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Dinoflagellates are a major cause of harmful algal blooms (HABs), with conse-

quences for coastal marine ecosystem functioning and services. Alexandrium
fundyense (previously Alexandrium tamarense) is one of the most abundant and

widespread toxigenic species in the temperate Northern and Southern

Hemisphere and produces paralytic shellfish poisoning toxins as well as lytic

allelochemical substances. These bioactive compounds may support the success

of A. fundyense and its ability to form blooms. Here we investigate the impact of

grazing on monoclonal and mixed set-ups of highly (Alex2) and moderately

(Alex4) allelochemically active A. fundyense strains and a non-allelochemically

active conspecific (Alex5) by the heterotrophic dinoflagellate Polykrikos kofoidii.
While Alex4 and particularly Alex5 were strongly grazed by P. kofoidii when

offered alone, both strains grew well in the mixed assemblages (Alex4 þ Alex5

and Alex2 þ Alex5). Hence, the allelochemical active strains facilitated growth

of the non-active strain by protecting the population as a whole against grazing.

Based on our results, we argue that facilitation among clonal lineages within a

species may partly explain the high genotypic and phenotypic diversity of

Alexandrium populations. Populations of Alexandrium may comprise multiple

cooperative traits that act in concert with intraspecific facilitation, and hence

promote the success of this notorious HAB species.
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1. Introduction
Marine phytoplankton account for approximately half of the global annual net

primary production [1]. Their high biomass turnover rate and conversion of

light energy, CO2 and inorganic nutrients into organic material drive the marine

pelagic ecosystem. Like many aquatic microorganisms, phytoplankton can have

large population sizes, and typically have high rates of predominantly asexual

reproduction. Furthermore, phytoplankton live in a rather open and seemingly

homogeneous pelagic habitat. Yet, communities may also exhibit a patchy distri-

bution even on small geographical scales, may show horizontal organization in

thin layers and seem to be, at least partly, organized as metapopulations [2–5]. Mol-

ecular data show that populations of plankton species are temporally and spatially

distributed based on historical, ecological and local oceanographic conditions [6–9].

Furthermore, distinct phytoplankton populations have high genetic diversity

[9–13] and typically comprise a variety of genotypes and phenotypes [7,14,15].

Some phytoplankton species have the ability to produce toxins, and their pro-

liferation leads to harmful algal blooms (HABs). These HABs can have major

implications for marine ecosystems, causing mortality of fishes and other marine

life, and threaten human health through accumulation of toxins in the food chain

[16,17]. Among the notorious HAB formers, some dinoflagellates are found to pro-

duce a variety of potent bioactive substances of which paralytic shellfish poisoning

toxins (PSTs) are most common [17]. Additionally, many dinoflagellates have the
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ability to produce and release allelochemical compounds

of poorly characterized chemical nature that exert negative

effects on a range of unicellular eukaryotic organisms [18–20].

Intracellular PSTs and the extracellular allelochemicals have

been shown to provide cells with protection against grazers

[19,21–23] and competitors under certain conditions [24].

Since grazing can remove up to 50% of gross biomass produc-

tion [25], production and release of bioactive compounds may

add to the ecological success of dinoflagellates [20,26,27].

Understanding the evolution of phenotypic traits, such as

the production of PSTs or allelochemicals, and their variation

in genotypically diverse dinoflagellate populations [7,14] is a

challenge, as only some individuals carry the costs, whereas

the benefits are shared within the whole population. Thus, the

production of toxins and allelochemicals provide an advantage

to non-producers (i.e. cheaters), particularly in spatially

unstructured populations [28]. Within a structured population

of closely related individuals, however, cooperative traits can

be favoured as a public good and facilitate the success of the

entire population [29–32]. This principle of facilitation [33,34]

has been shown in populations of various organisms, includ-

ing bacteria [35], toxigenic cyanobacteria [36], amoeba [37]

and yeast [38]. Little is yet known about intraspecific facilita-

tion in populations of planktonic algae. Among flagellated

algae many are known to produce extracellular toxins

[20,27,39–41], and, depending on the environmental conditions,

these toxins might serve as a direct benefit at the cell level or as

an exploitable public good for the whole population [42].

