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Abstract Finite-volume discretizations can be formu-

lated on unstructured meshes composed of different poly-

gons. A staggered cell-vertex finite-volume discretiza-

tion of shallow water equations is analyzed on mixed

meshes composed of triangles and quads. Although tri-

angular meshes are most flexible geometrically, quads

are more efficient numerically and do not support spu-

rious inertial modes of triangular cell-vertex discretiza-

tion. Mixed meshes composed of triangles and quads

combine benefits of both. In particular, triangular tran-

sitional zones can be used to join quadrilateral meshes

of differing resolution. Based on a set of examples in-

volving shallow water equations it is shown that mixed

meshes offer a viable approach provided some back-

ground biharmonic viscosity (or the biharmonic filter)

is added to stabilize the triangular part of the mesh.
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1 Introduction

Unstructured meshes are now common in coastal ocean

modeling, and the number of models based on such

meshes is continuously increasing. Models like FVCOM

(Chen et al. (2003)), ADCIRC (Westerink et al. (1992))

or SELFE (Zhang and Baptista (2008)), to mention just

few, are widely used by many research groups for var-

ious practical tasks. Indeed, when it comes to resolv-

ing the details of coasts or estuaries, there is no vi-

able alternative in a general case (although structured

curvilinear meshes can provide accurate and more nu-

merically efficient solutions in particular cases). Most

unstructured-mesh models are formulated on triangu-

lar meshes simply because triangles offer more geomet-

rical flexibility than other polygons. For example, quads

have to be substantially deformed in places where the

resolution is varied. Quads are on the other hand more

economical computationally, since they involve fewer

edges. Many finite-volume codes can easily be gener-

alized to mixed meshes, in particular, to the meshes

made of quads and triangles, enabling using the best

sides of both elements where appropriate. While the

approach is common in computational fluid dynam-

ics, its applications to oceanographic tasks are rare.

Kernkamp et al. (2011) propose to use a C-grid-based

approach on general mixed meshes and explain why it

may be beneficial in coastal applications. In particular,

on C-grids, quads are better suited to represent one-

dimensional structures or can more easily be aligned

with the flow or bathymetry where needed. However,

C-grid meshes should be orthogonal, which makes them

less general. Additionally, special measures are needed

to represent the Coriolis operator in situations when its

effects are not negligible. Relevant discussion of the re-

construction procedure needed to implement the opera-
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tor can be found in Thuburn et al. (2009) who propose

the approach that ensures the presence of a station-

ary geostrophic mode on an f -plane. The divergence

noise may be another issue on triangular C-grids (see

Le Roux et al. (2007)) in applications where baroclin-

icity is important.

This may partly serve as an argument in favor of ex-

ploring a cell-vertex finite-volume discretization, which

keeps a full velocity vector at cell centroids and locates

scalar quantities at the vertices. The presence of full

velocity makes the treatment of the Coriolis term triv-

ial, and the discretization does not require orthogonal

meshes. Admittedly, C-grids are more accurate in simu-

lating the propagation of the Poincaré waves, and would

be a better choice in cases when the interest lies solely

in computing barotropic flows. However, the triangular

cell-vertex discretization works sufficiently well in prac-

tice, as demonstrated by numerous studies performed

with FVCOM. It is not free of numerical modes, and

we will address them below. We will deal here only with

the shallow-water equations both for simplicity and be-

cause the vertical dependence does not interfere with

the mixed character of the horizontal mesh.

The numerical modes of triangular cell-vertex dis-

cretization are one of main factors motivating our atten-

tion to mixed meshes. Indeed, this discretization (anal-

ogous to P0 − P1 finite-element discretization) has too

many degrees of freedom in its velocity field because

the number of cells is approximately twice that of ver-

tices. The excessive size of velocity space results in spu-

rious inertial modes (see, e. g., LeRoux (2012)). These

modes are of zero divergence in a linearized, uniform-

depth shallow water system. They do not project on

the elevation and are eliminated by viscosity. In prac-

tice, however, nonlinearity, uneven bottom topography

or forcing continuously generate them, and because of

nonlinearity, the solution is aliased by noise unless dissi-

pation is sufficient to remove it. Although the noise can

be well handled (see, e. g., Danilov (2012)), it it always

of concern. Quads, in contrast, implement the neces-

sary balance between the vector (velocity) and scalar

(elevation) degrees of freedom and are free of the noise

discussed above (a caveat is that on structured meshes

the cell-vertex discretization is similar to a B-grid and

may be prone to the pressure modes, as documented

elsewhere).

The other factor in favor of mixed meshes is the al-

ready mentioned fact that quads are more efficient com-

putationally. Indeed, compared to triangular meshes

with the same number of scalar degrees of freedom, they

have twice fewer cells and 1.5 times fewer edges. This

leads to shorter cycles and a reduced computational

burden. Clearly, in a close proximity to coasts one may

need the versatility of triangular meshes for geomet-

rical reasons. Outside these areas the triangular part

may only be needed to provide smooth transition be-

tween quadrilateral meshes of differing resolution. This

is very similar to the idea of nesting, and is perhaps of

more value for modeling the large-scale ocean circula-

tion than for the applications on a coastal scale.

The point of concern is that the areas of triangles

adjacent to quads are about 2 (4/
√

3 for equilateral tri-

angles)) times smaller, which can be thought as leading

to a local loss of approximation for flow features on

a grid scale. However, this jump in resolution involves

only the velocities, since the difference in the size of

scalar control volumes is much smaller ((4/3)1/2 ≈ 1.15

if triangles are equilateral). One may therefore argue

that the factor of about 2 for velocity is rather the con-

sequence of the increased velocity space than of the

jump in actual resolution offered by the discretization,

and extra degrees of freedom in velocities should effec-

tively be filtered out. The consequences of an abrupt

change in mesh geometry depend on how well the mesh

is able to resolve the dynamics. For many wave appli-

cations the approach proposed here may work just fine.

However, if nonlinear effects are significant, or, in other

words, the grid-scale Reynolds number is sufficiently

high, the transitional zones may be vulnerable to noise,

especially on the triangular part. For this reason the

reliability of mixed meshes depends on whether we are

able to control the noise in the case it is generated.

