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Abstract

Within the framework of the SO-JGOFS, we investigated the distribution of small copepods (< 2.0 mm) in relation to
the hydrography of the Antarctic Polar Front during summer 1995/96. The community of small copepods was
dominated by Oithona similis, followed by Oithona frigida and Ctenocalanus citer. The total abundance of these
copepods was extremely high throughout the study area, with peaks of up to 49,000 ind. m~>, to which naupliar and
early copepodid stages (CI-CIII) contributed a high percentage. The accumulation of such a high standing-stock of
small copepods is probably related to retention mechanisms provided by the meandering structure of the frontal system
and to the biology of the dominant species Oithona similis, Oithona frigida, and Ctenocalanus citer.

Stage distribution and metabolic demand of the dominant species indicate a very active and productive zooplankton
community, with high grazing pressure on smaller plankton particles and faecal material, leading to high recycling
efficiencies and low export rates due to sinking material. This study gives further support to recent findings that small
copepod species and early developmental stages of all species are key components of the plankton food web of the

Southern Ocean. © 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Early investigations on the biology and ecology
of Antarctic zooplankton dealt mainly with
animals collected by coarse (> 200 um) plankton
nets (e.g., Hardy and Gunther, 1935; Foxton,
1956; Voronina, 1968; Yamanaka, 1976). This has
led to the longstanding view that large copepod
species, euphausiids, and salps dominate summer
zooplankton assemblages in the Southern Ocean
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(Conover and Huntley, 1991; Smith and Schnack-
Schiel, 1990). As a result, our knowledge on the
distribution and life-cycle strategies of Antarctic
copepods has been strongly biased towards large-
sized species (e.g., Bathmann et al., 1993; Marin,
1988; Schnack-Schiel and Hagen, 1995).

The increasing use of finer plankton nets
(55200 pum) since the mid-1980s has provided a
more realistic view of the ecological significance of
small copepods such as Oithona, Oncaea, and
clausocalanids (Atkinson, 1998; Chojnacki and
Weglenska, 1984; Foster, 1987, Fransz, 1988;
Schnack-Schiel and Mizdalski, 1994; Zmijewska,
1988). Copepod abundances of up to
8000 ind. m~> and average zooplankton biomass
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of 1-2 g C m~2 have been recorded since then for
the upper mixed layer of Antarctic and Subantarc-
tic waters (Atkinson, 1996; Fransz and Gonzalez,
1997; Metz, 1995, 1996). Therefore, small cope-
pods are undoubtedly more abundant than their
larger counterparts, and their population biomass
has been proposed to equal that of large calanoids
(Metz, 1996).

More recently it has been reported that zoo-
plankton biomass at the Antarctic Polar Front
(APF) may reach up to 11 g C m~2, according to
estimates obtained from a towed optical plankton
counter (OPC) during austral summer 1995/96
(Read et al., 2002). Although a calibration exercise
has suggested that the OPC overestimates copepod
biomass by a factor of ~1.7 (Pollard et al., 2002),
it is now fully recognized that planktonic animals
smaller than 2.0 mm are at least one to two orders
of magnitude more abundant at the APF during
summer than previously believed. Hence, addi-
tional information is needed on the species-specific
and ontogenetical distribution of small metazoo-
plankton for a better understanding of food web
interactions at the APF.

The Atlantic sector of the APF has been
identified by the joint global ocean flux study
(JGOEFS) as one of the major sub-systems of the
Southern Ocean exhibiting high phyto- and
zooplankton production and possibly high export
of pelagic material to the ocean floor, as compared
to the surrounding open waters (Smetacek et al.,
1997). Recent information obtained by the Sea-
WIFS satellite (http://seawifs.gsfc.nasa.gov/sea-
wifs.html; A. Belem, AWI, pers. commun.)
indicates that the APF is characterized by high
pigment concentrations (i.e. high surface phyto-
plankton biomass) that are closely associated to
the hydrographical structure of the meandering
front (Bathmann et al., 1997). Such meanders and
eddies may segregate different phytoplankton
blooms within a few kilometers (Bathmann et al.,
1997). Although evidence exists that frontal
systems play a major role in macrozooplankton
dynamics in the Southern Ocean (Huntley and
Niller, 1995; Smith and Schnack-Schiel, 1990), the
spatial distribution of small (<2.0 mm) Antarctic
and Subantarctic copepods has seldom been
investigated in relation to hydrographical features

(Errhif et al., 1997; Fransz and Gonzalez, 1997,
Metz, 1995, 1996).

