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SIMULATIONS OF SHELF CIRCULATION DYNAMICS IN THE LAPTEV SEA   

Abstract 

The article describes the modeling processes of the shelf circulation dynamics in the Laptev Sea with 

focus on the Lena Delta region. We try to estimate the role of different factors such as heat exchange 

with atmosphere, Lena runoff and tidal forcing on the dynamics in the region. An unstructured-grid 

Finite Volume Coastal Ocean Model (FVCOM) is used as a modeling tool. 
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Introduction 

The polar shelf zones are highly dynamic and diverse systems. They form a border between warm 

and fresh water of continental drain and the cold currents of the northern seas. In the Arctic shelf region, 

multiple river deltas accumulate organic carbon. They host a unique and very diverse northern fauna and 

flora. 

Over recent years, the Lena delta region of Laptev Sea acquired a special focus since it can serve as 

an indicator of climate change. A large number of observations in this region suggest a strong climate 

and biological changes for the last fifty years (Bauch et al., 2009; Hölemann et al., 2011). Organized as 

a part of the International Polar Year (2007 – 2008), joint study by the National Research Center of 

France, University of Alaska (USA) and Melnikov Permafrost Institute (Siberian Branch of Russian 

Academy of Sciences) has found that the Lena water temperature at the middle reach in the flood period 

had increased by 2 ° C compared to the values of 1950 (Costard et al., 2007). 

Based on the results of observations in the Lena Delta region (Russian-German expeditions «Lena-

2007», «Lena-2008») and Laptev Sea (Russian-German expedition «BARKALAV- 

2007/TRANSDRIFT-XII», «POLYNIA-2008/TRANSDRIFT-XIII», «BARKALAV- 

2008/TRANSDRIFT-XIV») it was found that in summer 2007 a positive anomaly of temperature and 

negative anomaly of salinity were present in the central and eastern part of the Laptev Sea in the mixed 

layer. The same structure of temperature and salinity was observed in summer 2008, but the magnitudes 

of anomalies were smaller. A continuous temperature increase was also found for Atlantic water. Such a 

powerful inflow of warm Atlantic waters into the Arctic Basin was not observed for the entire period of 

instrumental observations since 1897. 

The long-term analysis by Polyakov et al. (2008) of the surface salinity change in the Arctic Basin 

and Arctic Seas, including the Laptev Sea, showed that ice-related processes, freshwater runoff and the 

way it spreads under the influence of atmospheric processes play a key role in salinity changes 

(freshening) of the upper layer over the past decades. 

Johnson (2001) modeling studies showed that atmospheric forcing greatly determines the direction 

of freshwater transport in the Laptev Sea. The observations have confirmed that the variability of 

summer surface salinity in the Laptev Sea is mainly governed by local wind patterns associated with 

positive and negative phases of atmospheric vorticity over the adjacent Arctic Ocean (Dmitrenko et al., 

2005). It should be emphasized that the winter water dynamics has very small impact on riverine water 

pathways in the summer (Dmitrenko et al., 2010a). In the end of the winter season (March-April) the 
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surface hydrography pattern is nearly the same as in September modified by thermodynamic ice 

formation. 

Driven by the need to explain and understand the processes in the Lena Delta, the main goal of this 

work is modeling of the shelf circulation dynamics in the Laptev Sea with focus on the Lena Delta 

region. Our more distant goal is the ecosystem modeling in the region, for which a model with 

consistent dynamics is a necessary step. 

This note describes our results obtained while tuning the model so that it is able to simulate the 

climatic changes in the region, and studying with its help the variability of circulation under the action 

of atmospheric, tidal and run-off forcing. We examine the role of topography structure and temperature 

of freshwater runoff, characteristics of heat fluxes in determining the features of the temperature and 

salinity distributions in the region and the role of local wind pattern and tidal dynamics. Additionally, 

we estimate the impact of improved bathymetry representation on the shelf in the vicinity of Lena Delta 

on tidal dynamics and local temperature and salinity local. Numerical simulations were based on Finite 

Volume Coastal/Community Ocean Model (FVCOM; Chen et al., 2006). 