That said, it should be clear that the transition we are

dealing with here is much more gradual than the jump

in resolution in traditional nesting, and fields are al-

ways consistent across the coupling zone if dissipation

operators are properly adjusted. This paper is therefore

about noise on mixed meshes and on how to control it

by relatively simple means. Our main goal is to show

that it is possible through efficient viscosity operators.

The plan of the paper is as follows. The next sec-

tion briefly describes the implementation, and focuses

on the details of viscosity and filter operators needed to

maintain stability of too large velocity space on trian-

gles without excessive damping. The first-order upwind

in momentum advection used in some coastal codes to

ensure numerical stability is kept as an option, but we

consider it overly dissipative. We discuss other imple-

mentations of momentum advection, including a variant

with build-in filtering, which may be helpful in practical

situations. Section 3 deals with numerical tests of wave

and tide propagation both in idealized examples and

in realistic cases, where the comparison against obser-

vations is carried out. Neither of the cases considered

here is intended to demonstrate advantages of mixed

meshes in terms of accuracy; they rather serve to illus-
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trate that the approach works stably. Section 4 contin-

ues with tests, but concerned with the quasi-geostrophic

part of dynamics, and the final section concludes. For

completeness, Appendix proposes the derivation of en-

ergy and potential vorticity conserving scheme, which

is based on the vector-invariant form of momentum ad-

vection.

2 Implementation, viscosity, filters and

momentum advection

Here we deal with the shallow water equations

∂tu + fk× u + (u · ∇)u + g∇η = F + (Dd +Dv)u, (1)

∂tη +∇ · (Hu) = 0. (2)

The notation is standard: u = (u, v) is the velocity, f

the Coriolis parameter, k the unit vertical vector, g the

acceleration due to gravity, η the elevation, H = h+ η

the full fluid layer thickness and h the unperturbed

thickness, which may vary horizontally due to uneven

bottom. The operators Dd and Dv introduce the bot-

tom drag and viscosity respectively, and F is the ex-

ternal force (due to wind). The bottom drag is written

as HDdu = −Cd|u|u, where Cd is the drag coefficient.

The viscosity operator can be both harmonic and bi-

harmonic, and we will also consider the option when it

is replaced by a numerical filter. Equations (1) and(2)

can be combined to provide the flux form for momen-

tum advection

∂tU+fk×U+∇·(uU)+gH∇η = HF+H(Dd+Dv)u,

(3)

where U = uH.

We briefly describe the implementation in plane ge-

ometry with coordinates (x, y). Spherical geometry is

introduced by changing to a spherical coordinate sys-

tem with poles over the land. The cosine of latitude is

estimated in that case at cell centroids, where the veloc-

ity is located. It is used to define the advecting velocity

(see, e. g., Szmelter and Smolarkiewicz (2010)) in com-

putations of divergence, and to compute the gradients

of scalar quantities on cells. Metric differentiation terms

only appear in the computations of velocity gradients,

and are estimated on cells if needed. They are omitted

in all examples below because of their smallness.

As is common with finite-volume method, the gov-

erning equations are integrated over control volumes

and the divergence terms, by virtue of the Gauss theo-

rem, are reduced to the sums of respective fluxes through

the boundaries of control volumes. The scalar control

volumes are formed by connecting the cell centroids

with the centers of edges, which gives the so-called

median-dual control volumes, as schematically shown

in Fig. 1. The vector control volumes are the mesh

cells themselves. The basic structure to describe the

v
1

v
2

c
2

c
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Fig. 1 Schematic of mesh structure. The velocities are lo-
cated at centroids (the squares) and the elevation at vertices
(the large circles). A scalar control volume associated with
vertex v1 is formed by connecting the neighboring centroids
to edge centers (the small circles). The lines passing through
two neighboring centroids (e. g., c1 and c2) are broken in
a general case at the edge centers. Their fragments are de-
scribed by the left and right vectors directed to centroids (sl
and sr for edge e). Edge e is defined by its two vertices v1
and v2 and is considered to be directed to the second vertex.
It is also characterized by two cells c1 and c2 to the left and
to the right respectively.

mesh is the array of edges given by their vertices v1
and v2, and the array of two pointers c1 and c2 to the

cells on the left and on the right of the edge. Using

this language, there is no difference between triangles

and quads in the cycles which assemble fluxes. Quads

and triangles are described as four indices to vertices

forming them; in the case of triangles the fourth in-

dex equals the first one. The treatment of triangles and

quads differs slightly in what concerns computations of

gradients, which will be detailed below. We will use a

symbolic notation: e(c) for the list of edges forming cell

c, e(v) for the list of edges connected to vertex v, v(c)

for the list of vertices defining cell c and so on. We will

use v(c) to denote non-repeating vertices of triangles

(v(c) lists the first vertex twice). As concerns the time

stepping implementation, we use the methods described

in Maßmann et al. (2010). To facilitate reading we con-

centrate on the AB3-AM4 (Adams–Bashforth Adams–

Multon) time stepping as recommended in Shchepetkin

and McWilliams (2005).
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2.1 AB3-AM4 time discretization

First, we advance the elevation

ηn+1 − ηn = −τ∇ · (Hu)AB3. (4)

Next the momentum equation is updated

un+1Hn+1−unHn+τCd|un|un+1 = −τ(gH∇η)AM4+

τ(−Hfk× u−∇ · (Uu) +HDvu +HF)AB3. (5)

Here τ is the time step, AB3 stand for

ηAB3 = (3/2 + β)ηn − (1/2 + 2β)ηn−1 + βηn−2, (6)

in the case of elevation, and the same rule applies for

the velocity. The elevation gradient in the momentum

equation is estimated as

ηAM4 = δηn+1 +(1−δ−γ−ε))ηn +γηn−1 +εηn−2. (7)

In the standard AB3, β = 5/12, but the choice β =

0.281105 warrants better stability; the other parameters

are γ = 0.088, δ = 0.614, and ε = 0.013 (Shchepetkin

and McWilliams (2005)).