In the present study we examine the structure of
small copepod assemblages and the distribution
patterns of small copepods in relation to the local
hydrographical regime at the APF during the
1995/96 austral summer and discuss their potential
effects on ecosystem dynamics.

2. Material and methods
2.1. Investigation area

Samples were taken during the Polarstern cruise
ANT XIII/2 in December/January 1995/96. The
study site covers an area of 120 x 110 nm across
the APF from 49.6°S to 50.8°S and from 9.5°E
to 11.5°E (Fig. 1a). Hydrographical and bio-
optical data (Pollard et al., 2002) were obtained
from the sea surface down to ca. 350-m depth by
means of an undulating vehicle (SeaSoar). CTD-
Multinet stations (Sts. 21-29) were established
immediately after the SeaSoar run along a transect
at 10.3°E, from 49.5°S to 50.5°S (Fig. 1b).
Two additional CTD-Multinet stations—Sts. 15
and 18—were sampled at the southern end of
the investigation area, outside the transect. Station
15 was located within a cold feature in the
southeast boundary of the study area, and station
18 was established in the southwestern corner
of the fine scale SeaSoar grid (Fig. 1b; Pollard
et al., 2002).

Pollard et al. (2002) and Read et al. (2002)
give detailed information about the hydrographi-
cal structure in the study area. Hydrography data
at the location of the zooplankton stations as well
as a description of the current flow field is
provided by Strass et al. (2002). From data
obtained by a vessel-mounted acoustic Doppler
current profiler (ADCP), Strass et al. (2002)
estimated that the maximal drift of any given
particle in the surface current of a jet stream
associated to the APF corresponds to 0.3 m s~/
(Fig. 1c), which translates to 0.5° in longitude
each second day. This in turn was the time
span between the SeaSoar runs and the CTD-
Multinet stations; thus, the water sampled during
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Fig. 1. (a) Position of the investigation area in the South Atlantic (filled square); (b) Position of the CTD-Multinet stations (filled
circles) and the CTD-station (open circle). Isotherms at the temperature minimum are added (redrawn after Pollard et al., 2002); and
(c) surface chlorophyll a concentrations and current field (data from Strass et al., 2002) in the investigation area.

the CTD-Multinet stations came from within the
fine-scale grid covered previously by the SeaSoar.
Therefore, we can derive the hydrographical
structure within the SeaSoar grid and estimate
the coarse origin of the water sampled at each
CTD-Multinet station.

2.2. Zooplankton sampling and sorting procedures

Zooplankton was collected by vertical hauls
of a Multinet (Weikert and John, 1981) equipped
with five 100 um mesh nets. We analyzed samples
from the following depth strata: 25-0, 50-25,
100-50 and 300-100 m, except for station 21 where
the depth strata of 25-0 and 50-25 were combined.
Sample volumes were estimated by multiplying
the net opening area (0.25 m?) by the length of

the corresponding depth layer. Zooplankton
samples were split immediately into two aliquots
upon retrieval on deck using a Folsom splitter.
One of them was fixed in hexamethylentetramin
buffered formalin (final concentration of 4%),
the other was frozen for dry-weight measurements.
Preserved samples were further divided into
varying aliquots (up to 1/128 of a sample) in
the laboratory, employing a Folsom splitter
similar to that used aboard ship. A minimum of
300 copepods smaller than 2.0 mm (as measured
with an eyepiece micrometer) was enumerated in
the aliquots. Large copepods (> 2.0 mm) are
not included in our analysis. Copepodids and
adult copepods were identified according to
Bjornberg (1972, 1981), Heron (1997), and
Razouls (1994). Copepodid developmental stages
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were discriminated for the dominant cyclopoid
and calanoid species. Nauplii were assigned to
genus or family level based on the key provided by
Bjornberg et al. (1994).