 

Model description 

We use FVCOM to carry out our simulations. It is developed for simulations of flooding/drying 

processes in estuaries and tidal-, buoyancy- and wind-driven circulation in the coastal region featuring 

complex irregular geometry and steep bottom topography. FVCOM is unstructured- grid, finite-volume, 

free-surface, prognostic, 3-D primitive equation coastal ocean circulation model (Chen et al., 2003; 

Chen et al., 2006). 

Our model domain covers water depths down to 65 m (Fig.1). The minimum water depth in the 

model is 0.5 m. We use high quality unstructured grid, which allows us to take into account complexity 

of coastline, characteristics of the bathymetry and other peculiarities of the problem. The grid was 

constructed using algorithm described in Persson and Strang (2004). Elements sizes are vary from 400 m 

near the cost to 5 km at the open boundary. The mesh contains six vertical sigma-layers with 250000 

nodes on each of them. FVCOM was run using spherical coordinates, with nudging temperature and 

salinity at open boundaries to external data. For vertical mixing and horizontal viscosity simulation we 

used the modified Mellor and Yamada level 2.5 and Smagorinsky turbulent closure schemes 

respectively. As advection scheme we used the second order upwind scheme. The FVCOM version 

employed in this study is time stepped by a mode splitting method (Chen et al., 2009). The time step for 



 
 

the external mode is 4.6 sec for the barotropic case and 2.5 sec for the baroclinic case, the ratio of 

internal mode time step to external mode time step is 10. 

 

Input data  

The bathymetry data were taken from GEBCO (The General Bathymetric Chart of the Oceans; 

http://www.gebco.net/data_and_products/gridded_bathymetry_data/). For coastline construction we 

compared GEBCO bathymetry data and NOAA (The National Oceanic and Atmospheric Administration) 

coastline data (http://www.ngdc.noaa.gov/mgg/shorelines/shorelines.html). To smooth the coastline we 

used cubic b-splines technique (Fig.1). 

      

Fig. 1. The selected domain, bathymetry data from GEBCO (resolution of GEBCO grid is 30 arc-second), m. In 

red is shown coastline based on NOAA data, in green – coastline, which was obtained from GEBCO bathymetry 

data. On the right picture in blue is shown constructed coastline (smoothed using cubic b-splines technique). 

http://www.gebco.net/data_and_products/gridded_bathymetry_data/
http://www.ngdc.noaa.gov/mgg/shorelines/shorelines.html
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The wind magnitudes and direction and radiation fluxes were taken from the regional, non- 

hydrostatic model provided by the consortium for Small-scale Modeling (COSMO). The time resolution 

of COSMO forcing is 1 hour. The COSMO model with included thermodynamic sea-ice module 

provides a high quality atmospheric forcing, which takes into account the presence of a thin layer of ice, 

and can be applied for short-range simulations (Steppeler et al., 2003; Scha ttler et al., 2008; Schro  der et 

al., 2011). We used results from COSMO simulations with 5 km resolution performed for the Laptev 

Sea area with and without assumption that the Laptev Sea polynyas are ice-free. 

The temperature and salinity fields for initializing the model and for daily nudging on the open 

boundary were taken from Arctic simulations by R. Gerdes and P. Rozman with focus on the Laptev Sea 

region (Rozman et al., 2011). This model provides data, which are in a good agreement with long-term 

mean (1920-2008) surface salinity distribution for winter season (February-April) described in 

(Dmitrenko et al., 2010a) and salinity observation data for May, 2008 (provided by M. Janout). Also, the 

provided salinity/temperature patterns are close to the pattern of seasonal cycle from summer of 2007 to 

late winter/spring of 2008 shown in (Hölemann et al., 2011). This sea-ice model provides daily data for 

temperature and salinity field in the region for six vertical layers. 