Here, we assess whether facilitation may occur within

phenotypically diverse populations of the common toxi-

genic bloom forming dinoflagellate Alexandrium fundyense
(previously Alexandrium tamarense [43]) [7,14], and whether

production of allelochemical substances by some individuals

in an experimental population provides benefits to non-

allelochemical producing individuals and thereby facilitate the

success of multiple strains. To answer this question, we investi-

gated whether Alexandrium strains with intermediate and high

allelochemical activity can protect a non-allelochemical produ-

cing conspecific against the heterotrophic protist Polykrikos
kofoidii. In this study, we applied for the first time, to our knowl-

edge, allele-specific quantitative PCR (asqPCR) in a marine

microalgae. The method proved to be highly reliable in mixtures

of known cell ratios of clonal assemblies and thus allows asses-

sing the relative cell numbers with high precision in time course

experiments to obtain insights into intraspecific processes.

We show that the allelochemically non-active strain is protec-

ted by the active strains. Our results thereby demonstrate

intraspecific facilitation, which may partly explain the high

genotypic and phenotypic diversity that is often observed

in marine dinoflagellate populations. Hence, intraspecific

facilitation might be another, yet often overseen mechanism

that can explain the occurrence of exploitable public goods in

genotypically diverse populations.
2. Material and methods
(a) Algal cultures
Three clonal strains of A. fundyense (group I) were isolated in

May 2004 from the North Sea coast of Scotland [21] and grown

in K-medium [44] prepared with sterile filtered north seawater

(salinity 33), pH adjusted to 8.0 at 158C, with an incident light

intensity of 150 mmol photons m– 2 s– 1, provided by cool white
fluorescent lamps at a 14 L : 10 D photocycle. All three strains,

Alex2, Alex4 and Alex5 are morphologically indistinguishable,

have a similarcell size and produce PSTs. Shortly after their isolation,

Alex2 and Alex4 were shown to produce allelochemically active

compounds. Alex2 was highly allelochemically active (lytic), Alex4

was moderately active (lytic), and Alex5 was non-active (non-lytic)

[21]. The culture of P. kofoidii was established in 2009 also from

coastal waters off Scotland [45]. The culture was routinely held in

63 ml culture flasks on a slow rotating plankton wheel (1 r.p.m.) at

158C and low light (10–20 mmol photons m–2 s–1) and fed with

Lingulodinium polyedrum (CCMP 1738). A dense subculture used

for experiment inoculation was starved for approximately 1 day so

that no food algae were present (i.e. Polykrikos cells contained no

visible food vacuoles, see the electronic supplementary material,

figure S1), and Polykrikos had also not yet started massive gamete

formation [44].

(b) Experimental design and set-up
Before starting the experiment, each Alexandrium strain was treated

by a multi-antibiotic cocktail (50 mg ml–1 ampicillin, 3.3mg ml–1

gentamycin, 25mg ml–1 streptomycin, 1mg ml–1 chlorampheni-

col and 10 mg ml–1 ciprofloxacin) for 5 days in order to reduce

background bacterial numbers [46], without affecting the dinoflagel-

late nor its allelochemical properties. Small sub-samples were

stained with acridine orange and checked by epifluorescence

microscopy, confirming the removal of bacterial contamination

[46]. After a 1 : 10 dilution in new antibiotic free media, all three

strains grew in the exponential phase for 5 days. Thereafter, mono-

clonal cultures were grown for scaling up from 500 ml to a final 5000

ml in serial batch cultures and kept in exponential growth to ensure

a similar physiological status of the strains in the experiment. Cells in

exponential growth phase were washed three times with sterile fil-

tered K-medium over a 10 mm pore size sieve in order to remove

extracellular allelochemical compounds. Thus, any observed allelo-

chemical mediated effect is assumed to be a result of the

allelochemicals accumulated during the course of the experiment.

The experiment was performed in a temperature- and light-

controlled culture room on a slowly rotating plankton wheel

with a speed of 1 r.p.m. allowing homogeneous mixing, but with

minimal turbulence. The three strains of Alexandrium were

grown in monoclonal cultures with starting cell densities of

500 cells ml–1. Additionally, Alex5 was grown in two distinct

two-strain mixtures with Alex2 (i.e. Alex2 þ Alex5) and with

Alex4 (i.e. Alex4 þ Alex5) to a final concentration of 1000 cells

ml–1 (i.e. 500 cells ml– 1 per strain). To test for a potential impact

of the higher cell densities in the mixed cultures on the ability

of Polykrikos to exert control over the Alexandrium population com-

pared to the monoclonal culture experiments, additional

experiments with monoclonal cultures of Alex5 with 1000 cells

ml–1 were performed (see the electronic supplementary material,

figure S2). All experimental Alexandrium cultures were grown in

triplicate with and without adding Polykrikos cells (20 cells ml–1).

