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Technological solutions to increase the efficiency of spatial use can play a key role as part of the toolbox ofmarine
spatial planning. Co-locating ofmultiple ocean uses can potentially increase the production and enjoyment of the
ocean while limiting impacts. However, a basic precondition for co-locating or coproduction is that all parties'
private incentives are aligned. We use a case study of co-locating an offshore wind energy firm and a mussel
aquaculture firm to assess the incentive structure for cooperation and to demonstrate that social benefits from
co-locating exist. We find that there is room for cooperation between firms based on potential cost sharing
and that the demonstrated social benefits may arise without government intervention.
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1. Introduction

The efficient use of marine resources is becoming increasingly im-
portant as many coastal systems have reached their capacity limits
and offshore areas are increasingly utilized (Buck et al., 2008). Marine
spatial planning efforts in Europe and, more recently, the U.S. are seek-
ing to rationalize the use of coastal areas and lay the groundwork for
comprehensive resource use plans (European Commission, 2011;
Olsen et al., 2014). At the same time, coordinated research efforts are
developing formal methods and tools to assess spatial tradeoffs in
marine ecosystem services (Douvere, 2008; Hoagland et al, 2003;
Kareiva et al., 2011; Tallis et al., 2011). All of this effort seeks to find
ways to improve governance and inform the allocation of resources
among diverse stakeholders for sustainable long term solutions that
best use limited marine resources.

The increasing and often conflicting use of marine resources has not
only driven the development of improved governance protocol, but also
research into technological solutions that seek to fit more activity into a
given area. For example, Stoutenburg and Jacobson (2011) assess the vi-
ability of incorporating wave energy devices into offshore wind farms.
Their results indicate that such a farm would reduce the variability of
power generation as well as reduce transmission costs per megawatt
of capacity. Co-locating this energy infrastructure also reduces the over-
all footprint and increases the power generating density of the farm,
resulting in a more efficient use of offshore space. This is an example
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of a technological solution where a single firm could implement both
technologies at a single site, thereby increasing their earnings without
necessarily expanding their footprint. However, coastal waters typically
feature a host of stakeholders with divergent interests and overlapping
resource use who may find coordination difficult (Krause et al., 2011).
Since more efficient use of offshore space increases social welfare by
providing more with less impact, it is a desirable policy goal and should
be fostered where possible. The open question remains, however: to
what extent are cooperative solutions possible when different stake-
holder groups need to come together?

Wind energy and aquaculture compete for space with other uses in
many coastal locations and each industry is developing rapidly (Fig. 1).
To assess the potential of co-locating for marine spatial planning in the
context of different coastal resource user groups, this paper draws on a
hypothetical co-use setting based in the North Sea of Germany. It
models the cooperative production (“coproduction”) of wind energy
and blue mussel farming (Mytilus edulis) and analyzes the incentive
structure for cooperation.1 We employ new data and a component-
level wind energy model that allow us to assess the net present value
of different wind farm configurations. In Germany, wind energy is sub-
sidized using feed-in tariffs and transmission asset subsidies reflecting a
societal preference for establishing offshore renewable energy. We
examine the extent to which the transmission asset subsidy influences
the net present value of an offshore wind facility in order to assess the
1 Other potential co-uses have been established on decommissioned oil platforms in the
Gulf of Mexico, which are today used for private fishing (Heitt and Milon, 2002), or aqua-
culture purposes such as finfish farming (Chambers, 1998; Kaiser et al., 2010, 2011;Midg-
et, 1994; Wilson and Stanley, 1998).
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Fig. 1. The progression of renewable energy worldwide recently has coincided with a
similar increase in marine aquaculture. Source: U.S. EIA and FAO.
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viability of offshore wind energy and coproduction in locations without
this policy. Next, we explore the spatial and value efficiency gains from
coproduction to make the case that it produces socially desirable out-
comes. Finally, we address the incentive structure for collaboration
between offshore wind firms and aquaculture firms. Several questions
are addressed here: does the relative scale of the two firms inhibit the
Fig. 2. Stud
likelihood of cooperation; what is the extent of possible cost sharing
that could occur between firms; and finally, what are the potential
financial downsides to collaboration?

2. Methods

2.1. Study area

To examine the potential for coproduction, we detail a hypothetical
co-located offshore wind energy and blue mussel (Mytilus edulis)
culturing facility near the site of the planned Nordergründe wind farm
in the German North Sea. The case study site is 17 nautical miles from
the coastal port of Bremerhaven (Fig. 2) in water depths of 10 to
15 meters. These are favorable conditions for producing wind energy,
but are further offshore and in heavier seas than aquaculture has tradi-
tionally been conducted (Buck et al, 2010). However, Buck et al. (2004,
2008) and Buck and Krause (2012) make the case that incorporating
aquaculture into offshore wind farms is theoretically possible for at
least some types of aquaculture. Recent research efforts have gone on
to show the technological feasibility of incorporating aquaculture rear-
ing infrastructure into wind farms (Buck, 2007a; Buck and Buchholz,
2004) and find favorable growing conditions for sugar kelp, mussels,
and oysters in high energy seas (Buck, 2007b; Buck and Buchholz,
y area.
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2005; Pogoda et al., 2011, 2012, 2013). These low maintenance extrac-
tive species are attractive candidates due to their low costs, a key con-
sideration because offshore aquaculture and wind energy are capital
intensive endeavors with high costs and plenty of risk (Klinger and
Naylor, 2012; Weaver, 2012).