3. Results
3.1. Hydrography

Our transect crossed two inter-frontal zones
south of the subsurface expression of the APF
(Belkin and Gordon, 1996), the Northern Polar
Frontal Zone (NPFZ), and the Southern Polar
Frontal Zone (SPFZ), as defined by the position of
the 1.8°C isotherm at the temperature minimum
(Fig. 1b; see also Pollard et al., 2002). Surface-
water temperature ranged from 4.4°C, in the
northern part of the transect, to 3.8°C in the
south, while salinity varied between 33.95 and
33.85 (Strass et al., 1997). The pycnocline was
located at about 70-m depth throughout the
investigation area, with a variability of 5-10 m
during the 2-week period of investigation.

The edge of a large-scale meander (Strass et al.,
2002) protruded northeastward from near station
18 towards the vicinities of transect station 23.
In addition, a cold-core eddy (<1°C at the
temperature minimum) dominated the southeast-
ern part of the study area around station 15
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(Fig. 1b). A cyclonic feature occurred around
the center of this cold-water anomaly, associated
with a weak northward flow in its western
boundary, from station 29 towards station 23
(Fig. 1c). This northward flow was, in turn, also
associated with the eastern edge of the above-
mentioned large meander ridge. Strong eastward
and northeastward currents associated with the
frontal jet were recorded at about 50°S and further
north.

The chlorophyll distribution was clearly related
to these hydrographic features (Fig. 1c). The
transect including stations 20-29 (Fig.2) was
visited about 2 days after the SeaSoar grid
(Fig. 1¢), so that we have to assume an eastward
drift of water masses during this time interval.
Transect stations had high chlorophyll a concen-
trations of up to 1.8 pug chl @ 17! within the upper
mixed layer, with maxima at station 21 (Fig. 2, see
also Strass et al., 2002). The lowest concentrations
(0.6-0.8 pg chl @ 17!) were measured at stations 22
and 23 which were influenced by the meander
feature from the southwest (Fig.2). A similar
range was observed at station 18, but even lower
values occurred at station 15 in the eastern cold-
core eddy (Fig. 1c). The bottom of the surface
chlorophyll maximum ranged approximately be-
tween 50 and 70 m depth (Fig. 2; see also Strass
et al., 2002), thus it coincided with the pycnocline
position.
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Fig. 2.

Chlorophyll a profiles at the CTD-Multinet stations along the 10.3°E meridian.
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3.2. Copepod abundance and distribution

3.2.1. Total abundance of copepods in the size
range of 100-2000 pm

Extremely high copepod abundances (>
25,000 ind. m~*) were found in the upper 100 m
of the water column of the stations located in
the main frontal jet (Sts. 21-23) and in the
northwestern ridge of the cold-core eddy (Sts. 25
and 27) (Fig. 3). A maximum value of approxi-
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mately 49,000 ind. m* was found at station 27.
Lower copepod abundances (<20,000 ind. m~?)
were obtained at the southern end of the investiga-
tion area (Sts. 29, 18 and 15). Nauplii were
usually concentrated above 50 m depth while
copepodids tended to occur at high abundances
across the mixed layer down to 100 m depth. Few
copepods were observed in the 300-100 m depth
stratum when compared to the upper layers
(Fig. 3).
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Fig. 3. Vertical profiles of the total naupliar and copepodid abundance in the size range 100-2000 pm at the CTD-Multinet stations.
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3.2.2. Species composition of the copepodids
(CI-CV and adults)

The cyclopoid Oithona similis was the dominant
copepod species in the study area, usually com-
prising more than 70% of the total number of
young copepodids and adults (Fig. 4). This species
occupied the entire mixed layer, and its abundance
maxima of more than 10,000 ind. m™> were
mostly located in the upper 50 or 100 m. Much
lower numbers occurred below 100 m depth
(Fig. 4). At the southernmost stations 29, 15 and

C.D. Dubischar et al. | Deep-Sea Research II 49 (2002) 3871-3887

18, O. similis copepodids hardly exceeded
5000 ind. m~* except for the 100-50 m depth layer
at station 15 (ca. 12,300 ind. m ).

Oithona frigida copepodids were less abundant
then Oithona similis, but they also occurred in
large numbers: up to 2310 ind. m~> at stations
22, 23 and 25, with secondary peaks at the
southernmost stations 15 and 18 (Fig.4). The
vertical distribution of the pooled O. frigida
copepodids did not exhibit pronounced differences
among depth strata. In the 300-100 m depth
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Fig. 4. Vertical profiles of copepodid abundance at the CTD-Multinet stations. Note the different scale used for station 27. The
contribution of each taxon to the total copepod abundance is shown.
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layerO. frigida copepodids were more abundant
than O. similis at most stations with the exception
of 15 and 18.