The experiment started in completely filled 1000 ml Schott flasks,

and 500 ml was harvested after 24 h. The remaining cultures

were further incubated in 500 ml flasks and 250 ml was harvested

at day 2. Again, the remaining culture was incubated in 250 ml

flasks and 125 ml was harvested at day 3. The remaining cultures

incubated in 125 ml flasks was harvested on day 4. The harvested

samples were divided for cell counts of Alexandrium and Polykrikos,

and for DNA extraction and subsequent asqPCR.

(c) Counting procedure
Lugol’s fixed (1% final concentration) Alexandrium cells were

counted after sedimentation of 3 � 1 ml aliquots using an inverted

microscope. All or at least 300 cells in each 1 ml aliquot were

counted. For counting Polykrikos, 10 ml samples were fixed with

a mixture of formalin (1% final concentration), and Lugol’s

http://rspb.royalsocietypublishing.org/
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iodine solution (0.3% final concentration) and settled in 10 ml

settling chambers. Whole chambers were counted. For each

sample, Polykrikos was scored as either containing food particles

in their food vacuoles or without visible food vacuoles, in order

to estimate the proportion of active grazers (see the electronic

supplementary material, figure S1).
 etypublishing.org
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(d) Allele-specific quantitative PCR
The three haploid Alexandrium strains used in this study were

genotyped at 18 microsatellite loci [47,48] (see also the electro-

nic supplementary material, table S1) and were found to carry

differently sized alleles at certain microsatellite loci. Hence,

strain-specific amplicons derived by PCR from a mixed DNA

template, such as those that were derived from mixed culture

experiments, could be distinguished and relatively quantified

by asqPCR [49]. Genomic DNA extractions were performed

with a DNeasy plant mini Kit (Qiagen, Hilden, Germany) with

slight modifications of the manufacturer’s instructions. Cells

(approx. 50–75 � 103) from experimental cultures were har-

vested in a 50 ml reaction tube and centrifuged at 3000g for

5 min. Cells were resuspended after addition of 400 ml buffer

AP1 and the suspension was transferred to a microcentrifuge

tube, into which a mixture of approximately 300 ml of 1 mm

and 0.3–0.6 mm-sized glass beads was added beforehand. Con-

tents of the tube were then mixed by vortexing and incubated for

15 min at 958C (ThermoMixer, Eppendorf, Hamburg, Germany).

Remaining intact cells were disrupted in a TissueLyser (Qiagen)

for 2 � 1 min at 20 Hz. Afterwards, 4 ml RNaseA stock solution

(100 mg ml21, Qiagen) was added and the sample was incubated

at 658C for 15 min. The following steps for DNA purifica-

tion have been performed according to the manufacturer’s

instructions (Qiagen).

PCR reactions were carried out with a Type-it Microsatellite

PCR Kit (Qiagen, Hilden, Germany) with 25 ml reaction contain-

ing 1 ml (10 ng) template DNA, 12.5 ml 2 � Type-it Multiplex

PCR Master Mix (including Taq polymerase and reaction

buffer), and 0.2 ml (0.2 mMol, final conc.) of each primer per reac-

tion (Atama15; Fwd: CCACATGCTCAACATTCACGTATACAG,

Rev: GTATTTGCTCATATGGCTTGG [48]. For fragment analysis

purposes, the forward primer was labelled with the fluorescent

dye 6-FAM. For better resolution in subsequent fragment analy-

sis, 2.5 ml of Q-Solution (5�) were added to the reaction mix.

After the initial denaturation (958C, 5 min), 35 cycles of denatura-

tion at 958C for 30 s, annealing at 608C for 1 min and elongation

at 708C for 30 s were carried out, followed by a final extension

at 608C for 30 min in a Gradient Mastercycler (Eppendorf,

Hamburg, Germany). Sizing of amplified microsatellite alleles

was carried out with GENEMAPPER v. 3.7/4.0 (Applied Biosys-

tems, Darmstadt, Germany) after capillary electrophoresis on a

3130xl Genetic Analyzer (Applied Biosystems).

