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Abstract

Microbial methane oxidation rates in ocean and freshwater systems reveal how much of emitted methane

from the sediments is oxidized to CO2 and how much can reach the atmosphere directly. The tracer-method

using 3H-CH4 provides a way to measure methane oxidation rates even in water with low methane concen-

trations. We assessed this method by implementing several experiments, collecting data from various envi-

ronments, and including recent literature concerning the method to identify any uncertainties that should

be considered. Our assessment reveals some difficulties of the method but also reassures previous assump-

tions to be correct. Some of the difficulties are hardly to be avoided, such as incubating all samples at the

right in situ temperature or limiting the variability of methane oxidation rate measurements in water of low

methanotrophic activity. Other details, for example, quickly measuring the total radioactivity after stopping

the incubation, are easy to adapt in each laboratory. And yet other details as shaking during incubation and

bottle size seem to be irrelevant. With our study, we hope to improve and to encourage future measurements

of methane oxidation rates in different environments and to provide a standard procedure of methane oxida-

tion rate measurements to make the data better comparable.

Introduction

Measurements of methane oxidation (MOX) rates are

essential to understand why the large input of methane into

oceans, lakes, rivers is in opposition to the relatively low

flux of the gas to the atmosphere (Reeburgh 2007). Methane

(CH4) is after water vapor and CO2, the most important

greenhouse gas with a global warming potential that exceeds

carbon dioxide (CO2) 34-fold over a 100 yr timescale (IPCC,

2013). Methane is produced in aquatic sediments as well as

in the water itself. In sediments, methane is generated by

microbial breakdown as the last step of anaerobic degrada-

tion of organic matter (biogenic methane) and by thermoca-

talytic processes by increased temperature and pressure in

deeply buried sediments [thermogenic methane (Tissot and

Welte 1984)]. In the water column of the ocean, methane

production has been linked to methylphosphonic acid (Karl

et al. 2008; Metcalf et al. 2012) and dimethylsulfoniopropio-

nate (Damm et al. 2010) as substrates for methanogenesis, as

well as to anaerobic microenvironments (Reeburgh 2007).

Also in the water column of lakes an until now unknown

process of methane production in oxygenated water has

been suggested based on incubation experiments and isotope

analysis (Tang et al. 2014).

Despite of all these methane sources only little of the gas

actually escapes to the atmosphere. About 11 Tg CH4 yr21 is

emitted to the atmosphere from the ocean (Bange et al.

1994) contributing 2% to the � 550 Tg CH4 yr21 from all

natural and anthropogenic sources (IPCC, 2013). A similar

quantity of 40 Tg yr21 (range 8–73 Tg yr21) originates from

freshwater sources like rivers, lakes, and reservoirs (Bastviken

et al. 2011; IPCC, 2013). These limited quantities are

thought to be due to microbial oxidation of the gas in the

water, which maintains the bulk of the ocean at low nano-

molar concentrations (Reeburgh 2007).

Aerobic MOX is realized by methanotrophs, who oxidize

methane with oxygen to CO2 and water. Methane oxidizing

bacteria are found in oxic sediments and in the water col-

umn of most marine and freshwater settings, where oxygen

is available (Jensen et al. 1992; Ding and Valentine 2008;
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Rahalkar et al. 2009; Tsutsumi et al. 2012). Aerobic methano-

trophic bacteria have been classified as type I and type II

methanotrophs based on their phylogenetic position, carbon

assimilation pathways, and the arrangement of intracellular

membranes, and they belong to the classes Gammaproteobac-

teria and Alphaproteobacteria, respectively (Bowman 2006).

Reported turnover times of methane range from 100s of

years in the open ocean (Jones 1991; Angelis et al. 1993) to

several years in the coastal seas (Heintz et al. 2012) and to

days in freshwater environments (Abril and Iversen 2002).

Besides the aerobic oxidation of methane, it can also be oxi-

dized in the absence of oxygen, that is, in sediments and in

anoxic waters. Especially the oxidation in sediments by

mostly archaea but also some bacteria plays an important

role in reducing the methane flux from the sediment into

the water column (Kr€uger et al. 2005).

Several techniques have been implemented to qualify and

quantify the microbial methane consumption. MOX can be

measured by the decrease of methane concentration over

time (Scranton and Brewer 1978; Abril et al. 2007), the

change in isotopic composition (Bastviken et al. 2002) or by

a combination of stable isotope and conservative tracer

measurements (Rehder et al. 1999; Heeschen et al. 2004).

However, adding a radioactive tracer such as 3H-CH4 (Valen-

tine et al. 2001; Mau et al. 2013) or 14C-CH4 (Reeburgh et al.

1992; Pack et al. 2011) makes quantification more sensitive.

Especially the method using 3H-CH4 has become more

and more established over the last decade as sample process-

ing requires only a few steps, which can be carried out on

board a research vessel, the tracer has become commercially

available, and it has several advantages compared to 14C-CH4

(Table 1). 3H-CH4 has a higher specific activity (3.7 – 7.4 3

1011 Bq mmol21) than 14C-CH4 with 3.7 2 18 3107 Bq

mmol21. Thus, the methane concentration of a water sample

is changed by<3 nmol l21 3H-CH4 whereas the addition of
14C-CH4 increases methane concentration of a sample by up

to 500 nmol l21. This significantly alters the concentration

of the gas especially in samples collected from environments

with low in situ methane concentrations. However, recently

also a low-level 14C-CH4 method has been proposed, where
14C is measured with accelerator mass spectrometry (Pack

et al. 2011). Furthermore, the 3H-CH4 has the advantage of a

higher permitted radioactivity (109 Bq) compared to 14C

with 107 Bq, which can be transported without special

license (German Radiation Protection Ordinance, 2001, and

ADR 2.2.7.1.1, Tab. 2.2.7.2.2.1, U.S. DoT, CFR Part 173.436).

The working limits seem to differ in each country, thus, we

will not give further information here. For transportation

with ships, documents according to the IMO are recom-

mended (IMO class 7, UN number 2910). For transportation

with airplanes, documents according to the IATA are recom-

mended (IATA DGR 10.3.1, Tab 10.3.A).

Regardless of the radiotracer, more and more often tracer

incubations are conducted on board of research vessels,

where similar to any laboratory country specific radiation

regulations apply. The transport of the radioactive tracer,

radioactive samples, and radioactive waste has to be organ-

ized according to these safety regulations. Ideally, the han-

dling is done in an isotope van, especially if other parties of

a cruise are interested in the natural abundance of 3H or 14C.