This implementation requires additional storage to

keep three time slices of fields, and one more set to keep

the AB3 interpolated values.

We also consider a simplified approach which is based

on (1) instead of (3). In this case

un+1 − un + τCd|un|un+1/Hn+1 = −τ(g∇η)AM4 +

τ(−fk× u− (u · ∇)u +Dvu + F)AB3, (8)

which is more efficient numerically in cases it is relevant.

2.2 Divergence and gradients

The divergence operator on scalar control volumes is

computed as∫
v

∇ · (Hu)dS =
∑

e=e(v)

[(Hu · nl)l + (Hu · nl)r]e,

where the cycle is over edges containing vertex v, the

indices l and r imply that the estimates are made on the

left and right segments of the control volume boundary

attached to the center of edge e (connecting the cen-

ter of edge e to c1 and c2 in Fig. 1), n is the outer

normal and l the length of the segment, and H is the

estimate of fluid thickness on segments. Introducing

vectors sl and sr connecting the mid-point of edge e

with the cells on the left and on the right, we get

(nl)l = k × sl and similarly, but with the minus sign

for the right cell (k is the unit vertical vector). The

velocities are taken on their locations, and the only re-

maining issue is the estimate of thickness. The simplest

estimate is the central one, H = He =
∑

v=v(e)Hv/2.

It, however, does not ensure that the operator of di-

vergence is the negative adjoint of the gradient oper-

ator in the energy norm. To achieve this, one needs

to use the mean cell values, H = Hc =
∑

v=v(c)Hv/3

on triangles and H = Hc =
∑

v=v(c)Hvwcv on quads,

where wcv = Scv/Sc is the area weight, with Sc the cell

area and Scv the part of it in the scalar control volume

around vertex v. In practice, however, both implemen-

tations lead to very similar results despite the theo-

retical energy inconsistency associated to the former.

Note that, as is common in ocean modeling, there is no

upwinding here: the thickness equation originates from

the continuity equation, so no dissipation is relevant.

However, this is overridden by the upwind estimate if

wetting and drying is simulated, which is implemented

following Stelling and Duinmeijer (2003).

Gradients of scalar quantities are needed on cells,

and are computed as∫
c

∇ηdS =
∑

e=e(c)

(nlη)e,

where summation is over the edges of cell c, the normal

and length are related to the edges, and η is estimated

as the mean over edge vertices. The gradients of veloc-

ities are also needed on cells, they enter computations

of the viscosity term, but also the computations of the

momentum advection if the form (8) or the upwind ver-

sion of (5) are used. In this case the least squares fit is

used for a linear velocity reconstruction based on the

neighboring values. The neighbor cells are those shar-

ing edges with the given cell. Their list will be denoted

by n(c) (it contains empty places at the lateral bound-

ary). If the horizontal velocities at these cells are un,

the derivatives of u component of velocity are found by

solving

L =
∑

n=n(c)

(uc − un − (αx, αy) · rcn)2 = min.

Here rcn = (xcn, ycn) is the vector connecting the center

of c to that of its neighbor n. One differentiates L by

αx and αy and on equating these derivatives to zero

obtains a system of two linear equations on αx and αy.

Their solution can be reformulated in terms of two sets

of coefficients acnx and acny which give the components

of the gradient after multiplication with the respective

velocity differences:

acnx = (xcnY
2 − ycnXY )/d,

acny = (ycnX
2 − xcnXY )/d,

d = X2Y 2 − (XY )2.
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Here X2 =
∑

n=n(c) x
2
cn, Y 2 =

∑
n=n(c) y

2
cn and

XY =
∑

n=n(c) xcnycn. The coefficients are computed

at the initialization phase and stored for each cell. The

derivatives of v component of velocity are computed

analogously. On the boundaries we apply the concept of

ghost cells (mirror reflections with respect to boundary

edge) and compute the velocity on these cells either as

un = −uc for the no-slip case, or as un = −uc + 2(uc ·
nnc)nnc in the free-slip case. Here n is the index of the

ghost cell, and nnc is the vector of unit normal to the

edge at the boundary of cell c. Note that this alone

is insufficient to implement the free-slip condition and

one has to explicitly eliminate the tangent component

of viscous stress flux at the boundary to warrant that

this condition is observed on general meshes.

To treat trangles and quads similarly, the gradient

arrays operate with four coefficients, the fourth being

zero for triangles, and the fourth neighbor being the cell

itself. This increases, but only slightly, the number of

floating point operations on the triangular part of the

mesh compared to a purely triangular case. Notice also

that to store the gradient coefficients one needs more

space than for all the fields involved in the AB3-AM4

time stepping. It will be different in the 3D case because

the gradient coefficients will be the same for all layers.

2.3 Implementation of momentum advection

In the case the form (8) is used, the momentum advec-

tion term (u · ∇)u is easily computed after the velocity

gradients are known on each cell. This form is more ef-

ficient computationally than two other forms to be dis-

cussed below, and is preferred in cases it is sufficient.

Sometimes one needs to introduce either upwinding or

smoothing, and in these cases the other, flux form is

more convenient. Variant A provides the upwind im-

plementation. In this case∫
c

∇ · (uHu)dS =
∑

e=e(c)

(u · nlHu)e,

where the summation is over the cell edges. For edge e,

linear velocity reconstructions (known after the gradi-

ents are computed) on the cells on its both sides are es-

timated at the edge center. One of the cells is c, and let

n be its neighbor across e. The respective velocity esti-

mates will be denoted as uce and une. One takes u ·n =

n·(une+une)/2, and 2u = uce(1+sign(u·n))+une(1−
sign(u ·n)). This corresponds to gentle upwinding. The

other form 2u = uc(1+sign(u ·n))+un(1− sign(u ·n))

is the standard first-order upwind and proves to be

too dissipative in many practical cases. Yet it may be

needed if one deals with bores.