Cell numbers of the different Alexandrium strains in mixed

cultures were calculated from the peak area under the specific

allele peak, i.e. the sum of fluorescence signal from a strain

specific allele. Total peak area was calculated for each sample as

the sum of the peak area values of the two differently sized micro-

satellite alleles, each representative for a specific strain. The

estimate of the relative abundance of a strain was then calculated

as the proportion of the peak area of the specific allele of a strain

from the total peak area (i.e. the sum of peak areas of alleles from

both strains). This relative abundance estimation for both strains

in the mixed assemblages was then converted to cell numbers

by multiplication of strain specific relative abundance estimates

with total cell numbers obtained by mircoscopical cell counts

from the respective sample. The asqPCR assays were validated

with standard curves derived from DNA mixes; i.e. from mixed

samples with relative contributions of one of the two strains

to the mixed population from 0, 20, 40, 50, 60, 80 and 100%.
The linear regression estimated for these mixed populations

of the combinations Alex2 þ Alex5 and Alex4 þ Alex5 showed

that the relative contribution of the peak area of the allele of

one strain was directly proportional to the actual proportion of

cells of the respective allele in the mixture. The slope and the

regression coefficient of strain Alex5 were 1.057 and r2 ¼ 0.96

and 1.001 and r2 ¼ 0.995 for mixed populations with Alex2 and

Alex4, respectively (see the electronic supplementary material,

figure S3). Cell numbers of strains from experimental samples

are presented as mean values of triplicate cultures and their

standard deviation.
(e) Statistical analysis
The population growth in replicated culture set-ups was calcu-

lated from day 1 to day 4 in all cases but the set-up with Alex5

with grazer, for which the experiment lasted only until day 3

when all cells were grazed. Growth rate (m) was calculated by

fitting an exponential function through all replicate cell counts

in the respective time periods according to

A ¼ A1emt,

where A refers to the cell density, A1 to cell density at the day 1,

and t to the time of the experiment.

Differences in Alexandrium growth between treatments were

tested using three-way ANOVA with strain and mix versus mono

culture and/or grazing treatment as fixed factors, followed by

post-hoc comparison of the means using Tukey’s HSD [49] in

STATISTICA v.6 (StatSoft, Hamburg, Germany). Differences of Polykri-
kos growth and grazing was either tested with a one-way ANOVA

followed by post-hoc comparison of the means using Tukey’s

HSD, or using a t-test [49] and were carried out in SIGMAPLOT v. 12

(Systat Software, Erkrath, Germany). Normality was tested

according to Shapiro–Wilk [50].
3. Results
(a) Growth in monoclonal and mixed cultures without

grazer
All Alexandrium cultures started with exponential growth after

day 1. The attained growth rates of all three strains in the mono-

clonal cultures were not significantly different and were not

significantly different within the mix culture set-ups (table 1

and figure 1a). Growth rates of Alex5 in cultures starting with

500 or with 1000 cells ml– 1 were not significantly different,

with 0.41+0.06 d– 1 and 0.37+0.02 d– 1, respectively (t-test,

t4 ¼ 1.169; p ¼ 0.307; see also the electronic supplementary

material, figure S2).
(b) Grazing impact on Alexandrium in monoclonal and
mixed cultures

In the monoclonal cultures, net population growth of both Alex4

and Alex5 became negative after addition of Polykrikos, whereas

growth of Alex2 remained unaffected compared to the control

(table 1 and figures 1b and 2a,b). All strains showed a higher

growth rate in the mixed cultures Alex4 þ Alex5 and Alex2 þ
Alex5 as compared to their respective monoclonal cultures

under grazing pressure (table 1 and figure 1b). Growth rates of

Alex5 and Alex2 in the mixed culture Alex2þ Alex5 together

with Polykrikos appear to be slightly increased, although this

was statistically not significant compared with the growth

rates in the mixed culture without grazer. Within the other

http://rspb.royalsocietypublishing.org/


Table 1. Summary of three-factorial ANOVA results on the effect of the treatments (grazing, Alexandrium strain identity and culture form) on clonal growth
rates. (d.f., degrees of freedom; MQ, mean square; F, test statistic; p, level of significance.)