Germany provides a good case study for marine spatial planning as it
is a highly developed economy with significant marine activity but
relatively limited offshore space. Areas close to shore are dominated by
shipping interests, wild harvest fisheries, as well as conservation, leaving
little room for aquaculture or wind energy (BSH, 2009). Existing near
shoremussel aquaculture is under continual pressure fromcompeting in-
terests, and any new aquaculture farms face a choice between the few
marginal near-shore areas still available or moving offshore. Germany
has announced plans to eliminate nuclear power generation as part of
their energy portfolio by 2022 (Jorant, 2011), and as part of this plan
has enacted significant support for offshore wind energy under the
Renewable Energy Sources Act. However, the densely utilized nearshore
area has lead the vast majority of planned and installed wind energy
farms in Germany to locate in the German Exclusive Economic Zone
(EEZ), which extends beyond 12 nautical miles from shore (Buck et al,
2008). As the process of moving offshore unfolds across different sectors,
an efficient planning processwould look tofitmore activity into the near-
shore area while also preparing for offshore expansion by fostering inte-
grated siting in advance of conflicts. Finally, while Germany is facing
marine spatial conflicts in the near-term, these problems are not unique
to Germany. Use conflicts and high coastal land values in countries with
significantly more offshore space have pushed wind and aquaculture
further offshore or onto the land (Cicin-Sain et al., 2005).

2.2. Economic analysis

To understand the incentives for cooperation, wemodel the produc-
tion and financial structure of the co-located firms and assess their
potential gains and losses from cooperation. To illustrate each firm's
private earnings from production, we employ a discounted cash flow
analysis, with a focus on cost categories with potential savings due to
coproduction. Discounted cash flow analysis considers the timing of
costs and revenues over the lifetime of a project and estimates the pres-
ent value of the stream of cash flows. This is the standard method used
for assessing the financial viability of a project and comparing merits of
alternate project designs (Yescombe, 2002). We model two different
site scales that reflect common wind farm configurations (Table 1), as
well as modeling the effect of removing German subsidies on electrical
transmission equipment so our results can generalize to other wind
energy locations with favorable blue mussel culturing prospects.

While every attempt has been made to use appropriate functional
relationships and data calibrated to theNorth Sea context, thismodeling
predicts thefinancial state of hypothetical future facilities in a context of
considerable uncertainty. There are no aquaculture firms currently
Table 1
Scale scenarios for a co-located farm.

18 × 5.0 MW 80 × 3.6 MW

Wind Farm
Turbines

Number of turbines 18 80
Rating (MW) 5.0 3.6
Total capacity (MW) 90.0 288.0
Foundations Jacketed Monopile
Infield cable (km) 18.8 97.7
Farm area (km2) 11.0 64.0

Aquaculture
Plots

Number 4 16
Longlines 284 1136
Farm area (km2) 4 16
operating in the German EEZ and there are 5 wind farms operating in
German offshore waters that all were built in the last 4 years. This
considerable project uncertainty in both industries drives investors to
demand higher returns for high risk. As such, for both industries we
use a high weighted average cost of capital as suggested by Levitt et al.
(2011) for offshore wind energy to capture the high risk of these pro-
jects. All values throughout are given in pre-tax 2012 EUR.

Since data regarding many key parameters are subject to consider-
able uncertainty, we employ Monte Carlo simulation to provide addi-
tional information about the likely distribution of outcomes. Monte
Carlo simulation establishes a representative distribution for a given
parameter by transforming limited discrete data samples into continu-
ous distributions that best capture the range and frequency of likely
values. Using those distributions as inputs into the discounted cash
flow analysis model, the researcher draws random values for each
uncertain parameter and these are processed through the model to cal-
culate outputs. This process repeats a large number of times to create a
distribution of potential outcomes, thereby providing information not
only on the most likely outcome, but also key information about the
range and likelihood of other potential outcomes. Stochastic project
risk modeling has considerable precedent in project finance (Kwak
and Ingall, 2007) and specifically in wind energy and aquaculture (see
for example, Munoz et al. (2009) and Valderrama and Engle (2001)).

2.3. Wind

Germany is vigorously supporting domestic wind energy production
as ameans ofmoving away from conventional fossil energy resources as
well as nuclear power (Jorant, 2011). Generous subsidies exist for
developers that guarantee favorable energy prices and reduce capital
costs. One of these subsidies is a feed-in tariff for wind energy which
sets a guaranteed price per kWh of energy delivered.2 Having a guaran-
teed price and buyer for produced energy is a critical component in
reducing financial risk for developers and has been amajor impediment
to development elsewhere. In addition to price guarantees, Germany
has mandated that the transmission system operator finances, con-
structs, and operates the transmission systems that connect offshore
wind farms to the grid, significantly reducing capital expenditures for
wind farm developers. This national-level commitment to wind energy
has lead Germany to develop the third most wind energy generation
capacity worldwide, behind China and the U.S. with 30,000 MW
(GWEC, 2013). While this capacity is almost entirely on land,
Germany is quickly moving to install more offshore capacity. Offshore
wind turbines are less obtrusive than turbines on land, as their apparent
size and noise is mitigated by distance (Ladenburg and Lutzeyer, 2012).
Also, sincewater has less surface roughness than land, the averagewind
speed is typically higher. As of November 2014, Germany had eight off-
shore farms currently generatingpower, eightmore under construction,
and twenty three more approved.3

2.3.1. Valuation approach
Offshore wind energy is very capital intensive with front-loaded

costs for generation equipment such as foundations, cables, and
turbines and relatively little in theway of ongoing costs, sincewind, un-
like coal or gas, is a freely available source of power. Information about
component costs is notoriously difficult to attain as transactions are all
conducted on a contract basis and developers and suppliers have little
incentive to share this information. Parameterizing a discounted cash
2 The policy that sets the feed-in tariff rates is the Renewable Energy Sources Act of
2012. The act allows for a choice of two options, an accelerated and normal feed-in tariff
schedule. Developers can receive .15 €/kWh for 12 years or .19€/kWh for 8 years. After
that, the feed-in tariff is .035€/kWh for the lifetime of the project. There is a possibility
of extending the lifetime of the high feed-in tariff if the development occurs in waters
deeper than 20 m or more than 12 nautical miles from shore. These tariffs are the topic
of considerable debate in Germany and may be allowed to expire.