The other form (variant B) is adapted from Danilov

(2012) and provides additional spatial filtering. In this

case one first estimates the momentum flux term on

scalar control volumes:∫
v

∇ · (uHu)dS =
∑

e=e(v)

((u · nlHu)l + (u · nlHu)r)e,

and the notation follows that for the divergence. No

velocity reconstruction is involved. These estimates are

then averaged to the centers of cells. In both variants

the fluid thickness is estimated at the cell centers.

We note that these variants do not exhaust all pos-

sibilities. One more useful form is obtained by rewriting

the momentum advection in (8) in the vector-invariant

form. It is addressed in the Appendix where it is shown

to lead to an energy and potential vorticity conserving

implementation. Its other advantage is natural smooth-

ing because it operates with vorticity and kinetic energy

defined at scalar points, and in this way removes exces-

sively small scales that are present in the variant A.

This form is rather similar to that of Ringler and Ran-

dall (2002), with an obvious difference stemming from

the median-dual control volumes in our case instead of

the Voronoi cells. Simulations reported below rely on

(8) and the momentum advection in the form (u · ∇)u.

2.4 Viscosity, biharmonic viscosity and filtering

The major drawback of cell-vertex discretization is the

excessively large size of the velocity space on a trian-

gular mesh. Keeping the ensuing velocity noise under

control requires special attention to the implementation

of viscosity operator. Consider the harmonic viscosity

operator Dvu = ∇ · (A∇u), where A is the viscosity

coefficient. We use this form in (8), and update it to

HDvu = ∇ · (Ah∇u) in (5). Although it does not pro-

vide a correct (invariant under rotations) expression for

a variable viscosity A, it works well in practice and we

prefer it for the reasons to be clarified further. Its com-

putation follows the rule∫
c

∇ · (A∇u)dS =
∑

e=e(c)

(Aln · ∇u)e.

The estimate of velocity gradient on edge e is sym-

metrized, following the standard practice, over the val-

ues on the neighboring cells. The consequence of this

symmetrization is that on regular (formed of equilat-

eral triangles or rectangular quads) meshes the infor-

mation from the nearest neighbors will be lost. The

implication is that any singularity in velocity between

the nearest cells will not be penalized. Although unfa-

vorable for both quads and triangles, it has far reaching

implications for the latter: it cannot efficiently remove
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the velocity noise at the smallest scale. This fact is well

known and the modification needed to increase the cou-

pling is to write the identity

n = rcn/|rcn|+ (n− rcn/|rcn|),

for the normal vector, with rcn the vector connecting

the centroids of cell c and neighboring cell n, and re-

place

n · ∇u

with

(un − uc)/|rcn|+ (n− rcn/|rcn|) · ∇u.

The first term here introduces coupling between the

neighbors. In it easy to see that on rectangular quads

(equilateral triangles) the second term will disappear,

and one will arrive at the standard five-(four-) point es-

timate of the Laplacian operator for constant A. How-

ever, on general meshes the second term cannot be dis-

carded, so that the full expression has to be estimated.

This makes the computation of viscous term rather

expensive. The computation of true viscous operator

would be even more expensive, which is precisely the

reason for keeping the reduced form ∇ · (A∇u). Note

that this difficulty can partly be alleviated by storing

the coefficients of ‘corrected’ harmonic operators (and

indices of cells involved) for each cell. We did not ex-

plore this possibility here leaving it to future 3D imple-

mentations.

The modified viscosity performs well, but may lead

to too high dissipation if applied to fully eliminate the

velocity noise (the code might remain stable for much

lower values of A). In these cases the biharmonic vis-

cosity does a much better job. We implement it by

computing the Laplacian first, multiplying it with the

(negative) biharmonic viscosity coefficient (appropri-

ately scaled with the cell size) and computing the Lapla-

cian once again. It works very efficiently, yet the draw-

back is that it is even more expensive, generally taking

as much CPU time as the rest of the code. Recognizing

this fact we looked for perhaps suboptimal, but cheaper

solutions. This is done by introducing a weak filtering

implemented in a time-stepping mode. The simplest fil-

ter is implemented by adding to the rhs of the momen-

tum equation the term (we will consider (8) for simplic-

ity)

Fc = −(1/τf )
∑
n(c)

(un − uc),

with τf a time scale to be selected experimentally. Two

remarks are due here. First, on ideal (rectangles or equi-

lateral triangles) meshes the expression above provides

the discretization of the Laplacian operator. Indeed, it

is easy to see that Fc ≈ (a2/3τf )(∂xx+∂yy) on triangles

and 3 times that on quads, so that τf of about 1 day

corresponds to viscosity of about 103 m2/s on a mesh

with a side a = 10 km. On irregular meshes this approx-

imation fails, and little can be said about the type of the

equivalent operator at the grid scale. Ringler and Ran-

dall (2002), discussing the ZM discretization which is

analogous to the cell-vertex one analyzed here, suggest

to use the Laplacian operator computed on the stencil

of the nearest neighbors. It is possible by computing the

vector Laplacian as ∇∇ · −∇ ×∇×, but this does not

ensure local approximation of the Laplacian unless the

mesh is regular. In principle, one can implement it as

the filter by introducing coefficients with each contribu-

tion in the expression for Fc above, which correspond

to those of the nearest-neighbor Laplacian. This way

of implementing the filter would be more mathemati-

cally consistent. We follow here the simplest approach

and will explore the implications of the other one in a

future work. Second, same as with viscosity, one may

introduce a ‘biharmonic’ filter by performing the same

operations as in Fc (but without multiplication with

τ−1
f ) on the field of −Fc and adding the result to the

rhs. We have found that this option is much more effi-

cient than just Fc in removing noise in the velocity field,

and is much cheaper computationally than biharmonic

viscosity. In many cases it is sufficient, but care should

be taken in the vicinity of boundaries. Currently, we do

the cycle over the internal edges only, which is roughly

equivalent to the no-slip boundary condition. In princi-

ple, on edges forming the boundary, computations can

be carried out with the same concept of ghost cells, yet

it is not necessarily stable. Another issue is the factor

1/3 in the Taylor expansion above for triangles. Since

triangles need more, and not less, damping some scaling

of 1/τf is needed on triangles.