d.f. MQ F p

grazing (yes/no) 1 2.366040 271.1199 ,0.000001

strain (Alex2, Alex4, Alex5) 2 0.918121 105.2057 ,0.000001

culture form (monoclonal culture/mixed culture) 1 2.648118 303.4428 ,0.000001

grazing � strain 2 0.956716 109.6282 ,0.000001

grazing � culture form 1 3.086409 353.6656 ,0.000001

strain � culture form 2 0.718774 82.3630 ,0.000001

grazing � strain � culture form 2 0.728015 83.4219 ,0.000001
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Figure 1. Overview of Alexandrium fundyense growth rates. (a) Monoclonal and
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mixed culture with Polykrikos (i.e. Alex4þ Alex5), Alex5

showed no change in growth rate, while growth of Alex4

seemed to have reduced (table 1 and figure 1).
(c) Alexandrium impact on the grazer
In all experimental set-ups where Polykrikos was added, initial

grazing was documented and in more than 60% Polykrikos
cells at least one visible food particle at day 1 was observed

(figure 3c,d). After day 1, 60–95% of Polykrikos cells had

grazed on Alexandrium in all cultures. In monoclonal cultures,

however, the number of Polykrikos cells with visible food vacu-

oles on day 1 was significantly lower when fed on the lytic

strains Alex2 and Alex4 when compared with the non-lytic

strain Alex5 (figure 3c,d). After day 1, the number of Polykrikos
cells with visible food vacuoles declined when fed on mono-

clonal cultures of Alex2 and Alex4, as well as on the mixture

Alex2 þ Alex5, reaching 0–30% by the end of the experiment

(figure 3c,d). When grown on the mixture Alex4 þ Alex5, a

majority of Polykrikos cells possessed food vacuoles until the

end of the experiment. When Polykrikos was fed on different

Alex5 concentrations, its growth rate was higher when more

food was provided (t-test, t4 ¼ 6.707, p ¼ 0.003), with m ¼

0.39+0.04 and m ¼ 0.58+0.03 for 500 and 1000 cell ml21,

respectively. Polykrikos grazed down all cells of the Alex5 cul-

tures and became fully starved at the end of the experiment

(figure 3c,d ), independent of the initial Alex5 cell densities

(data not shown).

Initial growth of Polykrikos (i.e. from day 0 to day 1) was posi-

tive, except when fed on the mixed culture Alex2þ Alex5

(figure 3a,b). Subsequent growth rates of Polykrikos depended

on the Alexandrium strain being fed with (one-way ANOVA,

F2,6 ¼ 245, p , 0.001), showing highest growth rates when fed

on monoclonal cultures of Alex5 (m ¼ 0.39+0.04), intermediate

growth rates when fed on Alex4 (m ¼ 0.27+0.07), and nega-

tive growth rates when fed on Alex2 (m ¼ –0.57+0.06).

When Alexandrium clones were provided in a mixture, growth

of Polykrikos, when compared to the monoclonal culture of

Alex5 (1000 cells ml–1; m ¼ 0.58+0.03), was reduced on

Alex4þ Alex5 as a food source (m ¼ 0.26+0.06, t-test, t4 ¼

8.904, p , 0.001) and even became negative when offered

Alex2þ Alex5 (m ¼ –1.27+0.09, t-test, t4 ¼ 8.205, p ¼ 0.001).
4. Discussion
In our experiments, all three Alexandrium strains exhibited

comparable growth rates when grown in monoclonal cultures

without a grazer. The strains differ significantly in their lytic

activity under the chosen culture conditions, which according

to our current understanding, is best explained by distinct

http://rspb.royalsocietypublishing.org/
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levels of production and release of allelochemical active sub-

stances [21]. This shows that for the three strains used herein,

potential cost of allelochemical production does not lead to a

reduced growth rate. Furthermore, growth rates of all strains

remained unaltered in mixed cultures, proving that allelo-

chemicals produced by the lytic strains did not have

intraspecific inhibitory (or supportive) effects as they do not

affect growth of the non-lytic strain. While in monoclonal cul-

tures the net population growth of the most lytic strain,

Alex2, was not affected by Polykrikos, growth of both Alex4

and Alex5 decreased as a result of grazing by Polykrikos
(figures 1b and 2a). Interestingly, net population growth

of all three strains was positive when grown with the other

Alexandrium strain in mixed cultures (i.e. Alex2 þ Alex5 and

Alex4 þ Alex5) with Polykrikos (figures 1 and 2b). The slightly

higher growth rate of the lytic strain Alex2 in the presence of

Polykrikos and Alex5 indicates a benefit not only for the non-

lytic Alex5 but perhaps also for the lytic strain Alex2.