The sub-dominant copepod genera were about
one order of magnitude less abundant than
Oithona spp. Clausocalanids (mainly Ctenocalanus
citer, but also including Microcalanus pygmaeus
and Clausocalanus spp.) showed the highest abun-
dances among the calanoid copepods (Fig.4).
Copepodids of this family were recorded mainly

down to 100 m depth, with maximum abundances
usually ranging from 500 to 1760 ind. m~>. A
remarkable exception was a peak of 6560 ind. m~*
at station 27 (50-25 m depth layer). Relatively few
individuals (<300 ind. m~®) belonging to other
calanoid families, such as Metridinidae, Calani-
dae, and Eucalanidae, were found. They are
referred to as “others” in the figures.

The horizontal and vertical distribution of
Microsetella sp. matched the pattern observed for
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Fig. 5. Vertical profiles of the total abundance of copepod nauplii in the size range of 100-2000 pum at each of the investigated stations.
The percentage contribution of the dominant taxa is included. Note the different scales.
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clausocalanids, with maximum abundances ran-
ging from 720 to 1040 ind. m >, besides a peak of
7520 ind. m > at station 27 (Fig. 4). Oncaea spp.
was more abundant in the 100 — 50 m depth
stratum, where peak abundances of up to
490 ind. m~* were recorded.

3.2.3. Nauplii

In agreement with our observations on copepo-
did distribution, Oithona nauplii were about one
order of magnitude more abundant than other
copepod nauplii (Fig.5), ranging from only
200 ind. m~* (St. 18) to 24,000 ind. m > (St. 25).
Most Oithona nauplii occurred in the northern
part of the transect, especially at stations 22 and
25, their numbers decreased towards the South (St.
29). However, relatively high concentrations of
Oithona nauplii were found at station 15, within
the cold-water eddy found in the southeastern part
of the study area. In all stations sampled, Oithona
nauplii were recorded at high numbers within or
above the pycnocline (i.e. above 100 m depth). The
subdominant nauplii were those of the Clausoca-
lanidae (Ctenocalanus, Clausocalanus and Micro-
calanus), Microsetella spp., Metridinidae (Metridia
and Pleuromamma), Calanidae (Calanus and Ca-
lanoides), and Oncaea spp. Clausocalanid nauplii
were more abundant in the 100 — 50 m depth
layer, with peak densities of up to 2100 ind. m™
recorded at stations 21 and 25 (Fig. 5). Relatively
high abundances of clausocalanid nauplii also
were found in surface waters (25-0 m; sts. 21 and
27), although not exceeding 900 ind. m~>. Metri-
dinid nauplii were recorded at high numbers in the
upper layers (above 50 m depth) of most stations,
reaching maximum abundances of up to
2000 ind. m™* at station 27 (Fig.5). Although
small copepod nauplii were not very abundant in
our samples, a peak of 700 ind. m~ occurred at
station 22, in the 50 — 25 m depth layer.

3.2.4. Stage distribution of Oithona similis,
Oithona frigida and Ctenocalanus citer

The distribution of nauplii and copepodid stages
of the dominant species Oithona similis and O.
frigida was clearly related to depth (Figs. 6-8). The
nauplii of Oithona spp. were mainly concentrated
in the upper 50 m of the water column (Fig. 5). At

Oithona similis

100
80
o ©0
40
20 -
0
100 -
80 1 E
o, 60 %
40 é
20 .
0
100 - »
80| 1% o
w8 B E
1 B 7 —
% | %
o | & 4
100
80 - ...
40 = B E
20 = B B ¢
21 22 23 25 27 29 15 18
Stations

‘['_'[CI[:]CII Acu BHcv @cv HF [[]]M|

Fig. 6. Stage distribution of Oithona similis at the CTD-
Multinet stations in different depth layers.

station 18, concentrations and also percentages of
oithonid nauplii were remarkably low (Figs. 5 and
8). Young copepodids of O. similis (CI-CII)
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Fig. 7. Stage distribution of Oithona frigida at the CTD-
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usually comprised the majority of the population
in the upper layer (25-0 m), while later stages
(CIII-CV) gradually replaced the initial copepo-
dids from surface down to 100 m depth (Fig. 6).
Copepodids 1V, V and adults were the dominant
stages of O. similis below 100 m depth, although
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one must note that the total abundance of this
species in this layer was low (Fig. 4). The initial
stages of O. frigida copepodids were also
more abundant in the upper depth strata (Fig. 7).