Areas on deck, where incubations are carried out, should be

monitored for potential spills on a regular basis and these

areas should be regularly hosed. This is particularly impor-

tant on small vessels with too little space for an isotope van.

Table 1. Comparison of the main characteristics of 3H labeled methane vs. 14C-labeled methane.

3H-methane 14C-methane

Reaction 3H-CH4 1 2O2 => CO2 12 3H-H2O 14C-CH4 1 2O2 => 14C-CO2 12H2O 1 14C -

biomass

Specific activity High (0.37–0.74 TBq mmol21), thus,<3

nmol L21 methane are added to a water

sample

Low (37–185 MBq mmol21), thus,<500

nmol L21 methane are added to a water

sample

Tracer storage Limited tracer storage due to decomposition of

the tracer over time

No problems with tracer storage known to date

Lab-equipment GC for methane concentrations

Liquid scintillation counter for radioactivities.

GC for methane concentrations

Liquid scintillation counter for radioactivities.

Tube furnace and shaker for quantification of
14C-CH4 and 14C-CO2

Filtering devices for biomass determination.

Environment Applicable to aerobic environments only Applicable to aerobic and anaerobic

environments

Exemption limit Higher exemption limit Lower exemption limit

Ionization energy Low ionization energy (19 keV), thus, possible

interference with chemo luminescence

Higher ionization energy (156 keV) less interfer-

ence with chemo luminescence
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Furthermore, sufficient ventilation should be assured by an

open window, open door, or working outside if no ventila-

tion hood is provided. Of principle importance are regular

wipe tests to screen for any potential contaminations. With

sufficient care the radiotracer technique provides a great tool

to investigate and quantify microbial methane oxidation.

Although we describe here a rather established method,

we felt the need to publish an extensive testing of the

method to get the best results for current and future users.

The idea arose during the Pergamon workshop in Kiel in

2011 where several parties met to discuss MOX rate measure-

ments. Every user tested the method by implementing differ-

ent experiments. Here, we summarize the tests to make the

method of measuring MOX by adding 3H-CH4 more compa-

rable between laboratories, to facilitate it for newcomers and

also to report on the little tricks and pitfalls hidden in the

detail of every method.

Material and methods

To test parts of the MOX rate measurements using 3H-

CH4 as tracer, we followed the general method described

below. Deviations and verifications of this protocol are indi-

cated in the assessment part.

Methane oxidation rate

Water is sampled directly from Niskin bottles attached to

a CTD/rosette. A 10–20 cm long tubing, which fits to the

stop-cock of the Niskin bottle and reaches to the bottom of

the sampling bottle, is used to collect water from the water-

sampling device. Water samples are collected in 12–160 mL

glass bottles by filling the bottle from the bottom to the top

and flushing the bottle twice to minimize contact of the

sampled water with the surrounding air, that is, avoiding

changes of the in situ methane and oxygen concentrations.

The glass bottles are then closed avoiding air bubbles with

rubber stoppers and are crimp sealed. Several water samples

have to be collected: two to three bottles for determination

of MOX rates, one bottle as killed control, and one to two

bottles for analysis of in situ methane concentrations.

After crimp sealing of the water sample, the radioactive

tracer is added to the sample and poisoned control bottles.
3H-CH4 (as gas), commercially available from Biotrend (K€oln,

Germany) or from American Labeled Chemicals (St. Louis) is

added by syringe using a second needle to allow for displace-

ment of water. The amount of added 3H-CH4-tracer has to

be adapted to the environment, it should be high enough to

produce a measurable quantity of 3H-H2O, and as low as pos-

sible, to minimize any significant methane concentration

changes in the water sample.

The addition of the 3H-CH4 is>1000 Bq resulting in

methane addition in the pico molar range (10212 mol). After

injection of the 3H-CH4, all bottles are vigorously shaken for

at least 30 s to equilibrate the gaseous tracer with the liquid

phase.

The samples are then incubated in the dark at near in situ

temperature. After incubation for hours until days, microbial

activity is stopped by poisoning or the samples are directly

processed.

Then the total radioactivity (3H-CH4 and 3H-H2O) added

to the sample and the product of the oxidation, 3H-H2O,

have to be measured in the sample and control bottles (Fig.

1). To determine the total radioactivity of the sample, the

sample bottle (or control bottle) is opened and 1–2 mL sub-

sample is pipetted into a seven milliliter scintillation vial.

Five milliliter scintillation cocktail is added to the subsam-

ple. The scintillation cocktail should be specific for 3H-sam-

ples and aqueous solutions (e.g., Ultima Gold LLT from

Perkin Elmer). Scintillation cocktail and sample are mixed by

shaking the scintillation vial and counted in a liquid scintil-

lation counter. This can be a laboratory-based counter (e.g.,

from Perkin Elmer) or a small, transportable one (e.g., Triath-

ler from Hidex, Finland). Decays per minute (dpm) are calcu-

lated by the instruments based on the efficiency determined

from the internal quench correction and calibration.

After counting the total radioactivity (3H-CH4 and 3H-

H2O) of the sample, the 3H-CH4 is removed from the sample

and the remaining 3H-H2O counted. For the removal of the
3H-CH4, part of the sample is discarded to prevent overflow

when sparging the sample with nitrogen or air. A synthetic

air or a nitrogen gas bottle is connected to a sparging device

that consists of several long needles or tubes to process more

than one sample at a time. During expeditions, we also used

an aquarium pump. The needles or tubes should reach

nearly to the bottom of the bottle (i.e., be � 10-mm long)

and the tubes should have a small diameter (� 1 mm) to

leave sufficient space for ventilation at the neck of the bot-

tle. After sparging the sample for at least 30 min, a 1–2 mL

subsample is mixed with five milliliter scintillation cocktail

in a seven milliliter scintillation vial and counted in a liquid

scintillation counter.

Fig. 1. Scheme for analysis of the 3H-radioactivity in the total fraction
and in the water fraction of a sample (or control bottle).
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Methane concentration

To calculate the MOX rate, the methane concentration of

the respective sample has to be known. Commonly, an addi-

tional water sample is collected from the same Niskin bottle

and poisoned to stop microbial MOX. The sample is then

stored cold until methane concentration analysis.