Whereas the beneficial effect for Alex5 can be explained by

reduction of grazing owing to effects of allelochemicals pro-

duced by Alex2, a beneficial effect for Alex2 is more

difficult to explain and needs to be confirmed in additional

http://rspb.royalsocietypublishing.org/
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experiments. Increased growth solely related to mixotrophy

is unlikely, as Alex2 does not benefit in terms of growth

from lysed grazers in the monoclonal grazing set-up, indicat-

ing that other mutual processes might be involved in the

mixed cultures. An additional hint for synergistic effects in

the mixed set-ups is that Polykrikos was slightly more affected

in the mixed culture Alex2 þ Alex5, indicated by the extinc-

tion of all Polykrikos cells before the third day of the

experiment (cf. figure 3c,d ).

The increase in growth rate of Alex4 in the mixed culture

Alex4þ Alex5 with grazers when compared with that in the

monoculture with grazers seems to be an indirect positive

effect of the presence of Alex5. The grazing pressure of Polykrikos
on the lytic Alex4 in the mixed culture could be lower simply

because Alex5 was available as alternative food source. As a

consequence, population densities of Alex4 could remain rela-

tively high allowing a sufficient production of allelochemicals

for protection against Polykrikos, although Polykrikos did not

show a reduced growth in the Alex4 þ Alex5 mixed culture

compared to the monoclonal culture of Alex4 (figure 2). Yet,

growth of Polykrikos in mixed culturewith Alex4 is reduced com-

pared with the growth when Alex5 is provided as food alone,

when its growth was highest, demonstrating the effect of the

allelochemical substances as a grazer deterrent (figure 3a).

Polykrikos grew well on monoclonal cultures of Alex5. The

mixture Alex2 þ Alex5 reduced its growth when compared

with growth on Alex5 alone. Although the mixed assemblage

started at a higher cell density (with 1000 versus 500 cells

ml21 in the monoclonal cultures), it is unlikely that this initial

density difference negatively affected Polykrikos growth, as

Polykrikos grew better on a higher Alex5 population density

(see the electronic supplementary material, figure S2). Hence,

a detrimental effect of allelochemicals produced by Alex2

and Alex4 on Polykrikos is the most likely cause for its reduced

growth in the presence of allelochemically active Alexandrium.

The view that allelochemicals play an important ecological

role is widely shared (see reviews by [20,26,40,41,51]). It may be

argued that other competing species might also benefit from

reducing grazer fitness [52]. However, it has been shown that

the same allelochemicals strongly affect growth of many phy-

toplankton species that are potential resource competitors

[24,53–55]. Therefore, any indirect beneficial effects for compe-

titors (e.g. through release from grazing pressure) might be

reduced or excluded as long as their growth is also affected

by the allelochemicals. Our results clearly demonstrate that

allelochemicals can protect both the producers as well as a

non-producing conspecific against grazing. The observed

facilitation by grazing protection might resemble associational

resistance [56,57], described for terrestrial plant communities

[58–60], as well as among macroalgal species and their epi-

phytes [61–63]. Such associational resistance may also occur

in pelagic microalgae populations even at the intraspecific

level, within assemblages of sufficiently high population den-

sities. Our results indicate that facilitation plays a role in

phytoplankton populations and we show that benefits are

shared between producer and non-producer strains.

It is as challenging to understand what drives the evolution

of a trait such as production and release of allelochemical

substances that benefit the producer as well as the population

as a whole, as to understand how these traits are maintai-

ned in the population [64]. What is the selective advantage of

allelochemical substances for the producer, i.e. how can this

trait evolve and how can it be maintained in phenotypically
diverse populations under natural selection? According to

theory, selection for a public good might take place when

costs versus benefits for the producer are relatively low

and the relatedness between producer and non-producer is

relatively high [31,38]. Positive population effects of allelo-

chemicals might result at the cellular level (private good)

and higher structural levels (populations) could benefit

indirectly [65]. Before allelochemicals start serving as a public

good, a high relative abundance of producers is required in

order to support the entire population. Consequently, the

allelopathic phenotype as a trait might be maintained by

frequency-dependent selection. Indeed, in a natural popula-

tion of A. fundyense, only two out of 88 clonal isolates were

non-producers, whereas all others were allelochemically

active, though the allelochemical potency was normally

distributed and varied widely [14].

