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Abstract The Arctic sea ice cover is rapidly shrinking, but a direct, longer-term assessment of the ice
thinning remains challenging. A new time series constructed from in situ measurements of sea ice
thickness at the end of the melt season in Fram Strait shows a thinning by over 50% during 2003–2012.
The modal and mean ice thickness along 79◦N decreased at a rate of 0.3 and 0.2 m yr−1, respectively, with
long-term averages of 2.5 and 3 m. Airborne observations reveal an east-west thickness gradient across the
strait in spring but not in summer due to advection from more different source regions. There is no clear
relationship between interannual ice thickness variability and the source regions of the ice. The observed
thinning is therefore likely a result of Arctic-wide reduction in ice thickness with a potential shift in exported
ice types playing a minor role.

1. Introduction

Recent changes in the Arctic sea ice cover are most obvious in the drastic decline in the summer ice extent
[e.g., Parkinson and Comiso, 2013]. Other indicators include a decrease of multiyear ice [Maslanik et al., 2011;
Comiso, 2012], an increase in drift speed and deformation rate [Rampal et al., 2009; Spreen et al., 2011], and
a basin-wide thinning of the ice cover [Kwok et al., 2009] and ice volume loss [Laxon et al., 2013]. However,
interannual variability is large [e.g., Kwok et al., 2013] and long time series especially of sea ice thickness are
scarce. Hansen et al. [2013] present ice draft observations over 22 years (1990–2011) from moored instru-
ments in Fram Strait showing a decrease in thickness and amounts of old level ice. However, their data set is
geographically limited to one point at 79◦N, 5◦W. Haas et al. [2008] and Haas [2013] observe a similar decline
in ice thickness in the Transpolar Drift using data from different campaigns in 1991–2007 and 1975–2012,
respectively. Perovich et al. [2014] did not find a definitive trend in their observations, especially of surface
and bottom melt from Ice Mass Balance buoys deployed near the North Pole between 2000 and 2013.

Currently, approximately 15% of the total ice volume are exported annually from the central Arctic. The
majority of this export happens through Fram Strait, the passage between Greenland and Svalbard [Kwok,
2009; Spreen et al., 2009]. The sea ice in Fram Strait can originate from different regions of the Arctic Ocean
[see, e.g., Pfirman et al., 2004; Kwok, 2009; Hansen et al., 2013] and has thus varying age and degree of defor-
mation. Therefore, changes in the Fram Strait ice cover reflect and integrate processes in the central Arctic
making this a key region for observations.

While Hansen et al. [2013] used a time series of sea ice draft from moorings at a fixed location (79◦N, 5◦W),
we now present a 10 year time series of in situ and airborne observations of ice thickness collected annually
along 79◦N between Svalbard and Greenland, spatially extending Hansen et al.’s [2013] study. In particular,
the airborne measurements cover most of the width of the ice tongue in Fram Strait, providing information
about the spatial thickness distribution. We investigate the connection between the observed ice thickness
variability and source regions and other ice properties.

2. Methods and Data Sets

In this study, we analyze sea ice thickness measurements obtained using ground-based and airborne elec-
tromagnetic (EM) instruments during multiple cruises to the Fram Strait from 2003 to 2012 (see Table 1
and Figure S1 in the supporting information). All EM systems make use of the principles of electromagnetic
induction at the seawater/sea ice interface. On the ground, we used a Geonics EM31 portable instrument
placed on top of the snow or weathered ice surface and with a footprint size of approximately 3–4 m
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Table 1. Overview of Ship Campaigns and Basic Ice and Snow Thickness Statistics for Each Methoda

Number of Observations Mode (m) Mean (m)
Campaign Dates Ship EM31/Snow/HEM EM31/Snow/HEM EM31/Snow/HEM