However, if the samples were manipulated by adding dif-

ferent amounts of 3H-CH4 or plain CH4, it is necessary to

measure the methane concentration in each sample before

measuring its radioactivity (Fig. 2). Therefore, a 10 mL

syringe without piston is inserted into the killed sample

(120–160 mL sample). With a second syringe 10 mL of nitro-

gen are injected into the sample bottle while water flows

into the syringe without piston assuring atmospheric pres-

sure conditions in the sample bottle. Part of this water is

used for measurement of the total radioactivity (3H-CH4 and
3H-H2O; see above). The sample bottle with headspace is

shaken and left standing for at least one day to equilibrate.

An aliquot of the headspace is then analyzed with a gas

chromatograph (GC) equipped with a flame ionization detec-

tor to determine the methane concentration.

Calculation

After measuring methane concentration, the total radioac-

tivity (3H-CH4 and 3H-H2O) and the radioactivity of the pro-

duced water (3H-H2O), turnover time (s in d) and MOX rates

(nmol l21 d21) can be calculated assuming first-order kinetics

(Valentine et al. 2001):

k
0 ¼ 3H-H2O= 3H-CH413H-H2O

� �� �
=t (1)

MOX ¼ k
0
3 CH4½ �in situ (2)

s ¼ 1=k
0 ¼ CH4½ �=MOX (3)

where k0 is the first-order rate constant calculated as the frac-

tion of 3H-CH4 oxidized per unit time (t) and [CH4]in situ is

the ambient methane concentration in nmol L21. The meth-

ane concentration should be measured in separate bottles,

without tracer addition. k0 was termed the pseudo first-order

rate constant for the methane transport into the cells at con-

stant cell population by Button (1991). The turnover time

can also been seen as an indication of the relative activity of

various water samples as described by Koschel (1980).

The radioactivity of the 3H-H2O fraction in the killed con-

trols is used to check for the amount of not biologically pro-

duced water. In case this background value is>1% the

radioactivity of the total fraction, it should be subtracted

from the sample value (Jørgensen 1978). In marine waters

about 0.1% of the injected tracer was found to be “abiotic

water.” In freshwaters the percentage can increase to about

5%.

Statistics

Wilcoxon Rank Sign Tests for nonparametric data were

performed with Kaleidagraph 4.1.

Assessment

Number of replicates

Replicates are essential to obtain a good estimate of MOX

rates. Commonly, 2–3 replicates are used to quantify MOX

rates (Schubert et al. 2010; Mau et al. 2013). To test the qual-

ity of data obtained from triplicate measurements, the coeffi-

cient of variation (cv 5 standard deviation 3 100/mean) was

calculated for data collected during eight cruises in the

North Sea and Elbe in 2013. Our results show that the coeffi-

cient of variations is rather high (23% 6 11%, n 5 58) at low

activities (< 10 nmol l21 d21) and lower (7% 6 5%, n 5 17) at

higher activities (> 10 nmol l21 d21; Fig. 3). For comparison,

when measuring the bacterial production in the water

Fig. 2. Modified scheme for measuring the methane concentration in
the sample bottle, before assessing the radioactive fractions.

Fig. 3. Coefficients of variation of triplicate samples in relation to MOX
rates collected during eight research cruises in the North Sea and in the

Elbe in 2013.
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column using the leucine incorporation method, the coeffi-

cient of variation ranges from 6% to 10%, with 3–4 repli-

cates (Ducklow et al. 2012; Simon et al. 2012). Hence, if a

better precision and discriminatory power is needed, for

example, when comparing different experimental setups,

more than three replicates are necessary. The precision of

replicates describes the total error of MOX rates. This total

error consists of the error of each step of the method and

the heterogeneity of the methanotrophic population in the

water sample. All the tested error causes evaluated below,

thus, most likely affect low rate measurements more than

high rate measurements.

Bottle size

Glass bottles of different sizes (25–160 mL) are used to mea-

sure aerobic MOX rates. While larger samples contain a higher

absolute number of bacteria, and thus, might be more repre-

sentative, small sample vials have laboratory advantages. Less

tracer has to be added to smaller samples, less space is needed

during incubation, and less radioactive waste is produced. To

test if small sample volumes are representative or if the coeffi-

cient of variation increases due to the small sample volume, a

batch of North Sea water was filled in 12–160 mL glass bottles

and incubated as described above. The comparison of incuba-

tion of different sample volumes showed no significant differ-

ences in turnover times (Wilcoxon Rank Sum Test, n 5 5).

Therefore, small water samples are adequate, at least in waters

with a turnover time of less than 20 d.

Stoppers

There are several different rubber stoppers available to

firmly close the sample bottles. The stoppers should be gas

tight to prevent any losses of methane and at the same time

should be “soft” enough to allow easy handling with nee-

dles. However, most of the commercially available rubber

stoppers leach organic and inorganic contaminants, which

can inhibit or limit MOX. An extensive study was conducted

by Niemann et al. (2015) recommending halogenated butyl

rubber stoppers.

Adding the 3H-CH4 tracer

The tracer can be added to the sample as a small bubble

of concentrated 3H-CH4 (10 lL) or as a bigger bubble (100

lL) diluted with nitrogen. According to the ratio of surface

to volume of a sphere, more gas is diluted from small bub-

bles than from large ones. Furthermore, large bubbles may

result in stripping of methane from the sample into the bub-

ble in case of methane rich waters. However, handling of a

10 lL volume in contrast to a 100 lL volume is rather tricky

especially on a moving boat. Furthermore, using diluted

tracer has the advantage that the rate of decomposition is

decreased. To test the effect of the bubble size, North Sea

water was incubated with a 10 lL and a 100 lL bubble con-

taining 131 6 40 Bq and 190 6 23 Bq, respectively (n 5 10

each, 24 h, at ambient methane concentration of 15 nmol

l21 at 18�C). The turnover time of the 10 lL samples

(5.1 6 0.4 d) was slightly higher than the turnover time of

the 100 lL samples (4.5 6 0.4 d). The difference is in the

range of the error of replicates indicating that the enhanced

solubility for the 10 lL sample was negligible.

Incubation time

The incubation time has to be adapted to each environ-

ment. The time period should be long enough to produce a

measurable amount of 3H-H2O and as short as possible to

minimize incubation artefacts such as decomposition of the
3H-CH4 or isotopic exchange reactions. To test the appropri-

ate incubation time, one or more time series should be con-

ducted. A time series is implemented by taking water

samples from one location and incubating duplicate or tripli-

cate samples for 3 h, 6 h, 12 h, 1 d, 2 d, etc. However, dur-

ing field campaigns such time series may be difficult to

perform due to the lack of time, space, or counting instru-

ments. To provide a general idea of appropriate incubation

times, we compiled data of time series of freshwater and

marine environments. Our compilation suggests incubation

times of<24 h in freshwater and 1–3 d in marine systems

(Fig. 4). The time series indicate that 3H-CH4 uptake per

time is linearly related as long as the substrate (methane) is

not limited. In case of the freshwater sample, the linear rela-

tion (first-order kinetics) is given during the first day of incu-

bation and in case of the seawater samples over up to 5 d.