To conclude this subsection we note that viscosities

and inverse time factors in filters must be scaled with

the geometrical size of mesh cells in a general case. Scal-

ings are task-dependent.

3 Numerical simulations

We will consider several cases which altogether give

some idea of the versatility of mixed meshes. We begin

with a simple case of a high-amplitude wave propagat-

ing in a narrow channel on a mesh composed of triangles

and quads, to illustrate in an elementary way the issue

of noise control. We continue with more practical ex-

amples dealing with tides in the North Sea on different

meshes, and in the Strait of Messina on a curvilinear

mesh. Here the intention is to show that the code eas-

ily handles meshes of different type. We also consider a

wind driven flow in a rectangular box as an example of
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balanced flows. The barotropic shallow water dynamics

stay very far from 3D dynamics in a stratified fluid, so

our goal here is once again only to show on a qualitative

level that solutions in transitional zones remain smooth

despite the turbulent character of dynamics.

3.1 Wave in a channel and computational efficiency

Consider a channel mesh made of quads with a side of

0.02 degree. The channel occupies a belt from 0 to 2

degrees and is 20 degrees long. The cosine of latitude

is set to one, but the small Coriolis parameter is taken

into account. The quad mesh is then made triangular

between 0 and 4 degrees in zonal direction by split-

ting quads into triangles in a regular way. The area

of scalar control volumes does not change on passing

from triangles to quads, the vector control volumes on

triangles are smaller by a factor of 2. The initial per-

turbation is a single period of a sine wave of amplitude

10 m located on the triangular part of the mesh be-

tween 0 and 3 degree, with initial velocities correspond-

ing to the eastward propagation. The unperturbed fluid

depth is 500 m. Figure 2 shows the zonal velocity (in

m/s) in the main wave (top panel) and the zonal ve-

locity patterns behind the wave (three rows of panels)

at t = 104 s when the wave is entirely on the quadri-

lateral part of the mesh. The colorbar in row panels is

adjusted to visualize the small-amplitude part of the

signal. The wave steepens as it travels east, leaving be-

hind a small-amplitude (spurious) wave train because

of numerical dispersion, and a perturbation of Kelvin

wave type linked to the Coriolis term. The position and

shape of the main wave are predicted accurately, but

our focus here is on the noise. Viscosity and filters are

off in the case shown in the first row, and there is veloc-

ity noise on triangles (with a ‘triangular checkerboard’

pattern), which makes visible the boundary between

triangular and quadrilateral cells at x=4 degrees. The

biharmonic filter removes the noise (the second row),

and simultaneously smoothes the part of the signal as-

sociated to dispersive errors. Finally the third row of

panels corresponds to simulations performed with the

same biharmonic filter on a mesh obtained by randomly

displacing the vertices of the previous mesh by up to

35% of the cell size. In this case the cell areas strongly

vary, and small-amplitude noise would be seen in the

wave wake in both the velocity and elevation if simu-

lations were run without the filter. However, it is elim-

inated if the filter is on, as demonstrated here. There

are some differences in the patterns shown in the mid-

dle and bottom panels despite the use of the same filter,

which can be attributed to the difference in the meshes.

The amplitude of the main wave is hardly affected in

the three cases shown, only the fourth significant digit

is modified. We conclude that the biharmonic filter is

generally necessary, and is efficient in keeping the noise

under control.

The computational efficiency is examined by com-

paring the CPU time needed to simulate 16 hours of

wave propagation on a single core in the channel on

the mesh made of only triangles, only quads and a

mixed mesh used in the experiments above. The cell

numbers are related as 200000 to 100000 to 119104.

We have found that the total CPU times are related

approximately as 1.68 (triangles/quads) and 1.45 (tri-

angles/mixed). The velocity part takes most of the time

step (up to 95% depending on options). The opera-

tions on cells, which include computing the velocity

and elevation gradients, Coriolis and bottom friction,

are twice less expensive on quadrilateral meshes. Com-

putations of thickness transport, viscosity (harmonic,

biharmonic or filters) and the momentum transport for

(3) are carried out in a cycle over edges which is 1.5

times shorter for quads. The most expensive computa-

tional procedure is the biharmonic viscosity which takes

about 50% of total CPU time if used. Since the quadri-

lateral part is less susceptible to the noise, biharmonic

viscosity is not necessarily needed there, which may lead

to further improvements. Note that in a code designed

for purely triangular meshes computations of gradients

will involve fewert multiplications than on quadrilateral

meshes (3:4), yet with twice as many triangles they still

require 1.5 times more operations. In summary, a factor

of 1.5 in speed-up is expected, and it is obtained.

3.2 M2 tide simulations for the North Sea

Here we present the results of simulations of the M2

tide in the North Sea. It is a well explored domain

characterized by complex geometry and high barotropic

tidal activity (see, for example, Defant (1961); Davis

et al. (1985); Maßmann et al. (2010)). Besides, a large

amount of observations is available for this region help-

ing to validate the model. Tidal dynamics in the North

Sea is defined by two waves coming from the Strait of

Dover and from the north-west of the domain. The M2

wave plays the main role in the formation of barotropic

currents. The southwards propagating wave travels as

a Kelvin wave along the east coast of the United King-

dom and then turns anticlockwise continuing along the

Dutch, German and Danish coasts where its loses its

energy so that only a small part of this wave enters the

Baltic Sea or continues to the Norwegian coast. Compu-

tations have been performed on three meshes covering

the North and Baltic Seas. The first one (not shown) is

composed of triangles (89859 vertices and 168117 cells)
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Fig. 2 The zonal velocity (m/s) of the main wave (top) and zoomed-in patterns behind it at t = 104 s. The left and right
column differ in the size of subdomain shown; note the difference in colorbar (in m/s) between the top panel and the rest. The
first row: no filtering and viscosity; the second row: with the biharmonic filter added; the third row: same as the second, but
on a mesh with randomly shifted vertices (the mesh fragment is displayed in the right column). The meshes are triangular
between 0 and 4 degrees. Noise is seen on triangles in the absence of small-scale dissipation, but small background dissipation
controls it even if the cells are strongly perturbed. Since the filter effect depends on the mesh, the middle and bottom patterns
slightly differ.