CI-CIII formed the bulk of the population above
50 m depth, while copepodids CIV and CV usually
dominated at greater depths (Fig. 7).

Whereas the nauplii of Oithona spp. occurred
only down to 100 m, the nauplii of Ctenocalanus
citer were also found in the depth layer of 300 —
100 m (Figs. 8 and 9), but in very low numbers.
Ctenocalanus citer displayed a more complicated
vertical pattern, with high variability among
stations in the uppermost layer (25-0 m): while
at stations 25, 27 and 29 young copepodids (CI-
CIII) represented the dominant stages, only later
copepodids (CV) and adult females were found at
station 22 (Fig.9). The stages CIV, CV and
females usually comprised the bulk of the cope-
podid population below 25 m depth (Fig.9).
Males were found at all stations but mainly in
the depth layer of 300 — 100 m.

4. Discussion

4.1. High abundances of zooplankton (size range
100-2000 pm)

Small copepods in the size range of 100-
2000 um were extremely abundant in the upper
mixed layer of most of the transect stations,
reaching up to 49,000 ind. m—>. These concentra-
tions were much higher than values obtained
by Fransz and Gonzalez (1997), Errhif et al.
(1997) and Atkinson and Sinclair (2000) in the
APF and nearby systems. Investigations in more
southern regions of the Antarctic Ocean, such as
coastal regions near the South Shetland Islands
(Chojnacki and Weglenska, 1984; Park and
Wormuth, 1993; Ward et al., 1995), the Scotia
Sea (Marin, 1987), the Weddell Sea (Hopkins and
Torres, 1988; Gonzalez et al., 1994), the Belling-
shausen Sea (Metz, 1996), and an coastal area of
Eastern Antarctica (Tucker and Burton, 1990),
also revealed much lower numbers. Our results
confirm previous findings, which indicate a very
large zonal increase of Oithona abundance from
the coldest water in the south across the entire
Southern Ocean towards the vicinity of the Polar
Front where maximum numbers seem to be
recurrent (e.g., Metz, 1996; Fransz and Gonzalez,
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1997; Atkinson, 1998; Atkinson and Sinclair,
2000); still our values at the APF exceed previously
reported concentrations of Oithona spp. and other
small copepods. Our results are consistent with the
zooplankton abundance data derived from the
OPC runs conducted during the same cruise
(Pollard et al., 2002), taking into account the
OPC size classes relevant to the Multinet samples
(0.25-0.5 and 0.5-1.0 mm ESD), and after apply-
ing the necessary calibrations. Despite the high
numbers of nauplii caught by the 100-um Multi-
net, we have missed an unknown but probably
high percentage of younger naupliar stages due to
their small size. This is valid especially for the non-
calanoid orthonauplii, which can be as small as
50 um (Bjornberg, 1972; Fransz, 1988). The
current results are thus realistic compared to the
OPC data and other previous investigations
(Fransz and Gonzalez, 1997).

The fact that we found an exceptionally high
abundance of small copepods during the Polar-
stern cruise ANT XIII/2 arises from a combination
of factors. First, the sampling gear employed was
appropriate to catch the target organisms in the
size range of 200-2000 um, although our results
probably still represent an underestimate of the
actual abundance of small copepods, mainly
juveniles and nauplii, in the APF. Obviously the
100-pm mesh sized net retained the larger nauplii
and young copepodid stages with greater efficiency
than the most commonly used 200- or 300-pm
mesh sized nets (Barnes and Tranter, 1965).
Second, narrow bands of high chlorophyll and
zooplankton standing-stocks, characteristic for
frontal activities (e.g. Franks, 1992), can now be
remotely detected by continuous sampling using
fluorescence probes and optical counters mounted
on towed instruments such as the SeaSoar. This
has considerably improved our ability to recognize
and investigate in more detail areas of high
plankton abundance in the open ocean.