During the incubation

Incubation conditions for rate measurements should

mimic the natural environment to determine a rate that

Fig. 4. Time series conducted by incubating samples from different

environments for 0.1–5 d. Freshwater from the pond of the MPI-Bremen
(squares) and seawater from Storfjorden, Svalbard (circles), the North
Sea (upward triangle), and the Santa Barbara Basin (downward triangle).
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resembles as close as possible the in situ rate. Typically,

water samples are incubated at near in situ temperature, in

the dark, and without motion.

In a set of experiments, we assessed the influence of temper-

ature on the MOX rate. Elbe and North Sea water samples that

were incubated at temperatures from 2�C to 25�C show the

temperature curve of the MOX reaction (Fig. 5). We determined

the Q10-factor, which indicates the temperature dependence of

a process: according to Raven and Geider (1988):

Q10 ¼ expð2103m4Tis
2Þ

where Tis is the in situ temperature and m the slope of the

regression line of the Arrhenius plot (the inverse of the abso-

lute temperature vs. the natural logarithm of the MOX rate).

We calculated Q10 values to range between 1.52 and 1.75, for

Elbe and North Sea water, respectively. These values are in

accordance with Q10 values between 1.4 and 2.1 determined

for MOX rates in northern peatlands by (Dunfield et al.

1993). Also, Q10 values of 1–1.84 were reported for ammonia

oxidation in a marine setting (Horak et al. 2013). Q10>1 indi-

cates that the reaction rate increases with increasing tempera-

ture. Therefore, incubation temperature should be as close as

possible to the in situ temperature or should be corrected if

one wants to determine the in situ MOX rate.

Samples are generally incubated in the dark; even though

the influence of light on microbial MOX is unknown. Some

studies suggest an inhibitory effect of light on methanotro-

phic growth and activity (Dumestre et al. 1999). Other stud-

ies suggest that the inhibitory effect depends on type of

methanotrophs (Osudar et al. unpublished data). Unless

more knowledge is available, we recommend to incubate the

samples in the dark and also to minimize samples processing

under high laboratory light.

The influence of motion/shaking of a sample during the

incubation was tested. The motion not only increases the

solubility of the tracer bubble but also imitates the motion

of a research vessel at sea. The 120 mL sample bottles were

put on a rocker during incubation to move the tracer bubble

along the side of the bottle. No significant difference was

found between samples from the rocker and samples incu-

bated without motion (n 5 5 each). Also, the coefficient of

variation was not different. Shaking of the sample is, thus,

not necessary during incubation.

Stopping the incubation

If immediate analysis of samples after incubation is imprac-

ticable, a “killing” substance to stop microbial activity has to

be added to the sample. This can be a toxic substance or a sub-

stance that shifts the pH. Strong toxic substances are mercury

chloride (HgCl2) and sodium azide (NaN3), which both require

environmental safe disposal. Sulfuric acid (H2SO4) or sodium

hydroxide solution (NaOH) can be used to shift the pH and to

stop microbial activity. We compiled data of the different

“killing” substances in Table 2, which shows the amount of
3H-H2O in the killed control as percent of the total radioacitiv-

ity (3H-CH4 and 3H-H2O). In seawater samples, we observed 2–

15 times as high counts in control samples using NaN3 in con-

trast to HgCl2 (Table 2). For HgCl2, it should be noted that

some methanotrophs may be able to reduce HgCl2 to elemen-

tal Hg, but they need to use most of the energy that they gain

from methane metabolism to fuel mercury (II) reduction

(Boden et al. 2011). Therefore, especially methanotrophs

might not be stopped by adding HgCl2. In seawater both

NaOH and H2SO4 can be used to poison the samples. The 3H-

H2O radioactivity of the controls using 10 mol L21 NaOH was

1.0% 6 0.3% (n 5 35) in North Sea water, while 25% H2SO4

had a slightly better performance (Table 2). In freshwater in

most cases 5 mol L21 NaOH was superior to 25% H2SO4 in

stopping the samples (Experiments I and II in Table 2). Field

data revealed a low residual activity when stopping with

5 mol L21 NaOH (Elbe river near Hamburg; Lake Constance).

However, in some cases (Czech part of the Elbe) NaOH was

not sufficient and best results were obtained with concen-

trated H2SO4 (96%; Table 2). Overall H2SO4 was the best kill-

ing reagent, with a better performance than NaOH, which in

turn is advantageous compared to HgCl2 and NaN3 that are

both environmentally hazardous. In the marine environment

diluted (25%) H2SO4 was sufficient, whereas in freshwater

concentrated H2SO4 appears to be superior.

After stopping the incubation, the samples should be ana-

lyzed as soon as possible. Experiments with storage time of
3H-CH4-labeled samples show that within the first week

there is a significant loss of 3H-CH4, while the 3H-H2O

Fig. 5. Influence of the incubation temperature on the MOX rate.
North Sea water (triangles) and Elbe water (circles) with in situ methane
concentrations of 20 nmol L21 and 32 nmol L21, respectively, were

incubated for 24 h at different temperatures. Water samples were col-
lected in January 2011 and had in situ temperatures of 3�C.
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fraction remains stable (Fig. 6a). Presumably the 3H-CH4 is

lost through diffusion through the stoppers. This loss results

in an increase of the ratio (3H-H2O/3H-CH4 1 3H-H2O; Fig.

6b). This increase of the ratio will result in an overestimation

of the MOX rate by 20–40%.

Thus, samples should be analyzed within 3–4 d, or if this

is not possible an overestimation of the MOX rate of approx.

20% has to be accepted.

Total radioactivity (3H-CH4 and 3H-H2O) of the sample

After incubation, the total radioactivity (3H-CH4 and 3H-

H2O) that was added to the water sample has to be deter-

mined. We determined the total radioactivity in all bottles,

samples, and controls. This allowed for a better precision, as

we found a high variability (> 10%) between different

bottles.