The input daily Lena runoff data, derived from observations, were provided by Hydrological 

Institute, St. Petersburg. The runoff temperature was set to either 0.5°C or 5°C, which present, according 

to Yang et al. (2002), Yang et al. (2005) and Costard et al. (2007), the approximately lower and upper 

bounds for mean temperature in the river mouth during May respectively. For assessment of the 

influence of local bathymetry on temperature and salinity patterns we used additionally bathymetry 

measurement data in Lena Delta region. The observation bathymetry data at 27686 locations (the 

average distance between points is about 800m) in close proximity to Lena Delta were provided by Paul 

Overduin (Alfred Wegener Institute, Potsdam). 

The model is forced by tidal elevation prescribed at the open boundary from different models: 

TPX06.2, TPXO7.1 and AOTIM with Doodson correction. We paid special attention to tuning the 

conditions at open boundaries so as to obtain best agreement with the observational data. The model 

simulates the four most energetic tidal constituents: 
1122 ,,, KOSM   (Sofina, 2008; Lenn et al., 

2011;Kowalik, 1993; Dmitrenko et al., 2012).    

 



 
 

Tidal dynamics analysis 

Observations of tidal currents over the Laptev Sea continental are rare and fragmentary. The starting 

point of the analysis was tide gauges data provided by Kowalik and Proshutinsky (KP) (can be 

downloaded from http://www.ims.uaf.edu/tide/). Based on observation data near the open boundary and 

features of different models we designed new open boundary conditions. To specify the correct open 

boundary conditions is one of the central problems of our modeling due to small depths in the area under 

consideration. We should emphasize that for the selected domain the amplitudes and phases on open 

boundary should be corrected near the cost (depth<10-15m) if they are taken from any of models. The 

horizontal resolution of TPX06.2 and TPXO7.1 and associated inaccuracies in bathymetry data limit 

their skill in presenting the tidal features in the coastal zone. As concerns AOTIM (The Arctic Ocean 

Tidal Inverse Model), in addition to its 2D character, the linear assumption used in it makes it incapable 

of simulating residual currents (Chen et al., 2009). 

The AOTIM was created based on (Egbert et al., 1994) data assimilation scheme by computing the 

inverse solution with all available tidal gauge data (Padman and Erofeeva, 2004). As a ‘prior’ solution 

was used the Arctic Ocean Dynamics-based Tide Model (the numerical solution to the shallow water 

equations). This pan-Arctic 2-D linear model is highly resolved (5-km regular grid), simulates 4 most 

energetic tides constituents (  , S2, O1 and K1). Assimilated data consist not only coastal and benthic 

tide gauges (between 250 and 310 gauges per tidal constituent) but also available satellite altimeters 

(Padman and Erofeeva, 2004). Model bathymetry is based on the International Bathymetric Chart of the 

Arctic Ocean  (Jakobsson et al., 2008). AOTIM5 does not include the effects of sea ice presence. 

The TPXO7.1 and TPXO6.2 is a global inverse tide model developed by Gary Egbert and Lana 

Erofeeva at Oregon State University. The resolution of these models are 1/4
o
 x 1/4

o
. TPXO7.1 and 

TPXO6.2 assimilates ‘TOPEX/Poseidon (T/P) and TOPEX Tandem satellite radar altimetry (available 

for the ice-free ocean between +/-66
o
 latitude), and in situ tide gauge data in the Antarctic and the 

Arctic’. TPXO7.1 is one of the most accurate global tidal solutions. 

 Chen et al. (2009) presented high resolution unstructed grid finite volume Arctic Ocean model 

(AO-FVCOM) in application for tidal studies. A spherical coordinate version of the instructed grid 3-D 

FVCOM was applied to the Arctic Ocean for tides simulation. The size of elements varies from 1 km in 

the near coastal areas to 15 km in the deep ocean; model resolves accurately the irregular coastal 

geometry. However, the largest amplitude and phase differences between modeled and observed tides 

were caused by the model errors along the Russian coast (Chen et al., 2009).  

http://www.ims.uaf.edu/tide/
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The designed open boundary condition provides better agreement with observation data compared 

to the case when the condition directly derived from AOTIM, TPXO6.2 or TPXO7.1 is used. The results 

from the tidal simulations for East Siberian shelf provided by Sofina have been also included in the 

analysis. Table 1 shows the results of comparison for    constituent. 