Fig. 3 Fragments of two quadrilteral meshes (the second
(left) and third (right)) used in numerical simulations.

with a size varying from4min ' 800 m to4min ' 5000

m. Two other meshes are derived from a regular mesh

covering the area. The second mesh is made of quads,

with a small number of triangles added at the coast

(153339 vertices, 2252 triangles and 148355 quads) with

the cell size of 2500 m. The third mesh is a mixed one. It

is obtained from the second mesh by nesting into it an

area refined by a factor of two through a layer of trian-

gles (180055 vertices, 5089 triangles and 173345 quads),

as illustrated in Fig. 3. The third grid illustrates the

idea of nesting. Our intention here is only to show that

in all cases the algorithm works stably and accurately.

The actual need in nesting of that kind is perhaps more

of interest for simulations of full baroclinic dynamics.

The meshes contain two open boundaries. One is lo-

cated near the shelf break at the northern end of the

North Sea between Scotland and Norway and the other

is in the western part of the British Channel. The model

is forced by the elevation prescribed at the open bound-

aries. The M2 tidal data at the northern open bound-

ary are extracted from the TPXO6.2 model (Egbert

et al. (1994)). The elevation at the open boundary in

the English Channel is taken from the station located

in the vicinity. The bathymetry from EMODnet mor-

phometry dataset is employed (http://www.emodnet-

hydrography.eu). The tidal map of M2 presented in Fig.

4 was obtained on the triangular mesh, and the sim-

ulations on the quadrilateral and mixed meshes give,

as expected, very close results, without any tendency

to instability or noise on the mixed mesh. The am-

phidromic system in the North Sea is formed by the

two Kelvin waves which produce three nodal lines: on

the exit from the English Channel, near the northern

coast of Germany, and near the southern coast of Nor-

way. The neighborhoods of the nodal lines are charac-

terized by a rapid phase change. We compare our model

simulation results against observations at 106 stations

collected and analyzed by Andersen (2008). The sta-

tions are mainly located near the coast or gathered in

some area of the North Sea as shown in Fig. 4. Figure 5

shows the amplitudes and phases computed on different
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Fig. 5 Comparison of observed and simulated amplitude and phase for the entire domain (upper panels) and its fragment
(dashed in Fig. 4) for the amplitude (left, cm) and and phase (right, degrees). Black triangles, blue rhombi and red circles
correspond to the triangular, quadrilateral and mixed meshes respectively.

Fig. 4 Tidal map of the M2 wave (only the North Sea part
of the mesh is shown): the amplitude in cm and phase (solid
line) in degrees. The triangles indicate the station locations. A
dashed rectangle shows the domain where the mesh is refined;
the transition zone is over its periphery.

meshes against the observed ones for the entire domain

and for the part of the North Sea where the resolution

is refined on the mixed mesh (see Fig. 4). Some errors

seen in the results can be attributed to the uncertainty

of bottom topography and the fact that the bottom

friction coefficient was taken constant over the whole

domain. The resolution of all three meshes is sufficient

so the error is only marginally related to them. The ac-

curacy of calculations is frequently expressed through

the vector error given by the formula:

µ =
1

N

N∑
n=1

((A∗ cosϕ∗ −A cosϕ)2 +

(A∗ sinϕ∗ −A sinϕ)2)1/2n ,

where A∗, ϕ∗ and A, ϕ are the observed and computed

amplitudes and phases, respectively at N stations. The

total vector error on Fig. 6 does not exceed 25 cm for all

106 stations for the triangular mesh and makes approx-
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Fig. 6 RMS error on the triangular (1), quadrilateral (2)
and mixed (3) meshes. The solid line corresponds to all 106
stations and the dashed one to 24 stations in the area dashed
in Fig. 4.

imately 20 cm for the rectangular and mixed meshes.

Similar results hold also for the stations located inside

the dashed region in Fig. 4. Somewhat larger RMS error

on the triangular mesh can be attributed to the need

to suppress the noise as well as to the smaller number

of its scalar degrees of freedom.

3.3 Barotropic tidal dynamics in the Messina Strait

The Strait of Messina separates Calabria and Sicily and

links the Ionian and Tyrrhenian seas. It is character-

ized by a complex geometry: over a distance of about
25 km its depth varies from 1200 m to 70 m in the re-

gion of the narrow part (Fig.7). We simulate it on a

quadrilateral curvilinear mesh in order to demonstrate

that the approach is capable of handling such meshes

too. Although such a mesh is suboptimal in our case

because of its high curvature in the narrowest place

of the mesh, the simulated tidal map agrees favorably

with observations. Primary role in the formation of the

barotropic tides is played by the M2–wave (up to 12

cm). In the narrowest part of the Strait where the am-

phidrome is located, the phase of tidal velocity changes

by 180o across a 3 km distance and the elevation gra-

dient has a minimal value of 1.7 cm/km. The tidal ele-

vations are out-of-phase, and tidal velocities may reach

2 m/s.

The curvilinear mesh is generated using the ellip-

tic method by Thompson (1982), with orthogonaliza-

tion at the boundary (Fig.7). It contains 6171 vertices

and 6000 cells with the horizontal size varying approx-

imately between 30 m and 350 m. The elevation at the

Fig. 7 Mesh with bathymetry (upper panel) and the tidal
map of M2 wave (bottom panel), amplitude in cm (color),
phase in degrees (solid line).

open boundaries is taken as ζ =
∑
A cos(2πt/T − ψ),

where A, ψ,and T are the amplitude, phase, and period

of the M2 wave respectively. Computations begin from

the state of rest and are continued until the periodic

regime is established.

Figure 7 presents the computed tidal map for M2

component. Its amphidromic system with cyclonic ro-

tation is usually interpreted in terms of Kelvin waves

with opposite direction of propagation which results in

an amphidrome in the middle of the channel.