FS2003 7–27 Sep 2003 R/V Lance 207/47/– 4.2/0.02/– 4.0 ± 1.3/0.01 ± 0.01/–
FS2004 31 Aug to 19 Sep 2004 R/V Lance 206/205/– 3.2/0.02/– 3.5 ± 0.9/0.04 ± 0.03/–
F2005 18 May to 4 Jun 2005 K/V Svalbard and R/V Lance 918/936/358333 2.0/0.2/2.8 2.5 ± 1.1/0.32 ± 0.22/2.6 ± 1.7
FS2005 29 Aug to 17 Sep 2005 R/V Lance 163/163/– 3.4/0.04/– 3.6 ± 1.0/0.06 ± 0.03/–
FS2006 31 Aug to 16 Sep 2006 R/V Lance 105/105/– 2.4/0.1/– 3.0 ± 0.6/0.18 ± 0.11/–
F2007 10–30 Apr 2007 K/V Svalbard 883/882/– 2.1/0.3/– 2.5 ± 0.9/0.47 ± 0.24/–
FS2007 10–30 Sep 2007 R/V Lance 339/322/– 1.6/0.18/– 2.8 ± 1.1/0.20 ± 0.08/–
F2008 16 Apr to 1 Jun 2008 K/V Svalbard 2613/1057/302043 3/0.2/2.2 3.2 ± 1.1/0.39 ± 0.22/2.7 ± 1.6
FS2008 30 Aug to 19 Sep 2008 R/V Lance 684/680/– 1.8/0.04/– 2.5 ± 1.3/0.05 ± 0.03/–
FS2009 30 Aug to 24 Sep 2009 R/V Lance 671/772/– 1.8/0.04/– 2.7 ± 1.7/0.06 ± 0.04/–
FS2010 3–18 Sep 2010 R/V Lance 896/753/53397 1.8/0.1/1.2 2.3 ± 1.2/0.11 ± 0.04/1.4 ± 0.8
FS2011 22 Aug to 15 Sep 2011 RV Lance 2140/753/160718 1.4/0.04/1.0 2.4 ± 1.0/0.08 ± 0.06/1.3 ± 1.3
FS2012 19 Aug to 5 Sep 2012 RV Lance 2341/2532/138160 1.6/0.06/1.4 2.7 ± 1.3/0.08 ± 0.05/1.1 ± 1.1

aNumber of observations, mode, and mean ± standard deviation are given for each measurement method used in a campaign (EM31 = ground-based
ice thickness measurements; snow = snow thickness measurements; HEM = airborne ice thickness measurements; “–” = no measurements were done using
this method).

[see, e.g., Haas et al., 1997]. The data were calibrated using drill hole measurements and processed follow-
ing Haas et al. [1997]. During 2003 to 2008, readings were taken every 5 m. From 2009, values were logged
automatically every 2 s while the EM31 was pulled on a sled across the ice. For these data sets, we use
simultaneous GPS measurements to resample observations at 4 m spacing to avoid spatially overlapping
measurements. The airborne system (the so-called EM-bird, Haas et al. [2009]) is towed below a helicopter
and provides measurements with a footprint of approximately 50 m and an accuracy of 0.1 m over level
ice. Both EM systems record total snow and ice thickness, in the following referred to as ice thickness. Snow
depth was measured every 5 m along the EM31 transects using a metal probe.

The annual August/September cruises onboard R/V Lance led by the Norwegian Polar Institute (NPI) cover
the width of Fram Strait along approximately 79◦N with occasional additional transects farther north and
off the coast of East Greenland. In this study, we only include data collected over drift ice, excluding mea-
surements obtained over iceberg-fast sea ice near the East Greenland coast. For each cruise, we calculate
probability density functions (pdf) of ice and snow thickness from all measurements during a cruise, and
derive the mean and modal thickness from these pdfs. To assess the zonal variability along 79◦N, we bin the
EM-bird measurements in 0.1◦ longitudinal bins and calculate pdfs, mean, and mode in those bins.

Back trajectories of sea ice parcels (i.e., groups of floes) are calculated using a combination of observa-
tions and model simulations. The primary data set used are satellite sea ice drift observations obtained
from merged Special Sensor Microwave Imager and Quick Scatterometer data [Girard-Ardhuin et al., 2008;
Girard-Ardhuin and Ezraty, 2012]. Due to the wetting of the snow and ice surface during summer, reliable
satellite ice drift estimates are not obtained between June and August (for some years also not in May and
September). To bridge that summer gap, ice drift estimates from a coupled ocean-sea ice model with atmo-
spheric forcing from the JRA-25 reanalysis [Onogi et al., 2007] and horizontal grid spacing of 4.5 km are
used [Nguyen et al., 2011, 2012]. Back trajectories are calculated for 2 years starting from 15 different posi-
tions between 15◦W and 1◦W at 79◦N. For the late summer campaigns, the back trajectory calculation is
started on 15 August. For the spring campaigns in 2005, 2007, and 2008, the back trajectories are started on
1 April. Ice parcels are considered lost when they encounter ice concentrations below 15% for four consec-
utive days or approach land. Tracking over 2 years gives enough time to allow for a clear distinction of the
source regions.