3 Source www.4coffshore.com/windfarms and www.bsh.de.

http://www.4coffshore.com/windfarms
http://www.bsh.de


Table 2
Model parameters and distributions.

Name Units Pessimistic Expected Optimistic Distribution

Energy generation
Wind speed m/s 9.5 9.8 10 Triangular
Availability % 90 95 97 Triangular
Energy losses % 23 17 2 Triangular

Wind Finances
⁎⁎Grid connection € mil – – – Normal (MSE =62)
Turbines (3.6 MW) € mil 6.41 6.03 5.54 Triangular
Turbines (5.0 MW) € mil 10.6 10.5 10.4 Triangular
Infield cable € mil 0.305 0.185 0.151 Triangular
Monopile foundation € mil 1.86 1.72 1.50 Triangular
Jacket foundation € mil 2.06 1.94 1.82 Triangular
Installation % of CAPEX 20 17 7 Triangular
Miscellaneous costs % of CAPEX 8 5 2 Triangular
O&M % of CAPEX 3.5 3.25 3.0 Triangular
WACC % 13.3 11.6 9.6 Triangular
Decommissioning % of CAPEX 7.0 3.7 2.6 Triangular
Wind Price €/kWh (years) 0.15 (1–12) to 0.035 (14–20) NA

Mussel Production
Biomass harvested tonnes/year/4 plots 4757 5946 7136 Triangular

Mussel finances
WACC % 13.3 11.6 9.6 Triangular
Fuel cost €/year/vessel 111,128 101,867 92,607 Triangular
Wages EUR/year/per 4 plots 134,831 132,868 130,904 Triangular
O&M and misc costs % of CAPEX/yr – 0.0375 – NA
Infrastructure cost EUR per 4 plots 3,868,613 3,776,503 3,684,393 Triangular
Vessel EUR per 4 plots – 4,409,843 – NA
Licenses EUR per 4 plots – 1102 – NA
Land facilities EUR per 4 plots – 1,653,691 – NA
Motor overhaul EUR per vessel – 424,447 – NA
Mussel price €/kg – 1.58, + .048/yr – Normal (MSE = .44)

Others
Transmission cable km – 27 – NA
Infield cable per turbine km – 0.91 – NA

⁎⁎ See Table 3.

4 In 2009, the Electricity Regulations (SI 2009/1340)mandatedwind energy generating
companies may not hold offshore wind energy transmission assets. A tender process was
established to sell licenses to existing offshore transmission assets in a competitive mar-
ket. As part of this process, OFGEM collected data on the value of existing offshore trans-
mission assets for a dozen wind farms.
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flowmodel to account for different design features exceeds the data re-
quirements of a basic EUR/installed MW approach. To overcome this,
we conducted an extensive reviewof press releases, reports, and articles
to parameterize the component-level cost model necessary for investi-
gating cost categories where coproduction may provide savings. These
cost figures were validated anecdotally by industry contacts in the
study area and also against published total capital cost figures from
the industry website 4COffshore. Table 2 provides an overview of the
values used to parameterize both the wind energy andmussel aquacul-
ture models. Sources, justification, and validation for these parameters
are given in the Appendix.

The costmodel is principally a bottom-up type approach,where unit
costs are attributed to different design features and total costs are tallied
bymultiplying by the number of units needed in our two design scenar-
ios. This approach works well with turbines, foundations, and infield
array cables as the technology is largely invariant to scaling. Connection
to themainland power grid is less amenable to a component-level anal-
ysis as the equipment required is significantly different as farm size and
distance from shore increase. A farmwith a few 3.6 MW turbines locat-
ed close to shore may simply aggregate 33 kV array cables and bring
them to land where they can be transformed at a local substation for
the high voltage electrical grid. Conversely, many of the large offshore
farms planned in Germany and elsewhere will have 400MWand great-
er capacity and will be greater than 60 km from the grid. To connect
these farms to the grid, large offshore substations are planned that ag-
gregate electricity from adjacent farms for export to land. Small losses
in energy from inefficient transmission system design can become sig-
nificant over the operating lifetime of a farm, so considerable effort is
made to design appropriate transmission systems for each farm.
Developers will often use high voltage transmission systems and may
also alternate between AC and DC technologies in an effort to overcome
these losses, with different technologies being appropriate for a given
transmission distance and farm generating capacity (Negra et al.,
2006). As a result, the designmay require different cable voltage ratings,
transformers, converters, aswell as offshore and/or onshore substations
to house equipment.

Offshore wind energy capacity has been growing at rates above 30%
for the last 5 years in Europe and projections have this rate continuing
at least for the next few years (EWEA, 2013). While the grid connection
costs in Germany are borne by the grid operator, to generalize our
results to other locationswhere bluemussel coproductionmight be fea-
sible, but such generous subsidiesmay not be available, it is informative
to assess the impact this subsidy has on costs. Sincewe are also interest-
ed in looking multiple wind farm designs, a transmission cost model
that is flexible to key design features but does not require specific
assumptions about design would be useful. With these considerations
in mind, we estimated a functional relationship of observed transmis-
sion costs to key farm-level features using a dataset4 from theU.K. Office
of the Gas and Electricity Markets (OFGEM):

TC ¼ f MW ;Dð Þ ð1Þ
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This equation relates the transmission costs (TC) in EUR millions to
the total generating capacity of a farm (MW) in megawatts and the dis-
tance of that farm from the grid (D) in kilometers. The results of the es-
timation are given in Table 3. With this information we are able to
predict the total installed capital cost of a variety of different farm de-
signs at our study site by combining it with component and installation
cost information. We have validated our cost estimation approach
against stated project costs and have found a very strong correlation be-
tween stated and predicted results (see Appendix).

