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Abstract. The composition and abundance of algal pigments

provide information on phytoplankton community charac-

teristics such as photoacclimation, overall biomass and tax-

onomic composition. In particular, pigments play a major

role in photoprotection and in the light-driven part of pho-

tosynthesis. Most phytoplankton pigments can be measured

by high-performance liquid chromatography (HPLC) tech-

niques applied to filtered water samples. This method, as well

as other laboratory analyses, is time consuming and there-

fore limits the number of samples that can be processed in

a given time. In order to receive information on phytoplank-

ton pigment composition with a higher temporal and spatial

resolution, we have developed a method to assess pigment

concentrations from continuous optical measurements. The

method applies an empirical orthogonal function (EOF) anal-

ysis to remote-sensing reflectance data derived from ship-

based hyperspectral underwater radiometry and from multi-

spectral satellite data (using the Medium Resolution Imag-

ing Spectrometer – MERIS – Polymer product developed

by Steinmetz et al., 2011) measured in the Atlantic Ocean.

Subsequently we developed multiple linear regression mod-

els with measured (collocated) pigment concentrations as

the response variable and EOF loadings as predictor vari-

ables. The model results show that surface concentrations of

a suite of pigments and pigment groups can be well predicted

from the ship-based reflectance measurements, even when

only a multispectral resolution is chosen (i.e., eight bands,

similar to those used by MERIS). Based on the MERIS re-

flectance data, concentrations of total and monovinyl chloro-

phyll a and the groups of photoprotective and photosynthetic

carotenoids can be predicted with high quality. As a demon-

stration of the utility of the approach, the fitted model based

on satellite reflectance data as input was applied to 1 month

of MERIS Polymer data to predict the concentration of those

pigment groups for the whole eastern tropical Atlantic area.

Bootstrapping explorations of cross-validation error indicate

that the method can produce reliable predictions with rel-

atively small data sets (e.g., < 50 collocated values of re-

flectance and pigment concentration). The method allows for

the derivation of time series from continuous reflectance data

of various pigment groups at various regions, which can be

used to study variability and change of phytoplankton com-

position and photophysiology.

1 Introduction

Optical measurements taken from various platforms have

been successfully used to determine the total chlorophyll a

(TChl a) concentration (e.g., see the summary by Mc-

Clain 2009). Those measurements can be taken continuously,
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thereby allowing for the estimation of TChl a concentration

at a much higher temporal and spatial resolution than pos-

sible from chemical measurements in the laboratory, e.g.,

by high-performance liquid chromatography (HPLC) anal-

ysis of discrete water samples. Chl a is the major pigment

in all phytoplankton species and is often used as an indi-

cator of phytoplankton biomass. When pigments are mea-

sured by HPLC, TChl a is defined as the sum of monovinyl

Chl a (MVChl a), divinyl Chl a (DVChl a) and chloro-

phyllide a (which is mainly formed as an artifact of the for-

mer two during the extraction process and therefore included

in the calculation). DVChl a exists only in the prokaryotic

genus Prochlorococcus, while MVChl a is the Chl a pigment

for all other phytoplankton (other cyanobacteria and eukary-

otes). Besides Chl a, there are many other pigments in phy-

toplankton that are either involved in light harvesting, such

as chlorophyll b (Chl b), chlorophyll c (Chl c) and photo-

synthetic carotenoids (PSC), or in protecting Chl a and other

sensitive pigments from photodamage, such as photoprotec-

tive carotenoids (PPC). Some pigments only occur in cer-

tain phytoplankton groups and thus are indicator pigments

for their identification, e.g., peridinin in dinoflagellates (e.g.,

Letelier et al., 1993; Vidussi et al., 2001).