3. Sea Ice Thickness

During 2003–2011, the overall mean and modal ice thickness of drift ice in Fram Strait measured by EM31
in late summer at the end of the melt season is 3.0 and 2.5 m, respectively. At the time of the measure-
ments in late summer, the snow depth is minimal (Figure 1a and Table 1) as all old snow had melted and
the only snow that was observed was new snow that fell during or just prior to the campaigns. The time
series of EM31-derived mean and modal ice thickness (Figure 1a) shows a statistically significant decrease of
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Figure 1. (a) Mean (black) and mode (red) of snow (squares) and total ice and snow thickness distributions (circles =
EM31 surveys; triangles = EM-bird surveys). Solid symbols show results from the August/September campaigns, open
symbols the spring results. Note the scaling on the split y axis. (b) Ice thickness distributions from EM31 (black lines) and
HEM measurements (red lines) from 2003 (top) to 2012 (bottom). Solid lines show measurements in late summer, dashed
lines measurements in spring.
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0.2 and 0.3 m yr−1, respectively, over the entire period (p > 0.99 using Student’s t test). However, the shape
of the time series suggest a strong decrease during the first 4–5 years followed by very little change in the
next 5–6 years. Piecewise linear fitting [Tome and Miranda, 2004] of two fits per time series confirm this.
The resulting trend changing points for modal and mean thickness are in 2007 and 2008, respectively. The
trends are −0.3 m yr−1 in 2003–2008 for the mean, and −0.6 m yr−1 in 2003–2007 for the mode, about twice
as much as for the entire time series. For the periods after 2007/2008, no significant trend in ice thickness
can be observed. The three spring campaigns (Figure 1a, open symbols) show high interannual variability,
partially due to deep snow.

EM31 transects are spatially limited due to logistical and safety reasons. This restricts the number of inde-
pendent observations and can lead to pdfs that are not as smooth as, e.g., EM-bird-derived pdfs. Also,
very thin ice cannot be surveyed for safety reasons resulting in a bias toward thicker ice. A comparison of
EM31 mean and modal ice thicknesses with observations from upward looking sonars (ULS) moored to the
seafloor in Fram Strait [Hansen et al., 2013] yields very close agreement both in absolute numbers and trend
despite the very different methods and biases in the data sets (Figure S2 in the supporting information).
Multiple modes exist in late summer 2006, 2007, and 2011 (Figure 1b). Using the second, thicker ice mode
for these years in the time series shown in Figure 1a does not change the trend in the modal ice thickness
(−0.3 m yr−1). Percentiles are less sensitive to the shape of the distributions. We therefore also calculated
percentiles at various thresholds (10, 25, 50, 75, and 90%) for the late summer pdfs. The time series show a
consistent decrease at all levels (Figure 3a in the supporting information) similar in shape to the develop-
ment of the mode and the mean. EM31 transect lengths vary from floe to floe. It can therefore be argued
that statistics such as mean and modal thickness should be calculated per floe before deriving a cruise
average. Using this approach does not significantly change our results (not shown).

Since footprint size and spatial coverage of EM31 and EM-bird measurements are orders of magnitude
different (3–4 m versus 50 m for the footprint and 1 km versus 100 km for the spatial coverage), direct com-
parison of the results of the two methods is difficult. Except for spring 2005, the EM-bird surveys give lower
ice thicknesses than the EM31 transects. This can largely be explained by the effect of open water under
the EM-bird. While the EM31 transects exclude any open water, the EM-bird ice thickness at any one point
is the average over both ice and open water fraction within the footprint of the EM-bird. In dynamic regions
such as Fram Strait, especially in late summer, ice floes can be relatively small (< 100 m) and the open water
fraction high (> 25%). For late summer 2010, we can estimate an adjusted ice thickness distribution using
simultaneous EM-bird measurements and aerial photographs [Renner et al., 2013] by dividing ice thickness
by ice concentration, thereby compensating for measurements near floe edges. The adjusted mean and
modal thicknesses are 1.8 and 1.4 m, respectively, slightly higher than the original values (1.4 and 1.2 m) but
still lower than the EM31 observations of 2.3 and 1.8 m. Besides open water, the EM31 measurements also
underestimate the amount of thin ice since very thin ice and brash ice cannot be measured due to safety
reasons. The thin ice classes are therefore absent in the EM31-derived pdfs. They are, however, present in the
EM-bird data, and observations from the helicopter and aerial photographs confirm a large amount of brash
ice during the late summer campaigns in 2010–2012. When combined, the open water and thin ice bias in
the EM31 data together with the aforementioned bias due to considerations around floe choice are likely
responsible for the differences in mean and mode between EM31 and EM-bird. However, the biases in the
EM31 data are assumed consistent throughout the time series presented here.