In addition to capital costs, wind farms also require maintenance
throughout their lifetime. Periodic inspections and repairs are essential
to maintaining turbines and preventing downtime. Given the relatively
recent emergence of offshore wind farms, there is little guidance on
estimating the costs associated with operations and management.
Existing guidance typically takes the form of an annual cost that
is a ratio of the original capital cost, or is given as a €/kWh of energy
generation. Both methodologies arrive at approximately the
same level of expenditure, so we use the annual cost suggested by
Boccard (2010) of somewhere between 3 and 3.5 % of original capital
expenditures. Since this is a cost category that has potential for cost
sharing, we will return to this in the results section and explore in
more detail.

To calculate revenue for our wind farm designs, we need informa-
tion on energy prices andwind energy generation. Current feed-in tariff
subsidies established by the Renewable Energy Sources Act of 2012 for
wind energy in Germany pay energy producers a rate that varies over
the lifespan of the farm (see footnote 2). To calculate annual wind ener-
gy generation, we use a method suggested by Masters (2004) and
employed by Dvorak et al (2010) that estimates a capacity factor
based on turbine and wind speed factors. The function:

CF ¼ :087� v− P
D2 ð2Þ

specifies the capacity factor as a function of averagewind velocity at hub
height inmeters per second, v, the rated capacity of a turbine in kWh, P,
and the rotor diameter inmeters,D. This equation is based on a Rayleigh
distribution of winds, a common assumption used in modeling wind
turbine energy output. Compared against a more elaborate model
using wind speed densities and power curves for the 3.6 MW turbine,
the results are consistent and similar (within 5% of estimated output).
Compared to published results for a 5.0 MW turbine, this method is
within .1% (see Appendix). This yields capacity factors near 50%,
which is similar to levels observed at the nearby Alpha Ventus wind
farm (Alpha Ventus, 2010). The annual energy output for a given
turbine is the maximum potential power output multiplied by the
capacity factor; farm level output is calculated by summing over all
turbines subject to assumptions regarding availability and grid losses
(see Appendix). Finally, farm revenue is calculated bymultiplying annu-
al energy generation by the unit price of energy.

2.4. Mussels

Bluemussels are indigenous to the North Sea and North Atlantic and
are important commercially as an edible food commodity. While they
Table 3
Transmission cost estimates.

Var Coefficient

MW 0.608
Std. err. 0.114
D 1.022
Std. err. 0.889
R-squared: .946
can be harvested in the wild, aquacultured mussels represent the vast
majority of commercial production in Europe. Mussels are a form of
extensive marine aquaculture in that they are highly dependent on
local habitat conditions for growth and do not require significant effort
to cultivate as they extract their food by filter feeding the surround-
ing water column. In this capacity they make an attractive candidate
for offshore aquaculture as the effort required for cultivation is less
than intensive aquaculture facilities like those for finfish where regu-
lar feeding and active care is required.5 Buck et al. (2008) and Buck
(2007b) describe the results of 2 years of observing blue mussel
growth characteristics at the site of this study. Employing longlines
6 meters below the surface with suspended collector ropes, they
found that wild mussel spat settled abundantly and yielded an aver-
age of 10 kg/m on grow out to market size (18 months). In water
depths of 15 meters, mussels were suspended deep enough to
avoid the destructive power of wave action and from potential collision
through boat traffic and far enough off the bottom to avoid contamina-
tion from sand and other bottom hazards such as predation from adult
sea stars.

2.4.1. Valuation approach
Blue mussels are the main commercially raised bivalves in the

German North Sea and have traditionally been grown using bottom-
culture techniques in the near shore area. Germany's annual production
of mussels is subject to considerable variation due to recruitment
success and the availability of spat (Buck et al., 2010). In recent years
Germany has represented around 1 percent of the total European pro-
duction with 3,600 – 24,000 tonnes of production (FAO data, 2000–
2010). Nguyen (2012) finds that mussels in Europe are generally price
inflexible, meaning that a 1% increase in quantity consumed translates
into a price decrease of less than 1%. Unfortunately, due to the relative
insignificance of German mussel production in the context of the
European market, it was left out of that analysis and therefore we can-
not predict prices as a function of production changes in Germany.
However, the price inflexibility observed by Nguyen (2012) allows us
to be more confident in assuming that the aquaculture firm can be
assumed a price-taker with the relatively small changes in production
(relative to the European market) simulated in this study.6 Based on
this, we used FAO data from 1984 to 2012 on ex-farm mussel prices in
Germany to estimate a price trend and price uncertainty over the simu-
lated horizon (Table 2).

To illuminate a mussel aquaculture firm's incentives for copro-
duction with a wind energy firm, we employ the same stochastic
discounted cash flow method as with wind energy and utilize pa-
rameter observations from Buck et al. (2010). It is important to
note that the biological conditions found at the study site, including
spat availability, local carrying capacity, and biomass growth, may not
be applicable to all locations through the distribution of Mytilus edulis.
See the Appendix and Buck et al (2010) for a fuller discussion of the
modeling, parameter choice, assumptions, and limitations. For the
purposes of this paper, the main differences from Buck et al (2010)
are that we:

- Only focus on the production of consumption mussels using a new
vessel (scenario 1 of Buck et al. (2010)).
5 Offshore finfish aquaculturemay also benefit from collocating withwind farms. Using
submerged fish pens and electric power fromwind turbines for automated feeding could
reduce costs enough to make the relatively more valuable finfish product commercially
viable.