When analyzing biogeochemical fluxes in the oceans,

however, it is inadequate to consider phytoplankton as a sin-

gle variable (i.e., TChl a) because various groups have dif-

ferent roles in the biogeochemical processes (such as car-

bon fixation and export, nitrogen fixation, and silicon up-

take). TChl a is far from being a sole function of phytoplank-

ton biomass and varies, as other phytoplankton pigments

do, with taxonomic composition and mean physiological al-

gal assemblage state in response to several factors such as

light, temperature and nutrients (Behrenfeld and Boss, 2006).

Thus, knowledge of a wider array of phytoplankton pigment

concentrations provides insight into phytoplankton compo-

sition, overall light absorption and physiological state. Phy-

toplankton absorption bears the imprints of different types

of pigments and can be measured by optical measurements.

However, different phytoplankton pigments may correlate in

parts of their spectrum, making individual pigment detection

difficult.

Several recent studies have investigated the potential of us-

ing continuous optical data to derive surface concentrations

of pigments other than TChl a, with the advantage of be-

ing able to supply estimates over larger spatial and tempo-

ral scales than obtained with in situ water sampling. Chase

et al. (2013) decomposed a large global data set of hyper-

spectral particulate absorption measurements into Gaussian

function components and assessed the magnitude of specific

Gaussian functions in relation to the absorption by specific

pigments or pigment groups. The method provided robust

results for obtaining concentrations of TChl a, TChl b (sum

of different types of Chl b), TChl c (sum of different types

of Chl c), PSC, PPC and phycoerythrin (PE). Organelli et

al. (2013) used a multivariate approach applied to fourth-

derivative spectra of phytoplankton or particulate absorption

(aph and ap, respectively) data to retrieve TChl a, the total

concentrations of seven diagnostic pigments and three phy-

toplankton size classes. However, ap and aph are inherent op-

tical properties (IOP) which cannot be directly determined

from satellite ocean-color measurements (after successful at-

mospheric correction), such as the apparent optical properties

(AOP). The estimation of IOP from AOP is based on a cer-

tain inversion model (e.g., the Quasi-Analytical Algorithm

by Lee et al., 2002), which introduces additional uncertainty.

The water-leaving reflectance (ρw) is related not only to

phytoplankton absorption but also to the scattering and ab-

sorption of water and other water constituents and to changes

in the radiance distribution in response to environmental con-

ditions such as observation geometry, surface waves and at-

mospheric conditions.

Pan et al. (2010) developed empirical algorithms based

on reflectance ratios to approximate key phytoplankton pig-

ment concentrations. The band-ratio algorithms were devel-

oped from underwater radiometric measurements collocated

to pigment data taken in northeastern US coastal waters and

were successful in deriving the concentration of TChl a,

TChl b, TChl c and nine different carotenoids. However, such

band-ratio algorithms require a very large database (> 400

collocations with satellite data) from a certain region to de-

rive robust results. Pan et al. (2013) later described that the al-

gorithm had to be adapted by modifying the pigment-specific

coefficients based on a regionally specific data set.

Craig et al. (2012) developed local models to estimate

TChl a and aph at different wavelengths from hyperspectral

in situ measurements of remote-sensing reflectance, Rrs(λ),

in an optically complex water body. The models were based

on empirical orthogonal functions (EOF) analysis of normal-

ized Rrs(λ) spectra and a subsequent linear fitting of mea-

sured TChl a concentration and aph(λ) as response variables

to EOF loadings as predictor variables. Taylor et al. (2013)

showed that the method could be used similarly to derive PE

concentrations from underwater upwelling radiance spectra,

Lu(λ), which enabled continuous profile predictions of PE

concentrations.

The present study aims to use the spectral information con-

tained in reflectance data to derive the optical signature of

different pigments by an automatic and generic technique.