The computed amplitudes and phases are compared

to the available observational data in Fig. 8. The largest

discrepancy is observed for the Punto Pezzo and Faro



Cell-vertex discretization of shallow water equations on mixed unstructured meshes 11

Fig. 8 Computed versus observed amplitude (left, cm) and phase (right, degrees).

points located on both sides of the amphidrome in the

region. The RMS errors for all points during the tidal

cycle about 1.8 cm. Very similar results were obtained

by Androsov et al. (2002) with the finite-difference

boundary-fitted coordinate model on the same mesh.

3.4 Wind-driven flows

Here we consider a circulation excited by a zonal wind

with the stress τ = (−τ0, 0) cos(2πy/Ly) in a rectan-

gular basin of approximately 30 by 30 degrees centered

around a latitude of 35◦ N. We use the amplitude of 0.1

N/m2, for which the circulation is non-stationary. The

resolution varies from 0.07◦ along the boundaries (in
a layer of approximately 0.5◦) and in the central part

of the domain (between 38.5◦ and 41.5◦ N and west of

20◦ E) to 0.28◦ in the rest of domain, as shown in Fig.

9. The transition between the coarse and fine part is

through a narrow triangular layer less than one degree

in width. More than 80% of the degrees of freedom are

located on the fine quadrilateral mesh, so that the fact

that the time step is defined by the fine mesh leads to

only small loss in efficiency. The fluid layer thickness is

500 m and the viscosity varies linearly from 50 m2/s at

the western boundary to 10 m2/s in the 2 degree zone

adjacent to the western boundary, staying constant in

the rest of domain. The flow is further stabilized with

biharmonic viscosity. Its amplitude on the fine mesh is

selected so as to keep simulations stable, and is scaled

with the cell area to power 3/2 on the remaining part

of the mesh. The width of the Munk boundary layer in

the case of non-slip boundary condition (the distance

to zero crossing in the meridional velocity) is less than

50 km, but it is still resolved on the fine mesh. The vis-

Fig. 9 Mixed mesh used for double-gyre simulations. Color
corresponds to square root of the scalar volume area (in m).

cosity increase toward the western boundary helped to

achieve this. Keeping the viscosity on the high level (50

m2/s) everywhere in the domain suppresses the insta-

bility and results in a rather slow and smooth dynamics.

In contrast, a well-developed turbulent double-gyre flow

evolves in these simulations for small viscosity.

Although there is no indication of noise in the fields

of surface height and velocity, potential problems with

the mixed meshes in flows with high grid-scale Reynolds

numbers are revealed by patterns of relative vorticity.

Figure 10 presents relief plots of relative vorticity in

simulations run with the background biharmonic vis-
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cosity (a), and in simulations where it is increased by

a factor of 3 over the transitional triangular zone (b).

Although the plots correspond to the same time mo-

ment, the patterns differ because of the turbulent char-

acter of the flow. The flow is turbulent only in the fine-

resolution area, and the instability is strongly damped

over the coarse mesh because of the scaling of bihar-

monic viscosity. In panel (a) the zone of triangular mesh

is visible through the small-scale (grid) noise along the

periphery of the central area and also along the bound-

aries of the domain. Even more importantly, once gen-

erated, this noise propagates into the domain, as is well

seen north of 40◦ N close to the western boundary in

panel a). The noise is largely of geometrical origin and

is due to both the lack of the order on the triangular

part of the mesh (which reduces the accuracy in approx-

imating the operators) and the change in the cell size

(so that the features propagating from the fine mesh

cannot be resolved any longer). This noise has to be

removed. In panel b), where the biharmonic viscosity is

increased three-fold (with respect to background) over

the triangles, some noise is still left, but it is greatly

reduced, in particular along the periphery of the cen-

tral fine-resolved domain. Notice that the places where

noise is still seen are associated with vorticity patches

hitting the transitional zone. Noise suppression can be

tuned further, and perhaps the Leith viscosity param-

eterization (Ah = C|∇ω|S3/2 or Abh = −C|∇ω|S5/2,

where ω is the relative vorticity, for harmonic and bi-

harmonic cases respectively, with C some constant) is

the most suitable candidate to handle the issue. In the

same vein, it should be clear that the biharmonic viscos-

ity coefficient or filter inverse time should be increased

over some vicinity of the transitional zone on the fine

mesh side to smooth features approaching the transi-

tional part.

The implication is that fine tuning of (biharmonic)

viscosity may be required over the transitional part of

the mesh in a general case. It comes at no surprise, and

in the case considered here the issue of noise is empha-

sized because the grid-scale Reynolds number is large

(typical velocity is about 1m/s). It however signals that

practical implementations would benefit from the avail-

ability of efficient viscosity parameterization and scal-

ing. We also note that marginally resolved boundary

layers may prove vulnerable to the inclusion of sharp

transitional zones, which is the reason why the fine-

resolution mesh follows the boundaries in the example

here. In a companion experiment on a modified mesh

where the transitional zone cuts through the western

boundary layer (not shown), we were able to control the

noise only for free-slip boundary conditions. Clearly the

mesh must resolve the features of the flow, and large tri-

angles cannot ensure it in the western boundary layer.

Once again, although it is foreseeable, it means addi-

tional tuning in practice.

4 Conclusions

We have described the implementation of the cell-vertex

discretization of shallow-water equations that works on

mixed meshes composed of triangles and quads. The key

element ensuring seamless performance of cell-vertex

discretization on mixed meshes is dissipation which sup-

presses small scale noise that would otherwise develop

on the triangular (transitional) part of these meshes

either because of too large velocity space or because

of sharp change in resolution. We have shown how to

implement biharmonic viscosity and biharmonic filter

which are sufficient in many cases to maintain stabil-

ity, and can be augmented to the Smagorinsky or Leith

type of parameterizations.

Although transitional zones between triangles and

quads cause no problems in the test cases described

here, the stability depends on the presence of a tuned

(background) biharmonic filter or viscosity in a general

case. Additionally, sharp transitional zones should be

avoided in places where the flow is not resolved. We

have not encountered manifestations of pressure modes

on the quadrilateral part of the mesh. They may still

be an issue in 3D on z-coordinate meshes where they

will be triggered by steps in bottom topography. The

shallow-water framework is by far insufficient to explore

these and other issues of relevance for large-scale flows,

and the analysis here needs to be augmented in future.