6 Given that the simulated amountsmeet or exceed historical production inGermany, it
is likely that the domesticmarketwill have to expand or productwill have to be exported.
Nguyen (2012) indicates that France is themost important market for mussels in Europe;
however their domestic production only supplies about 60% of demand. At 2010 produc-
tion levels this suggests a shortfall of over 50,000 tons, which leaves German production
with a reasonably close outlet for mussels that are not consumed domestically.



Table 4
Operational schedule over the time horizon.

Year Pre1 1 2 3 4 5 6 … 20

Wind farm CAPEX Operational O&M → Decommission
½ of mussel plots CAPEX Deployment O&M Harvest O&M O&M Harvest CAPEX O&M Deployment O&M Harvest O&M → Decommission
½ of mussel plots NA CAPEX Deploy O&M Harvest O&M O&M Harvest CAPEX O&M Deployment O&M → Decommission

Table 5
Net present value for scenarios, given in 2012 € millions.

Transmission subsidy No transmission subsidy

18 × 5.0 MW 80 × 3.6 MW 18 × 5.0 MW 80 × 3.6 MW

Wind NPV (€ mil) 25.0 111.3 -78.6 -204.7
std. dev. 18.5 82.1 99.1 132.7
Mussel NPV (€ mil) 57.5 229.8 57.5 229.8
std. dev. 8.8 35.2 8.8 35.2
Size of wind farm
(km2)

28 99 28 99

Size of mussel farm
(km2)

1.96 7.84 1.96 7.84

Spatial efficiency increase (%)
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- Analyze two scales of production, a smaller facility of 4 plots of mus-
sel culturing longlines and larger facility that employs 16 plots.
Based on limited offshore experience in constructing these facilities,
we assume a constant marginal cost of equipment for a deep-water
mussel farm similar to Kirkley (2008).7

- Use a 20 year time horizon, i.e. 5 iterations of the production cycle
used in Buck et al. (2010). Table 4 shows the timing of the growing
schedule for mussels with a biennial harvest schedule on two sets
of asynchronously harvest plots, as well as the production schedule
of the wind farm, over the projected lifetime of both facilities.

3. Results and discussion

3.1. Net revenues

The results of the discounted cash flow analysis for both firms across
our scenarios are given in Table 5. The table is arranged with two main
columns representing the financial conditions with and without the
electrical transmission subsidy present at the study site. Addressing
the German context with the transmission subsidy first, we find that
the mean net present value for each firm is positive across both scales,
thusmeeting themost basic precondition for operation. Themean earn-
ings for a wind farm are roughly half of that expected for each sizemus-
sel farm, but are close enough that the potential exists for meaningful
interaction if payments between firms are necessary to ensure
mutually-beneficial cooperation. From a social welfare perspective, co-
locating these facilities results in a 7–8% increase in available space
and improves the earnings in the footprint (versus a wind farm alone)
by 230% for the small wind farm and 207% for the large wind farm.
We also find that increasing the size of a coproduction facility increases
the realized value per km2. Taken together, these results suggest that
wind and mussel firms can be profitable in this context with the poten-
tial formeaningful dialog, and that offshore space can bemore efficient-
ly utilized with a coproduction facility.

U.K. offshore wind energy regulations changed in 2009 to mandate
that no energy generator can own offshore energy transmission assets,
which is conceptually very similar to the German transmission subsidy,
so these results should readily extend to the U.K. as well. For countries
where developers must build and maintain their own transmission
infrastructure, we also assessed the effect of this policy on net earnings.
We find that the transmission subsidy has a strong effect on net earn-
ings and without it neither scale wind farm is worth building. These
findings are subject to considerably more uncertainty than with the
transmission subsidy, due to significant variation introduced via the es-
timated transmission cost equation. In the case that a wind farm is built
under these conditions, there would be a strong incentive for cost shar-
ingwith anoutside aquaculturefirmor potentially exploring a vertically
integrated wind and mussel farm to achieve positive net earnings.

3.2. Potential shared costs

To further investigate the potential cost savings from cooperation
we disaggregate the above results and provide cost information for
7 When expanding from 4 to 16 plots, the constant returns to scale imply purchasing 4
times asmuch equipment (i.e. vessels, land facilities), or purchasing larger equipment but
realizing no scale-based cost savings.
key categories for each firm in Table 6. For wind energy firms, the
major cost categorywhere coproductionmay reduce costs is operations
and management (O&M). Over the lifetime of a project, O&M costs ac-
count for roughly 20% of total costs in present value terms and provide
an approximate upper bound on the portion of costs that could poten-
tially be shared. Given that O&M costs for a wind farm alone are about
two-thirds the value of projected revenues from a mussel farm, it is
clear that these firms would operate on two different scales. The extent
to which wind farm O&M costs could be reduced thus will be modest.

To assess these limits, a better understanding of disaggregated O&M
activities is necessary. From an operations costs perspective, wind farms
engage in bothmanagement and administration, acquire insurance, and
pay for safety mechanisms and monitoring equipment (Karyotakis,
2011). From a maintenance costs perspective, the major cost categories
include replacement item costs, labor costs, and transportation costs.
From the above categories, labor and transportation costs are the likely
expenditures where cost savings might be realized.