However, as methane has a low solubility, it rapidly equili-

brates with the headspace in the scintillation vial and can

leak from the scintillation vial. 3H-CH4 in the headspace can-

not be counted in a liquid scintillation counter. To measure

the total radioactivity (3H-CH4 and 3H-H2O) most accurately,

we tested vigorous vs. gently mixing of a sample with scintil-

lation cocktail, how long the mixed sample can be left stand-

ing before analysis, and the use of polyethylene vs. glass vials.

Vigorous shaking vs. gentle mixing was tested by adding

one milliliter sample to five milliliter scintillation cocktail in

Table 2. Field and experimental data on the influence of the stopping reagent on the amount of 3H-H2O in the killed control as
percent of the total radioactivity (3H-CH4 and 3H-H2O). Given are the averages 6 standard deviation and the number of samples in
brackets. The experiments were performed with water from the Elbe near Hamburg and North Sea water near Helgoland. We added
0.2–0.3 mL of base or acid to 120 mL sample bottles, resulting in a pH of<1.5 or>10.

Location/

experiment 5M NaOH 10 mol L21 NaOH 25% H2SO4 95% H2SO4 HgCl2 NaN3

Seawater Santa Barbara 0.160.0 (6) 0.560.2 (6)

Seawater North Sea 1.060.3 (35) 0.160.2 (39)

Freshwater Elbe near Hamburg 3.864.0 (37)

Freshwater Elbe near Prague 8.562.6 (12) 9.564.5 (12) 0.861.7 (31)

Freshwater Lake Constance 5.267.1 (50)

Freshwater Exp. I 5.461.0 (4) 37.960.3 (4)

Seawater 0.260.1 (4) 0.060.0 (4)

Freshwater Exp. II 0.460.1 (3) 28.0612.6 (3)

Fig. 6. The influence of the storage time on the radioactivity in the different fractions and on their ratio. Incubations of North Sea water were stopped
after 24 h with 25% H2SO4 and two to four bottles were analyzed immediately. The other samples were stored at 4�C and measured after the indi-

cated time. (A) The radioactivity in dpm in the fraction (3H-CH4 1 3H-H2O) with upward triangles and the radioactivity in the 3H-H2O fraction with
downward triangles. (B) The ratio (3H-H2O/3H-CH4 1 3H-H2O) of three experiments, the triangles are from the same experiment shown in figure A.
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each of two scintillation vials. One of the vials was gently

turned upside down 3–4 times whereas the other was vigo-

rously shaken by hand. The results show on average 7% less

radioactivity in the vigorously shaken samples than in the

gentle mixed samples (Supporting Information 1). Vigorous

shaking of the samples with the cocktail, thus, leads to a

faster equilibration and higher leakage; therefore, mixing

should be accomplished gently.

Furthermore, we observed that the total radioactivity rap-

idly decreases over time after addition of the scintillation

cocktail and mixing (Fig. 7). Glass vials were found to have a

slightly better performance than polyethylene vials. In glass

vials, the total radioactivity decreased by � 15% within

60 h, whereas in polyethylene vials radioactivity was reduced

by 25% in 60 h. Already in the first hour, 4% of the total

radioactivity is lost using polyethylene vials.

As the loss of radioactivity is due to equilibration between

the fluid and the gas phase, the loss depends on the meth-

ane concentration in the vial, and might be lower at low

methane concentrations. However, the experiments show,

that samples should be immediately counted after mixing.

Further, we recommend to open and process less than 10

samples at once and set the counting time to 1–3 min as

otherwise the total radioactivity of the last sample analyzed

is biased due to 3H-CH4 leakage in the headspace.

Radioactivity of the water fraction (3H-H2O)

To determine the amount of water that has been pro-

duced by the methanotrophic bacteria through the oxida-

tion of methane, the radioactivity of the 3H-H2O has to be

quantified (Table 1). Therefore, the remaining 3H-CH4 has to

be removed from the sample, which can be done by sparging

the sample with nitrogen or air. We moistened the air by

directing it through a washing flask to prevent evaporation

of sample water. However, this effect appears negligible and

accounts for<0.2% of the 3H-H2O if one assumes an even

distribution of the 3H-CH4 in the sample, an evaporation

rate of 200 g water m22 h21 and a sparging time of 30 min.

To test for the appropriate time to remove all of the 3H-

CH4, we sparged samples with a high and low activity for 5–

30 min, that is, Elbe water and North Sea water, respectively.

In the active samples about 28% of the added 3H-CH4 was

found in the water fraction. In the less active samples, only

2% of the 3H-CH4 was found in the water fraction. In both

cases, a stable counting was reached after 20–30 min of

sparging (Fig. 8).

In contrast to the total radioactivity (3H-CH4 and 3H-

H2O), the radioactivity of the 3H-H2O in the scintillation

vial was stable over time (70 h, Supporting Information 2).

Fig. 7. Loss of 3H-CH4 from the total radioactivity (3H-CH4 and 3H-

H2O) in a scintillation vial with time. The scintillation vials contained a
two milliliter subsample and five milliliter scintillation cocktail. The same
vials were counted at different times.

Fig. 8. Identification of the necessary sparging time to remove not

microbially oxidized 3H-CH4. Elbe water (squares, n 5 3) and North Sea
water (circles, n 5 3) samples were incubated for 24 h and stopped by
adding a poison. Radioactivity was measured after different times of

sparging. Note the logarithmic scale of the y-axis.
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Therefore, the counting time can be extended to 10 min, to

get a better statistical quality of the counts. The 2% sigma

value as measured by the liquid scintillation counter for a

given counting time decreased from 2% at 1 min to 0.6% at

10 min counting time.

Storage of the 3H-CH4 tracer

Because 3H-compounds generally have a high specific

activity and, thus, a high radioactive decomposition rate,

this section provides advice on the optimal conditions for

storing the 3H-CH4 tracer. Decomposition is the interaction

of emitted particles with the immediate surroundings and/or

with the molecules of the labeled compound causing

destruction of the labeled substance. To lessen the decompo-

sition, it is necessary to keep the number of interactions as

low as possible. This can be achieved by storing the tracer at

low temperatures and by dilution of the tracer. For the 3H-

CH4 tracer dilution from the original ampoule, we recom-

mend to use nitrogen, instead of air. In this way, reactions

with OH and other compounds of the air will not occur. If

the 3H-CH4 tracer is to be used over months, it is best to

have subsamples in a number of vials. This way, vials to be

used later can be kept in the refrigerator to avoid reopening

and warming/cooling cycles. Furthermore, 3H-CH4 tracer is

commonly stored on saturated salt solution, which decreases

the likelihood of formation of reactive species. The water

molecules surround the highly charged Na1 and Cl2 ions,

increasing the structure of water and reducing the number

of “free” water molecules, which can form reactive species

such as OH2 radicals (Emerson and Hedges 2009).