Nauplii and copepodids of the genus Oithona
and, to a lesser extent, Ctenocalanus were the
numerically dominant copepods in the APF during
the summer of 1995/96. Oithona spp. occurs in
high numbers in most regions of the Southern
Ocean, and its importance for the Antarctic
ecosystem is of no doubt (e.g., Fransz, 1988;

Fransz and Gonzalez, 1995; Metz, 1995, 1996;
Fransz and Gonzalez, 1997; Atkinson and Sin-
clair, 2000). In contrast to larger calanoid cope-
pods, Oithona spp. undergoes no seasonal
migration (Fransz and Gonzalez, 1995; Atkinson
and Sinclair, 2000) but remains year-round in the
top 200 m of the water column. Fransz and
Gonzalez (1995) report that egg production of
Oithona i1s more spread over the seasons than
reported for calanoid copepods. This leads to a
mixing of age classes, which also was found during
our studies. Since egg production of Oithona spp.
possibly starts before the onset of spring phyto-
plankton bloom, this species is able to build up
large numbers earlier than the larger calanoid
copepods and they are often able to make a second
generation per year. Metz (1996) generally found
adults of Oithona in deeper water layers than the
juveniles and supposed avoidance of predators.
According to Kellermann (1987), Oithona adults
are important food items for fish larvae (“‘visual
hunters”), so that the adults prefer to stay in
deeper water layers. In our studies, older stages
also occurred in higher percentages in deeper water
layers.

Ctenocalanus citer also occurred in surprisingly
high numbers in our investigation area. This
species is found in most Antarctic waters, e.g.,
the Weddell Sea (Kaczmaruk, 1983; Schnack-
Schiel and Mizdalski, 1994) and near the Antarctic
Peninsula (Zmijewska, 1988), but in much lower
abundances. Atkinson and Sinclair (unpublished
data) did further analyses of the Discovery
samples covering a large area of the Atlantic
sector of the Antarctic Ocean. They also found an
increase of C. citer concentrations in the Polar
Front compared to more southern and northern
areas. Thus, the high abundance of C. citer seems
to be a typical feature of the frontal area.
Ctenocalanus citer also is a rather weak seasonal
migrant (Atkinson and Sinclair, 2000), and is able
to grow and reproduce before the onset of
phytoplankton blooms in the water column
(Schnack-Schiel and Mizdalski, 1994). Thus both
species, Oithona spp. and Ctenocalanus citer start
to grow and proliferate early during spring.

The maximum abundance found during our
investigations was roughly 5-10 times higher than
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the values obtained by Fransz and Gonzalez
(1997) during spring in the APF. We assume that
during spring, a certain amount of smaller
copepods are concentrated in the APF, already
leading to a higher abundance compared with the
surrounding waters. Since the growth conditions
in the APF are very favorable, in terms of high
phytoplankton concentrations (Bathmann et al.,
1997), as they present good food supply and higher
temperatures compared to the more southern
water, the population can proliferate rapidly.
The stage distribution of the dominant species
supports the suggestion that the abundance of
small pelagic copepods increases at the APF
during early summer: adult females and copepo-
dids belonging to stage CV comprised more than
60% of the Oithona similis abundance during
spring (Fransz and Gonzalez, 1997). However,
there is a shift in the mean stage towards summer
since we found that most of the O. similis
population in the upper 50 m of the water column
was made up of nauplii and copepodid stages
younger than CIV (Fig. 6). The same situation was
found in the population structure of Ctenocalanus
citer, which was also dominated by nauplii and
younger stages during summer. This decrease in
mean stage from spring to summer presumably
arises from enhanced recruitment rates of oitho-
nids and small calanoids, implying that both adult
females and nauplii were experiencing favourable
food conditions during early summer.