The Dutch Offshore Wind Energy Converter project (Rademakers
and Braam, 2003) looked closely into the optimization of maintenance
of an 80 turbine offshore wind farm using 5.0 MW turbines. Mainte-
nance falls into two general categories: preventative and correctional.
Preventative maintenance includes minor repairs and inspections and
is aimed at preventing turbine failure and subsequent lost energy gener-
ation. Correctional maintenance is focused on repairing minor and
major failures and occurs shortly after the failure is detected. Preventa-
tive maintenance can typically be carried out by a relatively small
personnel supply vessel, whereas corrective maintenance typically
requires additional vessels equipped with cranes and perhaps even
jack-up barges depending on the scale of repairs. These larger vessels
are specialized for turbine repairs and at €25,000 per day are expensive
tomobilize (Karyotakis, 2011). However, the smaller personnel vessel is
ideally suited for transport of light equipment and crew for both the
mussel and wind energy farm and may provide an opportunity for
cost savings. Rademakers and Braam (2003) found that, for an 80
turbine farm, this smaller supply boat would be needed 103 days for
corrective maintenance and 40 days for preventative maintenance per
year. If preventative maintenance is undertaken in the summer to take
advantage of relatively calm weather, and corrective maintenance
occurs with equal probability throughout the year, this leaves 66 days
of work in the summer and 77 days of work throughout the rest of the
Area 7.0 7.9 7.0 7.9
Value 230.0 206.5 – –

Value/Area
(€ mil/km2)

2.8 3.2 −0.7 0.2



8 http://www.dewi.de/dewi/fileadmin/pdf/publications/Magazin_28/12.pdf.

Table 6
Cost sharing potential, given in 2012 € millions.

Transmission subsidy No transmission subsidy

18 × 5.0 MW 80 × 3.6 MW 18 × 5.0 MW 80 × 3.6 MW

Wind farm
Revenue 247.1 1,098.4 247.1 1098.4
Total costs 222.1 987.4 325.7 1303.1
Sharable costs

O&M costs 44.4 197.5 65.2 260.7

Mussel farm
Revenue 77.5 309.9 77.5 309.9
Total costs 20.0 80.1 20.0 80.1
Sharable costs

Vessel costs 4.3 17.3 4.3 17.3
Fuel costs 0.7 2.9 0.7 2.9
Wages 1.0 4.1 1.0 4.1

86 R. Griffin et al. / Aquaculture 436 (2015) 80–89
year. Rademakers and Braam (2003) found that an outright purchase of
a supply vessel (at an annualized cost of 2.2–2.4 €million and present
value of 24.4 €million) makes the most financial sense given mobiliza-
tion delays and availability issues for hired boats. Given that there is
excess capacity Sept – June that coincides with the entire maintenance
schedule for themussel farm, crew and vessel costs for the supply vessel
provide a key opportunity for cost savings. This narrowing down of
complementary maintenance activities for an 80 turbine farm provides
more reasonable bounds of up to 24.4 € million in cost savings for the
wind farm and 24.3 € million (from the sharable costs in Table 6) for
the mussel farm.

The cost savings detailed above will rely on how much O&M work
can be done with excess capacity alone versus needing to expand
investment to meet both firms' needs. In the event that cost savings
are significantly biased towards one firm, our results suggest that
there are enough net earnings for each firm under current German sub-
sidy regimes to propose a reasonably attractive level of compensation
for the ability to co-locate.

3.3. Liability

While the results give us cause to believe that co-locating aquacul-
ture and wind energy offshore could be profitable and potentially
cost-advantageous, there are some additional considerations that may
influence the likelihood of cooperation. The largest potential issue is
the disturbance of maintenance activities leading to a greater incidence
of downtime and potential damage to equipment, both of which are an
issue of liability. Downtime for a wind farm is very costly, at a daily cost
of €144,878 or €8,049 per turbine for the 90 MW wind farm and
€493,860 or €6,173 per turbine for the 288 MW farm when the feed-
in tariff rate is 0.15 €/kWh. Similarly, if the mussel longlines are dam-
aged during O&M activities at the wind farm, up to two years of mussel
growth could be impacted at a cost of millions. Insurance could cover
these potential risks, though the cost of coverage may offset any gains
from cooperation. By appropriately siting mussel plots at a low density
and appropriate depth, there should be plenty of room to service both
turbines and mussel plots without risk to equipment. Ultimately, the
risks associated with co-locating these firms will need to be assessed
as experience grows in both industries and via pilot studies of offshore
coproduction, and at this point are not readily quantified.

4. Conclusions

Our analysis has established that mussel and wind farms could have
financial incentives for co-locating at common wind farm scales in the
North Sea. The potential for complementary maintenance activities
using a supply vessel provides the basis for cost sharing between
firms, though the specific savings each firm may realize depends on
how savings are split and the extent to which the supply vessel needs
additional equipment for carrying out both maintenance schedules.
We have also justified the contention that social welfare and spatial ef-
ficiency can be increased by co-locating these operations, finding a 7–8%
increase in spatial efficiency and a 207–230% increase in the density of
value generated versus a wind farm alone. This is critically important
in densely used coastal areas, such as the German North Sea, but more
generally it is important for increasing coastal resource use while limit-
ing the impact of coastal development on the surrounding ecosystem.

Without a significant legacy in offshore zones around the world,
wind energy is in a unique position to foster cooperation with other
stakeholders. While this new entrant position allows wind energy
firms the opportunity to shape their relations with other ocean users,
it also means that there is an inherent lack of understanding between
aquaculture and wind energy. The core of each business is different
enough that the skills and expertise needed varies considerably, which
itself may serve to preclude cooperation. Also, the findings here apply
only to culturingMytilus edulis; other extensive species such as seaweed
will face significantly different market and cost conditions, and inten-
sive species such as finfish would require completely rethinking how
the firms interact from a technical perspective.