Background 3H-H2O

Some of the 3H-H2O is often suggested not to result from

microbial MOX but from isotopic exchange reactions or

decomposition of the tracer. Salinity and reactive species (e.g.,

OH2, H1) are assumed to influence these processes (see stor-

age of the tracer). That is, background 3H-H2O is supposed to

be higher in less saline water because more “free” water mole-

cules are around, which are broken by radiation to, for exam-

ple, OH2and H1 ions, and react with the tracer forming 3H-

H2O. Similarly, pH modifies water to contain more reactive

species. To test the influence of (i) salinity and (ii) pH on the

concentration and stability of the background 3H-H2O, we

autoclaved water (deionized water, freshwater, seawater, a sat-

urated salt solution, and freshwaters and seawaters with differ-

ent pHs) to assure that all microbial activity is stopped. Then,

we added the same amount of tracer to all samples. The sam-

ples were subsequently incubated in the dark at 10�C for up to

11 d. The results show no significant differences between the

different setups, nor a significant change of the background

value over time (Fig. 9). Apparently neither the availability of

“free” water molecules in low salinity water, nor the increase

in H1 (acidic water) or OH2 ions (basic water) led to elevated

concentrations of 3H-H2O over the 11-d time period. There-

fore, the isotopic exchange reaction and decomposition of the
3H-CH4 tracer is negligible over typical time periods of incuba-

tions (hours to 3 d).

Methane concentrations

The methane concentration is crucial for the calculation

of the MOX rate. However, the concentrations can be deter-

mined either in separate bottles, in the control bottles or in

the sample itself. The first possibility represents the in situ

concentrations, while in the other ones, methane

Fig. 9. Percent of 3H-tracer remaining in autoclaved water after incuba-

tion and sparging for 30 min to remove 3H-CH4. Samples were stored at
10�C for up to 11 d. (A) Incubations with different salt concentrations:
Milli Q (downward triangles), tap water (squares), seawater (circles),

and brine (upward triangles). (B) Incubations with different pH: tap
water with pH 5 (filled circles) and 9 (engulfed circles), seawater with

pH 5 (filled squares) and 9 (crossed squares).
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concentrations are altered due to the addition of 3H-CH4.

The addition of 3H-CH4 should not increase the in situ

methane concentrations significantly.

In several sets of samples, we determined the methane

concentration (i) in separate bottles, (ii) in the killed con-

trols, and (iii) in the sample bottles. Adding a diluted 3H-

CH4 (1 3 1011 Bq mol21) increased the methane concentra-

tion in the samples and controls by 3 nmol l21 or to 103%

and 135% of the in situ concentration (Fig. 10). Subse-

quently, the MOX rate calculated with the different meth-

ane concentrations also were very similar. However, on a

second cruise the 3H-CH4 was more concentrated (5 3 1012

Bq mol21) and the methane concentrations in the samples

and controls increased 1.5–5 times (to 138% and 469% of

the in situ concentration). Thus, the MOX rates calculated

with the methane concentrations of the control or the sam-

ple increased also by 1.5–5 times and were 1.5–5 times faster

than the MOX rate calculated with the in situ methane con-

centration (Fig. 10). The experiment shows that (1) an addi-

tional sample for analysis of the in situ concentration is the

easiest and most accurate way to calculate MOX rates and

(2) the methane concentration of the 3H-CH4-tracer should

be adjusted for low methane concentration environments.

Using the same dataset, MOX rates were calculated based

on the difference in methane concentration between the

sample and control bottles. As methane consumption only

takes place in the sample but not in the control bottle. In

samples with high methanotrophic activity, calculation of

the MOX rate with the 3H-CH4-tracer measurement vs. cal-

culation of the difference in concentration were comparable

(158 6 4 nmol L21 d21 vs. 144 6 31 nmol L21 d21), however,

at low activities the difference in methane concentrations

were within the measurement error of the GC (0.8 6 2.4

nmol L21 d21) and, thus, not comparable with the radio-

tracer measurements (0.05 6 0.01 nmol L21 d21). The latter

comparison illustrates, why tracer experiments are essential

in determining aerobic MOX in waters with low methane

waters where slow MOX rates are expected. In these waters,

the change in methane concentration over time cannot be

measured by GC.

MOX rate calculation with time series or single end point

measurement

The MOX rate of a specific water sample can be calcu-

lated from a time series or as most often is the case from a

single end-point measurement. During a time series, con-

sumption of 3H-CH4 is measured after an incubation time

of for example 0.5 d, 1 d, 2 d, 3 d, the slope of a linear

regression of the fraction of the 3H-CH4 oxidized vs. time is

used to calculate k0 and then the MOX rate. The rate con-

stant, k0, is, thus, determined from a dataset (n�8). In con-

trast, single end-point measurements derive k0 from

replicate samples (n�2). Commonly single end-point meas-

urements are made assuming first-order kinetics, that is, the

reaction depends solely on the availability of one substrate,

which is methane in this case. Further, it is assumed that

the cell population is not growing. To test the reliability of

these assumptions, we compared k0 derived from (i) a linear

Fig. 10. Methane concentrations measured in a separate water samples, in control bottles, and samples bottles, the latter two contain tracer (A).
MOX rates calculated with the corresponding in situ methane concentrations, the methane concentrations in the control and sample bottles (B).

North Sea and Elbe water was collected for this experiment. Note the break in the y-axis.
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regression of time series data, (ii) from the average of the

time points of a time series, and (iii) the commonly used

24 h incubation. We used data from marine environments

(North Sea and Svalbard), as well as freshwater environ-

ments (MPI-pond and Lake Constance), in total 10 datasets.

Incubation times ranged from 2 h to 24 h for the fresh-

water samples and from one day to five days for the marine

samples.

As a first step for the time series data, we tested if a linear

regression sufficiently describes the data. For all datasets, the

average of the residuals was equal to zero (t-test for “0”).

Also the residuals were normally distributed (Shapiro–Wilk

Normality Test with p 5 0.01, except one dataset). This indi-

cates that the difference from the measured data to the cal-

culated line fit was randomly distributed and showed no

systematic deviation. Comparing k0 as calculated by (i) a lin-

ear regression or by (ii) average of single end points, revealed

no significant difference (Wilcoxon Rank Sign Test for paired

data, n 5 10, p 5 0.34), as also shown in Fig. 11.

