (Eisler and Hennekey, 1977; Devi,
1987). This separation in sensitivity reflects distinct physiological traits
and characteristics of species for regulating internal metal concentra-
tions through uptake, excretion, or induction of detoxification pathways
(Eisler, 1981; Amiard et al., 1987; Viarengo and Nott, 1993; Rainbow,
1995, 2007; Ahearn et al., 2004). Furthermore, abiotic or ecological fac-
tors, such as temperature, salinity, lifestyle, feedingmode, metal uptake
route, or metal speciation influence rates of absorption and internal
metal sequestration. Since metals act at different physiological levels,
detailed studies on intracellular biochemical mechanisms can contrib-
ute to a better understanding of the complex interaction of environ-
mental pollution and toxic effects in marine invertebrates. Our present
study shows that suppression of proteasomal activity may represent a
significant mechanism of trace metal toxicity in marine crustaceans, af-
fecting rates of protein degradation and turnoverwhich are essential for
proper cell functioning and rapid response to stress (Bayne, 2004).
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