 

 

 

 

Table 1. The error of different models against coastal tide gauges for the    constituent. 

 

AO-FVCOM 

with stations 

coord. 

corrections 

(R<40km) 

East 

Siberian 

shelf model 

AOTIM5 TPX07.1 TPXO6.2 

Simulation   

based on 

AOTIM5 

Simulation 

based on 

TPXO7.1 

Simulation 

based on 

designed open  

boundary 

conditions 

Simulation based on 

designed open  

boundary conditions 

with stations coord. 

corrections (R<20km) 

     

     
30.94 41.07 45.74 36.86 50.78 33.09 19.61 15.24 3.61 
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where    ,      - simulated amplitude and phase respectively,         - observed amplitude and phase 

respectively,      - number of stations. 

 

a) 



 
 

 

Fig. 2. The results of simulation with designed open boundary condition for amplitude and phase for    

constituent:   a) Amplitude, m,   b) Phase, deg. 

 

 

Temperature and salinity patterns variability 

We compare salinity and temperature fields in mixed layer under the ice in simulations with and 

without atmospheric forcing, tidal dynamics, with different temperatures of freshwater and using 

different techniques for freshwater input. We present here only a schematic overview of the results 

obtained. 

The surface salinity to the north and west from Lena Delta is mainly determined by the local wind 

pattern. East of the Lena Delta, the temperature and salinity patterns are dominated by plume internal 

dynamics driven by freshwater discharge and accompanying changes in the sea surface height and 

density field in the presence of Coriolis force and are largely insensitive to the atmospheric forcing, this 

fact being reflected in the background hydrography (Dmitrenko et al. 2010a). 

Tides play a significant role in water mass modification through vertical mixing of seawater 

properties in the mixed layer. In general, plume velocities induced by winds and plume internal 

dynamics exceed residual tidal velocities, especially east of the Lena Delta where tides are weak. 

Increasing the discharge water temperature influences only little the freshwater plume dynamics. It can, 

however, have some impact on the volume of net sea-ice melting, which is not considered here. Bauch et 

al. (2013) found that significant volumes of net sea-ice melting are observed only in case of river water 

spread to the central Laptev Sea. Their study showed that the local melting of the sea ice is coupled to 

river water. Note that the central-eastern Laptev Sea is a shallow region with the depth less than 20 m 

even north of 75.5  . The shallowness of the region may assist northward propagation of temperature 

b) 
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signal from Lena water to the north if northward winds dominate in the second part of the summer. The 

stable stratification in that time and presence of thin layer of fresher water strengthen the effect. Note 

that in 2008 in the middle of July the observational Lena water temperature near the mouth reached 20  C. 

We may hypothesize that if the freshwater plume spreads to the central Laptev Sea and not towards the 

East-Siberian Sea, the warm water of Lena River would lead to active ice melting in the adjacent area 

and a corresponding decrease in albedo and changes in heat flux balance. 

The change in the structure of heat fluxes (COSMO data with and without open polynyas) and in 

runoff temperatures do not significantly influence the propagation of the freshwater plume whereas the 

temperature pattern is changed in the whole mixing layer (Fig. 3). The temperature anomalies in the 

mixed layer mainly in the northern part of the Lena Delta vicinity if they are independent of salinity 

anomalies can be mainly explained by characteristics of heat fluxes. 

 

 

a) 

b) 



 
 

 

Fig. 3. The surface temperature fields [°C] at the end of May, freshwater runoff input from the boundary.    

a) atmospheric forcing from COSMO with polynyas closed by thin layer of ice, the runoff temperature is 0.5 °C,  

b) same as in a), but with open polynyas,  c) same as in b) but for the runoff temperature of 5 °C. 