Nevertheless, the consideration here hints at certain in-

teresting possibilities for ocean modeling.

Indeed, codes formulated on unstructured meshes

are as a rule slower per degree of freedom than their

structured-mesh counterparts. Quads are more econom-

ical in this respect as they introduce fewer edges and

cells, and lead to shorter cycles. Moreover, there is a

hypothetical possibility to combine structured (on the

refined patch) and unstructured representations, as in

most cases in large-scale applications one is willing to

use setups where the refined part is responsible for the

large fraction of degrees of freedom while occupying a

compact domain. The functionality of mixed meshes

comes almost at no price and the approach may still be

used on purely triangular meshes.

It is also clear that the discretization discussed here

is not the only possibility, and that C-grids could per-

haps be a better choice if they would demonstrate a

stable performance in geostrophically dominated flows,

which remains to be seen.
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Fig. 10 Snaphots of relative vorticity (relief) in double-gyre flow in a turbulent regime. In b) the biharmonic viscosity is
increased by a factor 3 on triangles compared to a), which proved sufficient to suppress most of noise in the transitional zone.

An interesting aspect, which deserves a separate

study, is the size of transitional zones. Too narrow zones

may require additional dissipation for their stability, so

broader zones can be more robust. The use of refine-

ment for eddying flows is another issue of interest. Be-

cause eddies interact with the mean flow, locally resolv-

ing them may have a global impact. We think, however,

that these and similar questions should be addressed

with more realistic 3D setups.

5 Appendix

Here we briefly consider the energy and potential vor-

ticity (PV) conservation by the cell-vertex discretiza-

tion. We are interested only in the spatial part (some-

times term semi-conservation is used to reflect it). The

conservation of both is easily achieved because the dis-

cretization is mimetic. In contrast, enstrophy conserva-

tion cannot be easily maintained because of the aver-

aging of relative vorticity, as detailed below.

A key element in making the code energy and PV

conserving lies in writing the momentum equation in

the vector-invariant form

∂tu + (f + ω)k× u +∇B = F + (Dd +Dv)u, (9)

where ω = k · curlu is the relative vorticity, and B =

u2/2+gη is the analog of the Bernoulli function. For the

discretization in hand the relative vorticity is defined at

the scalar points (vertices) and is computed similar to

the divergence, but with the outer normals replaced by

the tangent vectors∫
v

ωdS =
∑

e=e(v)

[(Hu · tl)l + (Hu · tl)r]e,

where the tangent vectors are directed so that they

make a left circle around vertex v.

For convenience, we introduce the matrix notation

for the operators of divergence, gradient and k · curl as

Dvc, Gcv and Cvc respectively. Here the indices v and c

denote vertices and cells respectively. These operators,

as defined above, satisfy the following identities. First,

the divergence and gradient are adjoint in the sense

(Sa)c ·Gcvbv = −(Sb)vDvcac,

where summation is implied over the repeating indices,

a is a vector field defined at cell centers and b is a

scalar field defined at vertices, and S is the area of the

respective control volume. Second,

CvcGcjbj = 0,

which corresponds to ∇ × ∇b = 0 in the continuous

case. Finally, a trivial consequence of curl and diver-

gence being both defined at vertices is

Cvc(k× ac) = Dvcac.

These identities are what makes the cell-vertex dis-

cretization mimetic. Many discretizations are not able

to maintain them. For example, non-staggered vertex-

vertex discretization fails to maintain the orthogonality

of curl and gradient operators.

To prove energy conservation (we omit the dissi-

pative terms here — they correspond to the sink of
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kinetic energy) one first sums the discretized (9) mul-

tiplied with ScHcuc and the discretized (2) multiplied

with Sv(u2/2)v (note that the kinetic energy is esti-

mated at vertices because (2) is written at vertices) to

obtain the kinetic energy budget

(SHu)c·∂uc+(Su2/2)v∂tHv = −(SHu)c·Gcv(u2/2)v−
(Su2/2)vDvc(uH)c − g(SHu)c ·Gciηv. (10)

In this equation, the two terms on the left hand side

make the time derivative of the total kinetic energy.

Note that they involve summations over the vector (first)

and scalar (second) control volumes. For the global bud-

get the fact that they come from different spaces is im-

material, yet characterizing the kinetic energy budget

on the local level would require to specify what is Hc

and what is u2
v. A consistent way of doing it is to in-

troduce (SH)c = ScvHv, where Scv is the area of cell c

associated to vertex v (a part of cell cut by the median-

dual control volume), and likewise (u2S)v = u2
cScv.

Here, as above, summation is implied over the repeat-

ing indices. This allows one, by rearrangement, to in-

terpreted the terms in (10) as related to cells (or to

Scv).

The first two terms on the right hand side of (10)

correspond to the kinetic energy redistribution and dis-

appear by virtue of the adjoint character of gradient

and divergence operators. The remaining term describes

the transfer of kinetic energy from the potential energy.

Its counterpart is the exchange term in the potential en-

ergy budget which is obtained by multiplying the dis-

cretized (2) with gHvSv and summing over v

gHvSv∂tηv = −gHvSvDvc(uH)c. (11)

The adjoint character of the gradient and divergence

operators warrants here that the sum of exchange terms

(kinetic plus potential) is identically zero. This proves

that energy conservation is maintained by the spatial

discretization considered here.

If the curl operator Cvc is applied to the discretized

(9), the result is the PV balance

∂t(qH)v +Dvc(qHu)c = 0,

where we have introduced the PV q by (qH) = ω + f .

Here we used the mimetic properties of the curl opera-

tor listed above. It will be observed for any estimate of

q at cell centers. However, since Hc is already defined,

one can formally write qc = (ωc + fc)/Hc. There is cer-

tain freedom in selecting ωc then. On C-grids similar

freedom can be used to warrant enstrophy conserva-

tion. Here the need to specify the cell value instead of

the edge one precludes achieving that. However, the cell

values can be selected in an upwind biased way, which

should lead to enstrophy dissipation, if needed.
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