The EOF analysis is applied to Rrs and to ρwN (i.e., normal-

ized ρw just above surface) data measured in the field and

by satellite sensors, respectively, in the Atlantic Ocean. The

dominant EOF loadings were subsequently assessed as pre-

dictors in a multiple linear regression for the concentration

of phytoplankton pigments and pigment groups as response

variables. The prediction error of each model is evaluated by

a permuted cross-validation routine, which is used to esti-

mate the critical sample sizes necessary for reliable predic-

tion. In addition, we demonstrate the approach’s utility in es-

timating the large-scale distribution and photophysiology of

the phytoplankton assemblage.
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2 Material and methods

Two sets of optical and pigment data from the Atlantic Ocean

were used in the analysis. The first model setup used a data

set which included only optical measurements taken in situ

(as depth profiles) and collocated surface pigment data col-

lected during three transatlantic RV Polarstern cruises in

2008 and 2010. These data enabled us to study the differ-

ence in EOF methods between hyper- and multispectral res-

olution. In the following, we call this data set “field data

set”. For a second data set, the “satellite-based data set”, we

considered water reflectance measurements from the satellite

sensor Medium Resolution Imaging Spectrometer (MERIS),

collocated to pigment data from various researchers in the

tropical Atlantic Ocean. These data enabled us to study the

generic application of the method.

2.1 Field data set

Samples for the field data set were collected during three

RV Polarstern cruises: the expeditions ANTXXIV/4 in

April/May 2008 and ANTXXVI/4 in April/May 2010 fol-

lowed a south-to-north transect through the Atlantic Ocean

from Punta Arenas (Chile) to Bremerhaven (Germany); AN-

TXXV/1 in November 2008 followed a north-to-south tran-

sect through the eastern Atlantic Ocean from Bremerhaven

to Cape Town (South Africa) (see Fig. 1; for more details

see Table S1, upper panel in the Supplement). Sampling was

generally conducted at 12:00 local time and involved con-

ductivity temperature density (CTD) casts with water sam-

plers, below-water radiance and irradiance measurements

and above-water irradiance measurements. Water samples

from surface water (< 10 m) for pigment analysis and for PE

analysis were filtered on GF/F filters and on 0.4 µm polycar-

bonate filters, respectively. Filters were immediately shock-

frozen in liquid nitrogen and stored at −80 ◦C until further

analysis at the laboratories of the Alfred-Wegener-Institute

Helmholtz Centre for Polar and Marine Research (AWI).

2.1.1 Pigment data

The composition of pigments that were soluble in organic

solvents was analyzed by HPLC following the method

by Barlow et al. (1997) and adjusted to our temperature-

controlled instruments (a Waters 600 controller combined

with a Waters 2998 photodiode array detector, a Wa-

ter717plus auto sampler and a LC Microsorb C8 HPLC col-

umn) as detailed in Taylor et al. (2011). We determined the

list of pigments shown in Table 1 of Taylor et al. (2011)

and applied the method by Aiken et al. (2009) for quality

control of the pigment data. HPLC data for ANTXXV/1, as

opposed to the other two cruises, were already published

in Taylor et al. (2011) and are available from PANGAEA

(doi.pangaea.de/10.1594/PANGAEA.819070). The relative

concentration of PE was taken from the data set published

Figure 1. Position of pigment samples used in this study. Red: field

data set; black: samples which are collocated to satellite-based but

not to field reflectance data; circles: samples which are collocated to

field but not to satellite-based reflectance data; stars, diamonds and

squares: collocations to MERIS Polymer data based on the 1× 1,

3× 3 and 5× 5 pixel criteria, respectively.

for all three cruises in PANGAEA (doi.pangaea.de/10.1594/

PANGAEA.819624) and analyzed in Taylor et al. (2013). As

outlined in Taylor et al. (2013), the PE concentration is ex-

pressed as a relative value, while all other pigments concen-

trations are directly measured values.

2.1.2 Reflectance data field data set

For all three cruises as AOP input data, we used Rrs(λ) data

obtained from profiles of radiance and irradiance from 320

to 950 nm, with an optical resolution of 3.3 nm and a spectral

accuracy of 0.3 nm, measured with hyperspectral radiometers

(RAMSES, TriOS GmbH, Germany) at the same time and

place as pigment data of Sect. 2.1.1. Rrs data of ANTXXV/1

were already published in Taylor et al. (2011) and are avail-

able from PANGAEA (doi.pangaea.de/10.1594/PANGAEA.