In general, intraspecific genetic and phenotypic diversity is

discussed to have an important impact on evolutionary and eco-

logical process and hence the population’s dynamics and

success [66–68]. A high variability in phenotypic traits involved

in interactions among individuals of different clonal linages

within a population may allow mutualistic intraspecific facili-

tation in various ways, and thereby promote the overall

success of Alexandrium. If cooperative traits governing intra-

specific interactions are common in mixed Alexandrium
populations, the high phenotypic and genotypic diversity of

these populations may be explained for example, by compatibil-

ity among these beneficial phenotypic traits in different strains.

Such alternative traits may include for instance, chain for-

mation, swimming speed, nutrient uptake capabilities,

intrinsic growth rate and PST content [22,23,69–71]. Indeed,

the non-lytic strain Alex5 in our experiment contained the high-

est amount of PSTs (data not shown), a trait that potentially

allows protection against grazing by copepods [22,23,69]. It is

conceivable that with a higher genotypic diversity, more coop-

erative traits can be provided that benefit the entire population.

The observed high genotypic diversity of phytoplankton

populations [9–13] may be sustained by mutualistic interactions

of cooperative traits. Yet, with respect to the functioning of extra-

cellular allelochemical substances, the seemingly homogeneous

or ephemeral spatial distribution pattern of marine phytoplank-

ton populations and their typical low population densities may

contradict with (or limit) the effectiveness of beneficial inter-

actions derived from laboratory experiments with high cell

concentration [64]. The functioning of allelochemical media-

ted facilitation in natural populations will thus depend on

the degree of spatial dispersal, i.e. the local accumulation of a

population, as well as on the rate at which extracellular allelo-

chemicals are produced and excreted, and on the rate of their

diffusion and degradation [51,72]. In dinoflagellates, bloom

formation typically occurs at low mixing and water column stra-

tification [26]. Under such conditions, plankton populations

are often not homogeneously distributed, but rather show a

spatially structured distribution, for instance as patches or thin

layers [2–4,72]. Flagellar movement may favour accumulation

in patches [72], which is presumably also required for sexual

reproduction in the life cycle of Alexandrium [17], as increased

encounter rates in patches may allow Alexandrium gametes to

find their corresponding mating type [73]. The fine-scale analy-

sis of the spatial distribution of dinoflagellates in the water

column indicates that they tend to accumulate. Cooperative

traits such as allelochemicals might facilitate the population

success within patches of high cell densities.
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The conditions in our culture experiment obviously rep-

resent a simplification of the natural environment, where

Alexandrium populations are composed of a much higher diver-

sity in genotypes and phenotypic traits. We partially accounted

for this natural diversity by selecting three strains with distinct

allelochemical activities, i.e. one highly active (Alex2), one inter-

mediately active (Alex4) and one non-active (Alex5). Such a

range of allelochemical activities is also found in the natural

environment, and it is therefore very likely that the observed

facilitation by allelochemicals occurs during natural Alexandrium
blooms. In our experiment, we worked with cell densities reflect-

ing dense Alexandrium bloom conditions rather than pre-bloom

conditions [74,75]. Obviously, production of allelochemicals

becomes favourable when sufficient cells are present, and these

compounds may thus play a crucial role in the prolongation of

HABs [64]. Especially, if phenotypic traits in allelopathic micro-

algae serve multiple purposes over the course of a bloom, for

example by functioning as private versus public good during

low and high population densities, respectively [42]. It is concei-

vable that the transient nature of a selective advantage by

allelochemical production leads to an increase in the phenotypic

diversity, and its underlying genetic diversity, of natural popu-

lations, because the selective advantage of various phenotypes
at different stages of population development will be balanced

over time.

In this study, by adopting the approach of asqPCR for

A. fundyense, we were able to follow the strain-specific responses

to grazing in mixed culture set-ups, and we showed that allelo-

chemical active A. fundyense strains can protect a non-lytic

conspecific from grazing by P. kofoidii. Our findings are

in line with the view that a multitude of hitherto not

well-recognized cooperative traits, including allelochemical

mediated intraspecific facilitation, may contribute to the high

genotypic and phenotypic diversity of Alexandrium popu-

lations. Multiple traits potentially lead to mutual facilitation

among phenotypically diverse clonal lineages within an

Alexandrium population, and thereby further promote the

success of these notorious HAB species.
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