 

Because of weak winds in the region in the summer period, the details of the Lena runoff 

distribution over the Delta channels influences the simulated salinity patterns. That is why we tried to 

follow observations and local bottom topography in prescribing it. The Delta of Lena and its channels 

are not resolved in the model, so the Lena discharge distribution can be accounted for only 

approximately. We used two techniques to distribute the total volume runoff. In the first case the 

freshwater input was implemented as a boundary condition on the Lena Delta boundary. The spatial 

runoff structure followed the description in Magritsky (2001) with positions derived from the auxiliary 

topography. In that case, the freshwater is input through 1552 mesh edges so as to model the observed 

spatial distribution. In the second case, the freshwater input was added over some vicinity of the Lena 

Delta boundary, depending not only on spatial runoff structure, but on the depth too. The second 

technique allowed us to avoid anomalous water elevation in Lena Delta zone (maximum runoff in 2008 

was observed at the end of May), to form the main freshwater channels and estimate the degree of 

influence of bathymetry data. In that case the freshwater input organized via the nodes (Chen et al. 

2006), the amount of nodes, over which the freshwater is supplied, is 35198. The way how the Lena 

discharge is implemented is leading to certain differences, mostly at short simulation times, as can be 

seen comparing the left and right columns of Fig. 4. These differences become less pronounced in longer 

runs. The advantage of distributing the discharge over close vicinity of boundary is smoother elevation 

anomalies. The gradient of elevation may be rather high in the vicinity of channels if the discharge is 

implemented as the boundary condition. 

c) 
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Fig. 4. (a) Surface salinity distribution simulated for the middle of May, 2008. (b) Same as (a), but in the absence 

of COSMO atmospheric forcing. (c) Same as in (a), but in the absence of tidal dynamics. The runoff is 

implemented as boundary condition (left column) and as distributed over some vicinity of the boundary (right 

column).   Salinity is in practical scale. 

  

a) 

b) 

c) 



 
 

Bibliography 

Bauch, D., Dmitrenko, I., Kirillov, S., Wegner, C., Hölemann, J., Pivovarov, S., Timokhov, L., Kassens, 

H., 2009. Eurasian Arctic shelf hydrography: Exchange and residence time of southern Laptev Sea 

waters. Continental Shelf Research 29 (15), 1815-1820, doi:10.1016/j.csr.2009.06.009. 

Bauch, D., Hölemann, J.A, Nikulina, A., Wegner, C., Janout, M.A., Timokhov, L.A., Kassens, H., 2013. 

Correlation of river water and local sea-ice melting on the Laptev Sea shelf (Siberian Arctic). J. 

Geophys. Res. Oceans 118, pp. 550–561. 

Chen, C., Beardsley, R.C., Cowles, G., 2006.  An Unstructured Grid, Finite-Volume Coastal Ocean 

Model. FVCOM User Manual, second ed. SMAST/UMASSD-06-0602.  

Chen, C.,  Liu, H., Beardsley, R. C.,  2003. An Unstructured Grid, Finite-Volume, Three-Dimensional, 

Primitive Equations Ocean Model: Application to Coastal Ocean and Estuaries. Journal of Atmospheric 

and Oceanic Technology 20(1), 159, doi: 10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2 

Chen C., Gao G.,Qi J., Proshutinsky A., Beardsley R.,Kowalik Z.,Lin H., Cowles G., 2009. A new high-

resolution unstructed grid finite volume Arctic Ocean model (AO-FVCOM): An application for tidal 

studies J. Geophys. Res., Vol. 114, C08017, doi:10.1029/2008JC004941. 

Costard, F., Gautier, E., Brunstein, D., Hammadi, J., Fedorov, A., Yang, D., Dupeyrat, L.,  2007. Impact 

of the global warming on the fluvial thermal erosion over the Lena River in Central Siberia. Geophys. 

Res. Lett.  34, L14501, doi:10.1029/2007GL030212. 

Dmitrenko, I., Kirillov, S., Eicken, H., Markova, N., 2005. Wind-driven summer surface hydrography of 

the eastern Siberian shelf. Geophysical ReSearch Letters 32, L14613. 