Highest concentrations of copepods were found
closely associated with the frontal jet, whereas the
more southern stations (Sts. 15, 18 and 29) were
characterized by much lower concentrations of
zooplankton (Fig. 3). These results probably re-
flect the effects of physical processes on copepod
populations. Voronina (1968) demonstrated that
the downwelling in the Antarctic Convergence
Zone leads to an increase of zooplankton abun-
dance in this area. Also Strass et al. (2002) and
Read et al. (2002) have shown that zooplankton
distributions are constrained by the meandering
structure of the frontal system south of 49°S, and
that higher biovolumes occur in warm, down-
welling waters rather than in the upwelling edge of
the meandering features. The presence of eddy-like
structures, in combination with the pronounced

current field (up to 0.3 ms™!) at the frontal jet
(Strass et al.,, 2002) provide efficient retention
systems as they inhibit the advective transport of
small metazooplankton out of the frontal area.
The structure and the dynamics of the meandering
features may thus contribute to the increase of the
residence time of the copepods in an adequate
food regime (Fransz and Gonzalez, 1997), favor-
ing both the biomass buildup and the persistence
of resident populations.

4.2. Potential role of small pelagic copepods in the
frontal ecosystem

The Antaretic Poar Front (APF) is character-
ized by the frequent occurrence of phytoplankton
blooms of up to 4 mg Chl a m™3 during spring
(Bathmann et al., 1997). These spring blooms are
dominated by large and often chain-forming
phytoplankton such as Fragillariopsis kerguelensis,
Corethron inerme, and Corethron criophilum (Bath-
mann et al., 1997; Crawford, 1995; Crawford et al.,
1997). Grazing of the larger copepod species
(Rhincalanus gigas and Calanoides acutus) ac-
counted for <1% of the daily primary production
during spring (Dubischar and Bathmann, 1997).
Thus, their influence on phytoplankton dynamics
in this region is rather low. The same holds true for
the summer situation, when the phytoplankton
community also was dominated by heavily silici-
fied spiny, or chain-forming diatoms such as
Chaetoceros spp., Thalassiothrix spp., and Pseu-
donitzschia spp. (Klass et al., 1997). The abun-
dance of larger copepods such as Rhincalanus
gigas, Calanoides acutus, and Calanus simillimus
(about 25 ind. m™ (Dubischar, 2000)), and their
resulting grazing pressure was not high enough to
control phytoplankton growth.

In contrast, an estimation of the potential
impact of the smaller zooplankton species on the
structure of the frontal ecosystem suggests that
they play an important role in this area. Assuming
a carbon demand of ca. 100% of the body carbon
(Atkinson, 1994; Swadling et al., 1997) and a body
weight of about 1 ug C for Oithona similis (Fransz
and Gonzalez, 1997; Swadling et al., 1997), we
calculated a potential carbon demand of
1 g Cm2d! integrated over the top 100 m in
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the center of the APF and ca. 600 mg at the more
southern stations (Sts. 15, 18 and 29). This would
account for > 100% of the daily primary produc-
tion of 750-950 mg C m 2 d~! (Bracher et al.,
1999). This number presumably is the maximum
potential feeding rate, because the assumed
1 ug C copepod ' day ' might be an overestimate
for the smaller copepodites of Oithona. Unfortu-
nately, we do not have microscopic evidence of
feeding impact of Oithona on the microhetero-
trophic community at the APF, but investigations
dealing with the feeding behaviour of Oithona spp.
indicated that this species is not able to feed on
larger diatoms but prefers smaller food organisms,
preferentially small nano- or dinoflagellates and
ciliates (Atkinson, 1995, 1996) and faecal material
(Gonzalez and Smetacek, 1994). This could
explain the low concentrations of smaller plankton
organisms found in the frontal area during our
investigations, where less than 30% of the
chlorophyll standing stock belong to the size
classes below 20 um (Bracher et al., 1999). Also
the very low concentrations of faecal material in
this region (Dubischar and Bathmann, 2002)
might be due to this special feeding mode. In
addition, bacterivory by copepod nauplii (Roff
et al., 1995; Turner and Tester, 1992) and
nanoheterotrophs (Becquevort, 1997) might ac-
count for the rather low but constant bacterial
concentrations of 0.4-2.0 x 10° mI~! found in the
upper mixed layer of the APF (Lochte et al., 1997).

Such an intense feeding on phytoplankton,
detrital material, and zooplankton faeces by
small copepod species within the euphotic zone
should result in high turnover of material within
the surface layer and, in turn, in low vertical
mass flux. This is consistent with the rather
low sedimentation rates (12-24% of primary
production) out of the surface layers of the APF
during the present investigation (Rutgers van
der Loeff et al., 2002), where 2**Th-isotope
information was used to calculate the vertical
particle flux.