Here we have framed the potential effects of coproduction in the
context of economic considerations; however, social and regulatory
issueswill also play a significant role in fostering or hindering collabora-
tion (Christie et al, 2014). Given the significant volume of subsidies
already used to promote wind energy and smarter use of offshore re-
sources, relatively modest technical or financial support for coproduc-
tion could provide the catalyst to more fully scope this idea and
hopefully move the focus of marine spatial planning a little closer to
collaborative solutions.
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Appendix A

A.1. Wind energy

EWEA (2009, p. 49) has an extensive discussion on how to calculate
annual power generation. They note that the key is to know the mean
wind speed at hub height; the statistical distribution of wind speeds
around the mean wind speed plays a minor role in determining annual
wind production. Sawyer (2008) puts the average wind speed in the
Nordergründe area at 8–9 m/s as estimated by the Global Wind Energy
Council. 4COffshore.com puts the mean observed wind speed at 100 m
height from 2000 to 2009 as 9.95 m/s. Data collected at the FINO 1 ob-
servation site suggest the measurement of 9.9 m/s is a good estimate
for this area at 100 m height.8 Since this data has been collected for a
decade, the long term variation is unlikely to be large. Based on a typical
Weibull profile of wind speedswemight expect 9.5 m/s – 10m/s. Infor-
mation about site conditions are not detailed enough (and it has been
shown to be overkill to use anything besides mean wind speeds any-
way) to create exceedance probabilities.

The Carbon Trust (2008, p. 40) cites a load factor of 36% expected for
Kentish Flats, and a range of 25–36% for three Vestas 3.0wind farms. See
pg. 108 for a breakdown of load factors and CAPEX/MW costs over a
variety of wind speeds, depths, and distances from shore. EWEA
(2009) defines the capacity factor of a wind turbine as the amount of

http://www.dewi.de/dewi/fileadmin/pdf/publications/Magazin_28/12.pdf
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energy delivered during a year divided by the maximum power output
that turbine could have generated. EWEA (2009) states that inter-
annual wind energy production from a turbine varies with a standard
deviation of around 10% of mean energy.

Masters (2004) and Dvorak et al (2010) estimate a capacity factor
based on turbine and wind speed factors. The function is based on a
Rayleigh distribution of winds, a common assumption used inmodeling
wind turbine energy output. Compared against a more elaborate model
using wind speed densities and power curves for the 3.6 MW Siemens
turbine, the results are consistent and similar (within 5% of estimated
output, Table A1). Compared to REPower's published results, this meth-
od is within .1%.9 This yields capacity factors near 50%, similar to nearby
Alpha Ventus wind farm.

Table A1
Wind energy calculations and comparison of calculation methods.

Mean Wind Energy Parameters
H
1

tu
1

o

9 http://enr-ee.com/fileadmin/user_uplo
avre/session4/Mohr_Goesswein.pdf.
0 http://www.renewable-energy-sources
rbines-at-thornton-bank-and-alpha-ventu
1 http://www.wirralglobe.co.uk/news/468
ff_Wirral_shore_out_of_action_for_four_we
Siemens 3.6 MW
ad/Downloads/Offsho

.com/2010/06/21/repo
s-achieve-first-class-op
7615.EXCLUSIVE__Burb
eks_after_cabling_failur
REpower 5.0 MW
Wind speed (m/s)
 9.8
 9.8

Max power (MWh)
 31,558
 43,830

Capacity factor
 0.53816
 0.53766

Actual power (CF Method - MWh)
 16,983
 23,566

Availability
 0.95
 0.95

Pre loss total (MWh)
 16,134
 22,387

Losses (%)
 17%
 17%

Net energy total (MWh)
 13,391
 18,581

Turbines
 80
 80

Farm total (MWh)
 1,071,294
 1,486,518

Actual power (Power curve - MWh)
 16,868
 24,090

Diff from CF method (%)
 0.68%
 −2.10%
Carbon Trust (2008) assumes that availability falls over the lifetime
of a wind farm, and with distance from shore. The Carbon Trust (2008,
pg. 40) has expected availability for an offshore wind farm to theoreti-
cally be between 90 and 95%. Offshore Design Engineering (2007)
uses an assumption of 95% availability. REPower turbines have shown
(in limited lifetimes to date) a very high level of availability, from 94%
to 97%10 and Siemens 3.6 MW turbines have had 97% availability at
Burbo Bank wind farm in the UK.11

Regarding energy losses, EWEA (2009) states that cable array losses
are 5–10%, grid losses (infield arrayheat losses) are 1–3%, etc, downtime
is put at 2%, though that is for onshore (should be higher offshore, i.e. 5–
10% from Carbon Trust (2008)). These combined suggest an 11–23% re-
duction after calculating the total annual energy achieved. For an HVAC
transmission system at 27 km (exactly the distance of Nordergründe),
ESS, Inc. (2004) calculates the grid losses as being 1.5% at peak load.
A.1.1. Wind costs
A fully documented description of the cost model is given in the

User's Guide for the InVEST Offshore Wind Energy model (Sharp et al,
2014). The online version of the User's Guide includes a permanent
link to the press releases used to assemble parameter values for this
study.