Dmitrenko, I. A.,  Kirillov, S. A., Krumpen, T., Makhotin, M., Abrahamsen, E. P., Willmes, S., 

Bloshkina, E., Hölemann, J. A.,  Kassens, H., Wegner, C., 2010. Wind-driven diversion of summer river 

runoff preconditions the Laptev Sea coastal polynya hydrography: Evidence from summer-to-winter 

hydrographic records of 2007–2009. Continental Shelf Research 30(15), 1656-1664.  

Dmitrenko, I. A., Kirillov, S. A., Bloshkina, E., Lenn, Y.D., 2012.  Tide-induced vertical mixed in the 

Laptev Sea coastal polynya, J. Geophys. Res. 117, doi:10.1029/2011JC006966. 

Ebner, L., Schröder, D., Heinemann, G., 2011. Impact of Laptev Sea flaw polynyas on the atmospheric 

boundary layer and ice production using idealized mesoscale simulations. Polar Research  30, 7210, 

doi:10.3402/polar.v30i0.7210.  

http://adsabs.harvard.edu/cgi-bin/nph-abs_connect?fforward=http://dx.doi.org/10.1175/1520-0426(2003)020%3C0159:AUGFVT%3E2.0.CO;2
http://pubget.com/search?q=authors%3A%22Igor%20A%20Dmitrenko%22
http://pubget.com/search?q=authors%3A%22Sergey%20A%20Kirillov%22
http://pubget.com/search?q=authors%3A%22Thomas%20Krumpen%22
http://pubget.com/search?q=authors%3A%22Mikhail%20Makhotin%22
http://pubget.com/search?q=authors%3A%22E%20Povl%20Abrahamsen%22
http://pubget.com/search?q=authors%3A%22Sascha%20Willmes%22
http://pubget.com/search?q=authors%3A%22Ekaterina%20Bloshkina%22
http://pubget.com/search?q=authors%3A%22Jens%20A%20H%C3%B6lemann%22
http://pubget.com/search?q=authors%3A%22Heidemarie%20Kassens%22
http://pubget.com/search?q=authors%3A%22Carolyn%20Wegner%22
http://pubget.com/search?q=issn%3A0278-4343+vol%3A30+issue%3A15&from=pgtmp_7c23adaab502d6dae4fa564d561c85c3
http://www.polarresearch.net/index.php/polar/article/view/7210
http://www.polarresearch.net/index.php/polar/article/view/7210


14 
 

Ernsdorf, T., Schröder, D.,  Adams, S., Heinemann,  G., Timmermann, R.,  Danilov, S., 2011. Impact of 

atmospheric forcing data on simulations of the Laptev Sea polynya dynamics using the Sea-ice ocean 

model FESOM.  J. Geophys. Res., 116, C12038, doi:10.1029/2010JC006725. 

Hölemann, J., Kirillov, S., Klagge, T., Novikhin, A., Kassens, H., Timokhov, L., 2011. Near-bottom 

water warming in the Laptev Sea in response to atmospheric and sea ice conditions in 2007.  Polar 

Research 30, doi: 10.3402/polar.v30i0.6425 

Jakobsson , M., Macnab, R., Mayer, L., Anderson, R., Edwards, M.,Hatzky, J., Schenke, H.W., Johnson, 

P., 2008.  An improved bathymetric portrayal of the Arctic Ocean: Implications for ocean modeling and 

geological, geophysical and oceanographic analyses. Geophys. Res. 

Lett.  35,  DOI: 10.1029/2008GL033520 

Kowalik, Z., Proshutinsky, A. Y.,  1993. Diurnal Tides in the Arctic Ocean, J. Geophys. Res.  98(C9), 

16,449–16,468, doi:10.1029/93JC01363. 

Kowalik, Z.,  Proshutinsky,  A. Y., 1994. The Arctic Ocean tides, in:  Johannessen, O. M., Muench, R. 