All these observations strongly suggest that the
smaller mesozooplankton in the region of the APF
may effectively recycle organic matter (living cells
or detritus) within the upper layers of the water
column. In this respect our observations support

the hypothesis of Smetacek et al. (1990), that a
regenerative plankton community composed of
micro-autotrophs and micro-heterotrophs builds
the basis of the Antarctic pelagic food web,
whereas the bulk of the biomass during the large
phytoplankton blooms is mainly contributed by
large diatoms. There are several mechanisms
whereby small calanoid and cyclopoid copepods
and the early developmental stages of all copepods
may play an important role in regulating the
plankton community structure in the Southern
Ocean. Since the small copepods feed very actively
on smaller plankton particles, faecal material, and
detritus, they efficiently recycle the nutrients with-
in the upper water column. Larger diatoms, such
as Thalassiothrix and Corethron are not affected
by the grazing of the smaller copepods but can use
the recycled nutrients. Thus, the activities of the
small copepods may indirectly support the buildup
of the large phytoplankton blooms dominated by
large diatoms. Future work should give more
focus to this aspect of the pelagic ecology of the
Antarctic.

Another aspect of these high abundances of
zooplankton in this region is the potential attrac-
tion of larger migratory predators (Hamner, 1988).
The APF has been characterized by high biomass
of large zooplankton, ichthyoplankton, and myc-
tophid fishes, as compared with the surrounding
water masses (Foxton, 1956; Hopkins, 1971;
Maslennikov and Solyankin, 1993). Also van
Franeker et al. (2002) found a clear match between
the small-scale horizontal occurrence of prions
(Pachyptila sp.) and the area of high zooplankton
abundance in the upper ocean layers of the APF
during spring. Prions feed by sieving water
through the gills of their beak (van Franeker
et al., 2002) and are therefore capable of concen-
trating the small zooplankton during flight just
above the water. The occurrence of prions also
coincided with the zooplankton distribution de-
rived from the SeaSoar-mounted OPC (van
Franeker et al., 2002). Thus, besides being eaten
by top pelagic predators, small copepods also may
represent a major food source for some seabirds of
the open Antarctic Ocean. If our assumptions hold
true, these copepods are key elements in the
transfer of organic matter (and thus energy) from
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the recycling pelagic community to the higher
trophic food levels.

5. Conclusions

The abundance of small (<2.0 mm) pelagic
copepods at the APF during early summer
is comparable to the highest figures reported
for productive coastal ecosystems of the northern
hemisphere (e.g., Nielsen and Richardson, 1989;
Turner, 1994; Turner and Dagg, 1983). Although
the use of a 100-um mesh sized Multinet con-
tributed to a better estimation of the abundance
of the small calanoids and cyclopoids, several
physical and ecological factors may have ac-
counted for the reported results. Mainly two
physical factors may increase plankton abundance
in the APF: first, the downwelling taking place in
this region concentrates plankton in the surface
layers (Voronina, 1968), and second, the structure
and the meandering features may contribute to
an increase of the residence time in this region.
These two factors promote the retention of
copepod populations within a food-enriched en-
vironment, and allows strong biomass accumu-
lation during the productive season. This is
reflected by a 5-fold increase in the numerical
abundance of small copepods from spring (Fransz
and Gonzalez, 1997) through summer. The domi-
nant epipelagic species (Oithona similis and Cte-
nocalanus citer) breed during early summer at the
APF, as indicated by the high abundance of their
nauplii. Our limited observations also suggest that
Oithona frigida display a similar reproductive
behavior.

The data presented here support the hypothesis
that small copepod species and early developmen-
tal stages of all pelagic copepods are key compo-
nents of the planktonic food web of the Southern
Ocean, especially in the APF. The metabolic
activity of these small metazoans seems to play a
major role in controlling food web dynamics in
this region. There is an urgent need of additional
information on the fine-scale distribution, repro-
ductive behavior, and food web interactions of
small pelagic copepods at the APF. In addition, we
reinforce the recommendations of Conover and

Huntley (1991) that further sampling with suitable
gear is required to clarify our understanding of the
ecological relevance of small copepods in the
Southern Ocean.
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