On sequential observation processing in localized ensemble Kalman filters
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Introduction Assimilation Experiments

We perform assimilation experiments with the Lorenz-
96 model. Compared are the performances of the En-
SRF with the LESTKF filter, both with localization. As-
similation experiments are performed over 50000 time
steps with an ensemble of 10 states. The support ra-
dius of the localization and the inflation (forgetting fac-
tor) are varied.

The different variants of current ensemble square-root
Kalman filters assimilate either all observations at once or
perform a sequence in which batches of observations or
each single observation is assimilated. The sequential ob-
servation processing in filter algorithms like the EnSRF [1]
can result in computationally efficient algorithms because
matrix inversions in the observation space are reduced to
the inversion of single numbers.

EnSRF

Ensemble square-root filter [1]

Assimilate an observation vector as a sequence of single
observations

Localize with state error covariance matrix (“covariance
localization”)

For the LESTKF the regulated localization weight func-
tion [3] is used. In [3] it was shown that this method
results in equal effective localization lengths for a single
observation for covariance localization and observation
localization.

Whitaker and Hamill [1] noted that the modification of the En-
SRF for localization leads to an inconsistency of the update
equation for the state error covariance matrix. Often, this in-
consistency does not lead to a significant impact on the as-
similation performance. However, using a simple model, we
demonstrate with the localized EnSRF algorithm that the se-
guential observation processing can significantly deteriorate
the assimilation performance under some circumstances.

LESTKF

Error subspace transform Kalman filter [2]

Assimilate full observation vector at once
The filter algorithms and the Lorenz96 model are im-

plemented in the Parallel Data assimilation Framework
(PDAF, [4, 5], http://pdaf.awi.de).

Perform local analysis with observation weights com-
puted from regulated localization [3]

Experiments
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