The challenges encountered when trying to compare measurements using the same general technique in
the same general region are amplified when using observations (a) with the same technique in a different
region (even if “only” upstream [e.g., Haas et al., 2008]), (b) in the same region but with different techniques
[e.g., Hansen et al., 2013], or worst of all, (c) in different regions and with different techniques (e.g., buoys
[Perovich et al., 2014], airborne or satellite remote sensing [Kwok et al., 2009; Laxon et al., 2013; Richter-Menge
and Farrell, 2013], or submarine data [e.g., Kwok and Rothrock, 2009]). A dedicated study into correct meth-
ods of combining different data sets is needed and care has to be taken when using data from different
sources, especially for quantitative comparisons.

When looking at the spatial distribution of ice thickness along 79◦N (Figure 2), we find in spring an east-west
gradient in the EM-bird data with the thickest ice in the western part of the transect. In spring 2008, the
section between approximately 12◦W and 9◦W is strongly influenced by the Northeast Water Polynya which
is a recurring feature in the northwestern Fram Strait [e.g., Bourke et al., 1987]. Using only observations
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Figure 2. Sea ice thickness versus longitude in Fram Strait. The grey lines mark all measurements; the red and black dots
show the mode and the mean of the ice thickness distribution, respectively, in each 0.1◦ longitude bin. The y axes are
capped at 10 m. Light blue lines indicate the gradient in mean ice thickness across Fram Strait between −9◦W and the
ice edge.

east of 9◦W, the gradient across the strait is −0.3 m per degree longitude in 2005 and −0.1 m per degree
in 2008. This roughly agrees with the ULS ice thickness gradient of −0.23 m per degree between 7◦W and
3◦W reported by Hansen et al. [2013]. However, the gradient is weaker in the late summer observations in
2011 and not present in August/September 2012. In 2010, the spatial coverage is not sufficient to assess
such a pattern.

4. Source Region and Other Parameters

While sea ice in Fram Strait is strongly influenced by processes occurring in the Arctic Basin, relationships
between ice conditions in the strait and basin wide are not straightforward and easy to determine. The
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Figure 3. (a–j) Backward drift trajectories for (Figure 3a) 2003 through to (Figure 3j) 2012 color coded by the number of days until crossing 79◦N in Fram Strait on
1 August. (k and l) The positions of the trajectories at 180 (stars), 360 (triangles), and 720 days (diamonds) prior to reaching 79◦ color coded by modal ice thickness
and year of measurements, respectively. Black dots indicate the start points of the backtracking. Trajectories for (m) 2005, (n) 2007, and (o) 2008 color coded as in
Figures 3a–3j but started on 15 April. All trajectories stop after 2 years (if the particle was not lost before).
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summer ice edge and ice concentrations in Fram Strait are largely determined by dynamic processes. As
expected, we did not find any connections between observed ice thickness, width of the Fram Strait ice
tongue at 79◦N, and the Arctic-wide sea ice extent. Hansen et al. [2013] suggest a link between thickness
and ice age as derived by Maslanik et al. [2011]; however, using their data, we do not find such a relationship
for our late summer time series.