To validate our cost model and parameters, we simulated the total
capital cost of 24 offshore wind farms currently in operation and com-
pared the values against published data on stated total capital costs
from http://www.4coffshore.com/ and http://www.lorc.dk/offshore-
wind-farms-map/statistics. This tests how our component-level model
re/Rencontres_du_

wer-offshore-wind-
erational-results/.
o_Bank_wind_farm_
e/.
fares when all costs are aggregated versus independent data on stated
total capital costs, giving a measure of how accurate our model is at
the farm level. Using data for 3.6 MW and 5.0 MW farms (those
employed in this study), we found a very tight correlation between
predicted and stated costs as expressed in US$ (Fig. A1).

A.1.2. Wind farm layout
A 7x7xrotor dia. min rule for turbine spacing (AWS Truewind, 2010)

yields similar results for both the 3.6 turbine and 5.0 turbines (750–
880 m, smallest to largest options), and since Nordergründe uses
1000 m (approx.) spacing, we take that as the common spacing across
projects. This implies that the plot sizes will remain constant across
alternatives. For a buffer, we add 7 times the rotor diameter around
the farm layout.

A.2. Mussels

This analysis uses scenario 1 in Buck et al. (2010), production of
consumption mussels with investment into a new vessel.

Most of the cost data for mussels is taken directly from Buck et al.
(2010) and is transformed where necessary to fit model specification.
Also, the focus is on mussel growth for consumption, as it has been
shown to be themore profitable option compared to growing seedmus-
sels. Like wind energy, the expected output per unit is constant by de-
sign. All costs have been inflated from March 30th, 2010 to March 30th,
2012.

Since our time horizon is longer than the 4 years of Buck et al.
(2010), we have had to address a few issues. The useful life of most cap-
ital expenditures is less than the 20 year horizon we are using, so the
below gives our new assumptions:

• All plot-related infrastructure has a useful life of 4 years, in contrast to
the longer life for some items (such as buoys, stones, and anchors)

• The motor(s) are rebuilt in year 10, but not in year 20, leaving no
residual value to the vessels

• The land facilities' useful life is given as 15 years. To get through year
20 we are requiring an annual maintenance fee starting in year 16
equal to the straightline depreciation value. This is discounted back
for present value purposes.

• Given the production schedule, there is a harvest (of half the plots)
that could be had in year 21. We assume this is not realized as it is
outside the production horizon and the useful life of most of the
equipment.

• Repairs/maintenance andmiscellaneous costs from Buck et al (2010),
Table 2, are given as 10% and 5% of the depreciated value of the assets
over 4 years. We lump this together as O&M in our Table 2, and turn
15% over 4 years into 3.75% of CAPEX expenditures per year for the
lifetime of the farm. This cost category is independent of fuel and
labor costs for O&M.

http://www.4coffshore.com/
http://www.lorc.dk/offshore-wind-farms-map/statistics
http://www.lorc.dk/offshore-wind-farms-map/statistics
http://enr-ee.com/fileadmin/user_upload/Downloads/Offshore/Rencontres_du_Havre/session4/Mohr_Goesswein.pdf
http://enr-ee.com/fileadmin/user_upload/Downloads/Offshore/Rencontres_du_Havre/session4/Mohr_Goesswein.pdf
http://www.renewable-energy-sources.com/2010/06/21/repower-offshore-wind-turbines-at-thornton-bank-and-alpha-ventus-achieve-first-class-operational-results/
http://www.renewable-energy-sources.com/2010/06/21/repower-offshore-wind-turbines-at-thornton-bank-and-alpha-ventus-achieve-first-class-operational-results/
http://www.wirralglobe.co.uk/news/4687615.EXCLUSIVE__Burbo_Bank_wind_farm_off_Wirral_shore_out_of_action_for_four_weeks_after_cabling_failure/
http://www.wirralglobe.co.uk/news/4687615.EXCLUSIVE__Burbo_Bank_wind_farm_off_Wirral_shore_out_of_action_for_four_weeks_after_cabling_failure/
image of Figure�A1
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Regarding the number of plots, given that the design of any given
windfarm is likely to be optimized for wind, rather than aquaculture
production, it is unlikely that an aquaculturist could expect the maxi-
mum 63 plots on a wind farm of 80 turbines. In a farmwith 18 turbines
Buck et al (2010) used 4 plots (of a potential 6). A similar scale will be
used in this approach, with 16 plots (out of a maximum of 63) in oper-
ation. Since we have no data to support quantitative differences in
returns to scale, the variation in scaling is simply a proportional adjust-
ment anyway.

We adopt the size used by Buck et al (2010). Their study site had
1000 m average distance in all directions between turbines. Alpha
Ventus has between 760m and 840m on a smaller farm. The optimal
configuration and layout of wind farms on the open ocean is a work
in progress still (Samorani, 2010). The resultant size of a plot is
121 acres.

According to Kite-Powell et al. (2003) one vessel is capable of servic-
ing a field of 300 longlines. There are 71 longlines per plot, so 4 plots are
serviceable by one vessel. In a 16 plot context, 4 vessels would be
necessary.

Pg. 10 of Buck et al. (2010) lists the sourcing backing the biomass per
meter of collector, and puts it at 10–15 kg.

We collected prices for aquacultured mussels in Germany from
the FAO's Fishstat database. This supplies both value and quantity
information from 1984 to 2012, from which we imputed annual
mean prices per kilogram over that span. A linear regression was fit
to the data to estimate prices and price uncertainty going forward
through our simulated 20 year farm lifespan. The R2 of the regression
was .47, and it revealed a linear price increase of .048€ per year and a
standard deviation for the price prediction of .44€. This is acknowl-
edged as a very rough approximation of prices, as FAO data is not
authoritative and a market study beyond the considerations of
Nguyen (2012) would be advised for any firm that is considering large
production volumes.
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