D., Overland,  J. E., The Polar Oceans and Their Role in Shaping the Global Environment, Geophys. 

Monogr. Ser. 85, 137–158, AGU, Washington, D. C., doi:10.1029/GM085p0137. 

Kowalik, Z., and A. Proshutinsky, 1995. Topographic enhancement of tidal motion in the western 

Barents Sea. J. Geophys. Res., 100(C2), 2613–2637, doi:10.1029/94JC02838. 

Lenn, Y. D., Rippeth, T. P., Old, C. P., Bacon, S., Polyakov, I., Ivanov, V.,  Hölemann, J., 2011.  

Intermittent Intense Turbulent Mixed under Ice in the Laptev Sea Continental Shelf. Journal of Physical 

Oceanography  41 (3), 531-547, doi:10.1175/2010JPO4425.1. 

Padman L. and Erofeeva S., 2004. A Barotropic Inverse Tidal Model for the Arctic Ocean. J. Geophys. 

Res., Vol. 31, DOI: 10.1029/2003GL019003 

Persson, P.O., Strang, G., A simple mesh generator  in MATLAB.  

http://persson.berkeley.edu/distmesh/persson04mesh.pdf    Last accessed: 30.07.2012 

Proshutinsky, A., Timmermans, M.-L., Ashik, I., Beszczynska-Moeller, A., Carmack, E., Eert, J., 

Frolov, I., Itoh, M., Kikuchi, T., Krishfield, R., McLaughlin, F., Rabe, B., Schauer, U., Shimada, K., 

Sokolov, V., Steele, M. , Toole, J., Williams, W., Woodgate, R., Zimmermann, S., 2011. Arctic Report 

Card: update for 2011, Ocean, http://www.arctic.noaa.gov/reportcard/ocean.html    Last accessed: 

30.07.2012 

http://www.arctic.noaa.gov/reportcard/ocean.html


 
 

Rozman, P., Hölemann, J. A., Krumpen, T.,  Gerdes, R., Köberle, C., Lavergne, T.,  Adams, S., Girard-

Ardhuin, F., 2011. Validating satellite derived and modelled Sea-ice drift in the Laptev Sea with in situ 

measurements from the winter of 2007/08. Polar Research  30, 7218, doi:10.3402/polar.v30i0.7218 

Schättler,  U., Doms, G., Schraff, C., 2012. A Description of the Nonhydrostatic Regional COSMO-

Model, Part VII: User’s Guide.  Printed at Deutscher Wetterdienst, Germany. 

Schröder, D., Heinemann, G., Willmes, S., 2011.  The impact of a thermodynamic Sea-ice module in the 

COSMO numerical weather prediction model on simulations for the Laptev Sea, Siberian Arctic. Polar 

Res. 30, 6334, doi:10.3402/polar.v30i0.6334. 

Sof'ina, E.V.,  2008. The simulation of tidal ice drift and ice-related changes in tidal dynamics and 

energy in Siberian continental shelf.  Dissertation, Russian State Hydrometeorological University (in 

Russian). 

Steppeler, J., Doms, G., Schättler, U., Bitzer, H.W.,  Cassmann, A., Damrath, U., Gregoric, G., 2003.  

Meso-gamma scale forecasts using the nonhydrostatic model LM.s.l.  Meteorol. Atmos. Phys.  82, 75–

96, doi:10.1007/s00703-001-0592-9. 

Voinov, G., 2002. Tide and tidal streams, in Polar Seas Oceanography: An Integrated Case Study of the 

Kara Sea. Springer, 147 – 214,  New York. 

Yang, D., Liu, B., Ye, B., 2005. Stream temperature changes over Lena River Basin in Siberia. Geophys. 

Res. Lett. 32, L05401, doi:10.1029/2004GL021568. 

Yang, D., Kane, D. L., Hinzman, L., Zhang, X., Zhang, T., Ye, H., 2002. Siberian Lena River 

hydrologic regime and recent change.  J. Geophys. Res.  107(D23), 4694, doi:10.1029/2002JD002542. 

 