In general only one single time point (i.e., 24 h) is used

for MOX rate calculations. Thus, this one single time point

calculation is included among the single time point calcula-

tions (see also Fig. 4). As shown in Fig. 11 these values range

within the values for the linear regression and the single end

point calculation and their standard deviations. On average

the one single end point calculation was 5% different from

the linear regression calculation. Therefore, we assume that

the above conclusions are also valid for single time point cal-

culation, as long as this time point lies within the linear

range (Fig. 4).

Detection limit

Control samples are frequently taken and are poisoned

immediately after the addition of the 3H-CH4 and the

“initial ratio” (3H-H2O/3H-CH4 1 3H-H2O) is determined. The

mean (x) and the standard deviation (s) of all controls

sampled during different cruises in different areas were cal-

culated and the limit of detection (LOD) was set as:

LOD ¼ x133s

All samples with the “initial ratio” below this LOD-value

were considered as below the detection limit and had to be

set as zero. We applied this strict rule to different datasets of

MOX rates (Table 3) with methane concentrations ranging

from background concentrations of 1 nmol l21 to high seep

concentrations of 1456 nmol l21. In some cases, 70% of the

data were below the detection limit and had to be set to

zero. The lowest detected value was 0.001 nmol L21 d21

based on the datasets of Table 3.

The use of laboratory based vs. portable LSD may also

influence the LOD. Especially at low activities the counting

efficiency of the liquid scintillation counter may be critical.

Fig. 11. Comparison of the fraction of consumed tracer as calculated either from a linear regression of a time series (white columns), from the aver-
age of 3–4 single time points (light shade columns) and from one single end point at 24 h (dark shaded column). Details of the calculation are

described in the text. The calculations were applied for three samples from the North Sea (NS1, 2, 3), two samples from off Svalbard (SV1, 2) and for
methane rich freshwater settings (MPI1, 2) and Bodensee (BS1, 2, 3).
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For example, the same samples which were counted with a

laboratory-based machine with 760 dpm and 815 dpm,

retrieved only 189 dpm and 181 dpm with a portable liquid

scintillation counter. While samples with higher counts

(47,000 dpm) did not indicate any differences between the

two liquid scintillation counters.

Discussion

Although it is known that methane is microbially oxi-

dized in lakes and oceans and that this process reduces the

gas flux into the atmosphere, only a small number of MOX

data are available. 3H-CH4 being relatively new commercially

available provides a convenient tracer to determine the

MOX rate in natural waters. Compared to the 14C-CH4

method, the 3H-CH4 method requires minimal sample proc-

essing and few specialized equipment. However, as known

from the common saying “the devil is in the details,” we

checked the method to produce a best practice guide hoping

to encourage people to take up the method and indicating

the important parameters that can cause large errors. Below,

we first discuss the errors found during the method assess-

ment before evaluating existing data.

Error discussion

We compared the different parameters causing uncertain-

ties of the results as outlined in the assessment part by calcu-

lating for each tested modification the deviation from the

common method in percent. For example, the deviation of

the result caused by applying a 10 lL tracer bubble instead

of the commonly used 100 lL tracer injection or the devia-

tion caused by storing killed samples for 60 h in contrast to

processing samples right after incubation as commonly done

(Fig. 12). We also applied different methane concentrations

to calculate the MOX rate, but recommend using the real in

situ methane concentration as measured in separate bottles.

Table 3. LOD calculated for datasets of different areas. The * indicates samples which were measured with a portable Liquid scintil-
lation counter.

Cruise, Year Area CH4 (nmol L21)

LOD MOX

(nmol L21 d21)

Data below

LOD (%)

HE333, 2010 Svalbard 5–86 0.02 4

PO419, 2011 Svalbard 1–546 0.02* 68

HE406, 2013 North Sea 4–1456 0.02* 70

PS-ANTXXIX, 2013 South Georgia 1–56 0.001 38

HE413, 2014 North Sea 9–686 0.1* 11

Fig. 12. Mean and standard deviation of error associated with different parts of the method: (A) error of replicates indicates the difference from the
mean value, (B) decrease of total activity left standing shows the difference between measuring the total activity right after stopping the incubation
and measuring after 60 h left standing, (C) incubation temperature illustrates the error of MOX rates if incubation temperatures differ by 1–5�C and

Q10 ranges between 1.52 and 1.75, (D) storage of killed samples illustrates the error associated with storing a sample instead of rapid post-processing,
(E) bubble size indicates the measured difference between a 100 lL bubble and a 10 lL bubble, (F) shaking of scintillation vials indicates the error

associated with vigorous shaking of the total activity sample in a scintillation vial.
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Otherwise the MOX rates will increase by the same factor as

the methane concentrations are increased. However, we did

not include this comparison in Fig. 12 as we think this is

rather a calculation error than a methodological error.

The largest uncertainty is due to the precision of the

MOX rate measurements in waters with low methanotrophic

activity (i.e., MOX-rates<10 mol l21 d21). By increasing the

number of replicates, the precision of the data can be

improved, however, at high costs of work effort and

material.

This large uncertainty can be viewed as the total error of

MOX rates that consists of the error of each step of the

method and the heterogeneity of the methanotrophic popu-

lation in a water sample. This total error is influenced by the

following uncertainties which apparently impact low rate

measurements more than high rate measurements. The larg-

est impact on the total error is caused by measuring of the

total radioactivity (3H-CH4 and 3H-H2O) not right after

opening a sample. The second largest influence is due to

incorrect incubation temperature. By incubating samples at

temperatures as close as possible to the in situ temperature

over- or underestimation of MOX rate can be avoided. The

error associated with temperature can also be corrected using

published Q10 factors. However, as the data base for metha-

notrophic Q10 is very small, we recommend to incubate the

samples as close as possible to the in situ temperature or to

determine a Q10 for the respective environment. A similarly

high error results from the storage of killed samples in com-

parison to postprocessing the samples right after incubation.

The fourth largest error results from the size of the injected
3H-CH4 bubble and minor errors are due to vigorous shaking

of the scintillation vial and subsequent counting of the total

activity.

