

Marcel Nicolaus, Stefanie Arndt, Christian Katlein

Changes, variability, and seasonality of sea ice energy budgets

24 Sep 2014

Sunlight and Transmittance

Snow Rules

- •Physical properties
 - Thermal
 - Optical
- •Surface characteristics
 - Melt ponds
 - Satellite signatures
- •Mass balance
 - Snow depth
 - Snow density / mass
- •Fresh water

Changes: The Ice Age Proxy

- Surface properties
- Physical properties: Drift and Dynamics
- Thickness distributions
- Habitat changes

Albedo Changes

Fig. 2. The trend in total annual solar heat input to the ice within a gridcell, Q_i . The units are $\% a^{-1}$.

Perovich et al. (2011, AOG)

Seasonality

ASSOCIATION

- Results from the drift of Tara
- At one drifting MYI site
- Great time series, no spatial variability

Nicolaus et al. (2010, JGR and CRST)

Seasonality at Tara

Under-Ice Investigations

View from Below: Level Ice

View from Below: Ridged Ice

Transmittance through Sea Ice

- 40% ponds on FYI: 11%
- 23% ponds on MYI: 4%

ASSOCIATION

Nicolaus et al. (2012 & 2013, GRL)

August 2011 – Upscaling

Nicolaus et al. (2012 & 2013, GRL)

HELMHOLTZ ASSOCIATION

August 2011 – Fluxes into the ocean **A**

Seasonality of Transmittance

New up-scaling method for calculation of under-ice radiation

Arndt & Nicolaus (2014, TCD)

Seasonality of Transmitted Fluxes

Add parameterization of transmittance for the entire year 2011

- Surface flux is same order of magnitude as ocean heat flux
- 96 % of the annual under-ice radiation are transmitted in only 4 months (May to August)
- Highest fluxes
 (= melt rate) in June

Monthly mean of transmitted heat fluxes through Arctic sea ice in 2011.

Monthly mean of 20×10⁵ Jm⁻²

≙ 20 cm sea-ice melt/month

Annual Trend (Sea Ice Only)

Apply to all years 1979-2011

- Light transmission increases by 1.5% per year Arctic-wide since 1979
- Over 32 years: 1.6 times more warming and melt

Trend in annual total solar heat input through Arctic sea ice from 1979 to 2011.

Recent AUV mission

Photo: Christian Katlein

Last update: Thu Jul 24 21:00:01 UTC 2014

Port: Tromsø - Tromsø

Optical Properties - Scattering

Katlein et al. (2014, JGR)

Irradiance / Radiance

- Isotropy C=π=3.14
- Mostly used, but overestimation of irradiance by >50%

- Anisotropy C<2.5</p>
- More realistic fluxes

Irradiance / Radiance

ELMHOLTZ ASSOCIATION

- Isotropy C=π=3.14
- Mostly used, but overestimation of irradiance by >50%

- Anisotropy C<2.5</p>
- More realistic fluxes

Katlein et al. (2014, JGR)

Parameterization of C=Irrad/Rad

- Best fit of anisotropy
- C(γ)=2.5-2γ
- Error < 5%</p>
- For isotropic case C=2.5
 - Boundary effect

Correct conversion of radiance to irradiance is possible: anisotropy needed

Spectral Radiation Buoy

Spectral Radiation Buoy

Bio-Physical Observatory (drifting)

- Instrumentation
 - 1 Thermistor Buoy
 - 2 Spectral Radiation Buoy
 - 3-5 Data Transmission
 - 6 CTD
 - 7 ADCP
- Deployment 2014/15

Autonomous Stations (Buoys)

Summary

- Snow rules and we need better snow data sets
- Seasonality of light transmission
 - Highest fluxes in June
 - 96% in 4 summer months only (May-Aug)
- Trends in light transmission
 - Increase of 1.5% / year
 - Strongly related to the loss of multi-year sea ice
- Optical properties of sea ice
 - Scattering is anisotropic
 - Conversion of radiance to irradiance is possible (use C<2.5)
- Future directions
 - Similar studies for Antarctic sea ice
 - Towards AUV measurements
 - More connection to biological studies (primary production)
 - Applications in GCMs