Backward trajectories of the drift of sea ice parcels are, similar to the ice thickness in an outflow region such
as Fram Strait, an integrative measure as they are indicators of what processes will have affected the ice
on the way to Fram Strait. Figures 3a–3j show all trajectories calculated for 2003–2012 with day 0 being 15
August and calculated for up to 2 years backward. Variability between years is large, and there is no tempo-
ral trend for source regions (Figure 3l). However, both distance traveled along the tracks and distance from
the start point are increasing over the 10 year period. Furthermore, ice thickness and distance (both along
track and from start point) are anticorrelated, i.e., thin ice traveled farther. We did not find a relationship
between source region and ice thickness (Figure 3k).

Throughout the study period, the tracks started in late summer traveled on a narrow band through Fram
Strait down to 79◦N. Trajectories started in spring (Figures 3m–3o), however, spread out early on and cover
a much wider area for the entire 2 years. This suggests that in summer, the ice floes are subject to more
dynamic deformation across the width of the strait whereas in spring, a denser ice cover reduces the impact
of deformation and instead preserves the ice characteristics from further upstream. Tracks started in spring
2005 (Figure 3m) were considerably shorter than in 2008 (Figure 3o), when within the 2 years, the tracks
nearly reached the Siberian coast. The shorter trajectories in 2005 suggest more multiyear ice in the western
part of the transect, which explains the larger observed zonal gradient in ice thickness than in 2008.

The increase in travel distance is in agreement with a more mobile ice pack with increasing drift speeds as
observed by Rampal et al. [2009] and Spreen et al. [2011]. Especially the speed up of the Transpolar Drift
stream as shown in Kwok et al. [2013] is in agreement with the longer trajectories in recent years. Perovich et
al. [2014] find a positive correlation between southward distance traveled by their buoys and bottom melt,
while Kwok et al. [2013] also observe a clear anticorrelation between the decrease in multiyear ice fraction
and increase in drift speed. As multiyear ice can serve as a proxy for thick ice, this is also in agreement with
the anticorrelation between ice thickness decrease and drift trajectory length, i.e., ice speed, increase in this
study. More importantly, the missing connection between thickness and source region suggests that the
thinning in Fram Strait, while certainly influenced by a potential shift in exported ice types with different
ice thickness, can mainly be attributed to the reported Arctic-wide thinning [Kwok et al., 2009; Laxon et al.,
2013], which dominates the sea ice thickness variability in Fram Strait.

5. Summary and Conclusions

We presented a 10 year time series of in situ sea ice thickness data from Fram Strait, supplemented with air-
borne measurements. Over the period 2003–2012, late summer mean and modal ice thickness decreased
by over 50%, confirming and extending the trends found by Hansen et al. [2013] using a different method.
The strongest decrease in both mean and modal thickness occurred between 2003 and 2008. During the
same time period, the strong Arctic-wide decrease in ice thickness was observed in the Ice, Cloud, and Land
Elevation Satellite (ICESat) record [Kwok et al., 2009]. Thereafter, the observed thickness stabilizes on a
low level. Richter-Menge and Farrell [2013] observed a similar development for the multiyear ice north of
Greenland. Backtracking trajectories showed no trend in source region or relationship to ice thickness con-
sistent with the observed basin-wide thinning of the Arctic ice cover. An increase in travel distance agrees
with observations of higher drift speeds. The spatial coverage in our data adds information about the ice
thickness distribution across Fram Strait to the single point ULS time series by Hansen et al. [2013]. In spring
2005 and 2008, a clear gradient in ice thickness across Fram Strait is visible and likely due to a widespread
of source regions whereas a narrower transport corridor during summer leads to the absence of such a
gradient at the end of the melt season.

The time series presented here was put together from a large number of observations each covering only
a small area. The comparison between ground-based and airborne EM demonstrated the problems around
footprint sizes, sampling biases, and influence of ice conditions in a challenging region such as Fram Strait
in summer with small ice floes, lots of brash ice, and a high open water fraction. These problems increase
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when trying to compare results to measurements using different methods (e.g., laser or radar altimetry) and
platforms such as planes (e.g., from the IceBridge campaigns [Kurtz et al., 2012] or satellites such as ICESat
or CryoSat-2 [e.g., Kwok et al., 2009; Laxon et al., 2013]). Dedicated studies are needed to find appropriate
comparison and upscaling techniques. While in situ measurements offer limited temporal sampling, they
are, however, the only direct method to unambiguously measure the ice thickness without any assump-
tions about densities, snow, etc., or models involved. The data presented here confirm the strong changes
observed in the Arctic sea ice cover during the recent decade.
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