Some of these errors are easily avoidable while others can

only be limited with more effort. Errors that can be avoided

are: (1) measuring the total radioactivity (3H-CH4 and 3H-

H2O) right after opening the sample, (2) not leaving killed

samples standing for later analysis, (3) using an appropriate
3H-CH4 bubble volume, and (4) shaking the total radioactiv-

ity (3H-CH4 and 3H-H2O) scintillation mixture gently. The

other errors: (1) precision of low activity samples, (2) incuba-

tion at in situ temperature or derivation of Q10, and (3) deri-

vation of a more accurate k0 by implementing a time series,

can also be minimized, but only by processing more sam-

ples. It depends on the scientific question and the according

precision of the analysis needed, if the additional work and

also the additional radioactive waste justify the higher effort.

In contrast to the parameters discussed above, bottle size,

background, and produced 3H-H2O, as well as shaking of the

samples during incubation cause insignificant MOX rate

errors in natural waters. Bottle size insignificantly altered

MOX rate measurements; thus, bottle size can be reduced to

lessen radioactive waste. Measurements of background 3H-

H2O in microbial inactive waters remained low over 11 d.

Therefore, the chemical reaction, that is, self-decomposition

and ionic exchange are negligible in the time frame of a typ-

ical incubation (< 3 d). If killed controls show a high 3H-

H2O content, microbial metabolism was apparently not effi-

ciently stopped as was shown by Boden and Murrell (2011),

who investigated methanotrophic resistivity to HgCl2. Not

only the background, but also the produced 3H-H2O during

microbial MOX was found stable over time, thus, these

measurements can be delayed, for example, for on-shore

analysis. Finally, shaking of the samples during incubation

was not found to be relevant and is, thus, not necessary.

Other details of the method investigated resulted in sug-

gestions for best practice to determine MOX rates. Stoppers

should consist of halogenated butyl rubber. The tracer is best

stored on saturated NaCl-solution, diluted in N2 and at low

temperatures (refrigerator). The incubation time is best deter-

mined by conducting a time series and the sparging time

should be 30 min. We also recommend to determine the in

situ methane concentration used for MOX rate calculations

in separate bottles. Thus, one does not need to correct for

increased methane concentrations through the addition of
3H-CH4 nor for decreased methane concentrations due to

methane consumption by methanotrophs.

Existing data evaluation

MOX rates have been measured using 14C-CH4 and 3H-

CH4; data which cannot be readily compared. In the 20st

century, water column MOX rates were determined using
14C-CH4 (Scranton and Brewer 1978; Ward et al. 1987) while

the 3H-CH4 moved toward becoming commercial accessible

in the 21st century. The data are not comparable as 100-fold

more methane is added to a sample using 14C-CH4 compared

to 3H-CH4 resulting in potential rates at elevated substrate

concentration and near in situ rates, respectively. This differ-

ence was evaluated in water samples from Storfjorden and

discussed in Mau et al. (2013).

For both tracers, the precision of the rate measurement in

waters of low methane concentrations and activity appears

to be the main uncertainty. In this study, we found the pre-

cision of MOX rates in waters of low methanotrophic activ-

ity to be the largest error, which might be due to the general

higher error associated with low concentration experiments

but could also be due to tracer-back-flux as reported for the

anaerobic oxidation of methane (Holler et al. 2011). Also

Blees et al. (2014) and Jakobs et al. (2013) indicate a great

variability in low concentration-samples using 14C-CH4.

However, existing publications all include measurements of

replicate samples stating the precision. In most studies,

duplicate or triplicate sampling is performed. When dupli-

cate samples are used, both data points are shown (Gentz

et al. 2013; Mau et al. 2013). Studies with triplicate sampling

either show the error bars (Blees et al. 2014) or provide the

standard deviation (Jakobs et al. 2013). Hence, the data is of

good quality especially when considering rate measurements
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in the sediment where duplicate or triplicate measurements

are not feasible.

In contrast to the precision of the measurements, the dif-

ference between in situ temperature and incubation temper-

ature was hardly ever corrected, even though we found

temperature to cause the second largest influence on error of

MOX rates. Most often samples are incubated at a tempera-

ture that is close to the in situ temperature, but usually not

exactly at in situ temperature. It is normally also not feasible

to incubate all samples at in situ temperature, especially in

summer when surface ocean temperatures are significantly

elevated in comparison to deep water temperatures. Even if

two or three incubators are available and set to different

temperatures, some water samples are still not incubated at

in situ temperatures. Besides, all cooling devices have cool-

ing cycles which might cause temperature variations of up

to 5�C (refrigerator). It would be also helpful to monitor

more exactly the incubation temperature. Using the Q10 cor-

rection underestimation or overestimation of the MOX rates

can be evaluated, although published Q10 values are bulk val-

ues and might differ between regions due to the presence of

different methanotrophic communities. Certainly, more Q10

need to be derived to overcome this insufficient correction

of MOX rates.

Another drawback of existing datasets is that no detection

limit (LOD) was provided so far. Therefore, very low rates

were published, which are most likely below the detection

limit. We calculated LOD to be on the order of 0.001 nmol

L21 d21 to 0.01 nmol L21 d21 and recommend to use Eq. 5

to derive the detection limit and use only the data that

show significant MOX.

Comments and recommendations

Based on the experiments performed for this study, we

recommend considering the following aspects when plan-

ning MOX rate measurements in an unknown environment.

With a time series, the assumption of first-order kinetics can

be checked and the appropriate incubation time can be

defined. We encountered a rather high variability of the

MOX rates, thus, at least three parallel samples are necessary

to obtain a sufficient precision. Especially in methane poor

environments with low activities the aspect of the detection

limit has often been neglected. Therefore, a sufficient num-

ber of killed controls have to be setup allowing to distin-

guish between “real” methane consumption and background

noise.

In our study, we investigated some of the important

aspects of MOX measurements. However, even when writing

the manuscript, we are well aware and realized that more

aspects still would be interesting or important to look at.

Such aspects could be: Is there a difference when poisoning

the controls before or after the tracer addition? What is the

influence of different scintillation cocktails and different liq-

uid scintillation counter on the rates? Are there differences

between MOX measurements when using gaseous 3H-CH4

compared to an aqueous tracer solution? The kinetics of

MOX in natural waters is still not well-known, as most stud-

ies were done with pure cultures of methanotrophs or with

soil samples. The priming effect (injection of additional

methane and, thus, increasing substrate concentrations)

could be tested with nonlabeled methane as well as with

labeled methane as was done only by Mau et al. (2013) so

far. As with all/many methods an interlaboratory compari-

son of MOX measurements would be very instructive.

Nevertheless, with our study we hope to improve and to

encourage future measurements of MOX rates in different

environments. We also hope to develop a standard proce-

dure of MOX rate measurements to make data of MOX bet-

ter comparable.
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