819506). For the other two cruises we applied the same tech-

nique and instrumentation as in Taylor et al. (2011) to de-

rive the Rrs spectrum at each station. To test the influence of
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spectral range and resolution of AOPs, the hyperspectral field

Rrs(λ) data were used within the range of 350 to 700 nm and

380 to 700 nm and reduced to the multispectral bands (412,

443, 490, 510, 560, 620, 665 and 681 nm) of MERIS by tak-

ing the integral over all wavebands within one band (±10 nm

around the center wavelength except when 681 nm± 7.5 nm

was used).

2.2 Satellite-based data set

For this data set, pigment concentrations had been deter-

mined from the sea surface (< 10 m) with HPLC by sev-

eral investigators within the area of 35◦ N–10◦ S and 42◦W–

3◦ E during the MERIS/ENVISAT mission lifetime (2002–

2012; for more details on the data set see Supplement Ta-

ble S1, lower panel). A large part of those data are pub-

licly available from the SEABASS and BODC databases.

The remaining pigment data are from the field data set

within this area, including additional data from stations

where no radiometric measurements had been taken and

from four other cruises: pigment data from the RV Maria

S. Merian cruise MSM-18/3 were analyzed by AWI as de-

scribed above in Sect. 2.1.1; data from two RV Polarstern

cruises (ANTXXIII/1 and ANTXXIV/1) were analyzed by

HZG following Zapata et al. (2000); data from the Bonus

Good Hope (BGH) cruise, conducted by the Laboratoire

d’Océanographie de Villefranche, were acquired as outlined

in Speich et al. (2008) and analyzed following the method by

Ras et al. (2008).

AOP input data is from the MERIS Polymer level 2

ρwN(λ) product given for the same eight wavebands as listed

in Sect. 2.1.2. The Polymer algorithm (for details see Stein-

metz et al., 2011) provides a powerful atmospheric correc-

tion. It is an iterative spectral matching method over the

whole available sensor spectrum and uses two decoupled

models. First, the water reflectance is modeled using two pa-

rameters: the Chl a concentration and the particle backscat-

tering coefficient. Second, the reflectance of the atmosphere,

including aerosols and contamination by sun glint, is simpli-

fied by using an analytical expression that can account for

multiple interactions between molecular and aerosol scat-

terings (and glitter) without referring to a specific aerosol

model. Hence, it allows for the retrieval of large amounts

of MERIS observations in sun glint, thin clouds or heavy

aerosol plumes; these contaminated conditions could not be

treated correctly by standard atmospheric correction schemes

extrapolating from the near infrared. MERIS Polymer prod-

ucts thus improve the spatial coverage by almost a factor of

2 and have proven successful for retrieving MERIS Ocean

Colour products: Polymer was selected as the MERIS pro-

cessor for atmospheric correction for the Ocean Colour Cli-

mate Change Initiative after an extensive validation and inter-

comparison with other atmospheric correction algorithms in

which each algorithm’s uncertainty was assessed (Müller and

Krasemann, 2012). However, additional uncertainties proba-

bly result from the difference in spatial resolution between

satellite (1 km by 1 km) and ship-based (20 cm by 20 cm)

sampled data.

Matchups between pigment data and MERIS Polymer

ρwN(λ) and TChl a products were determined according to

the MERMAID (MERIS MAtchup In-situ Database) as 1×1

(within the MERIS pixel), 3×3 and 5×5 pixels, respectively,

measured on the same day around the field observation (see

Barker et al., 2008). For the 3× 3 and 5× 5 MERIS pixel

match-ups, the mean ρwN(λ) and TChl a concentrations from

the MERIS products were calculated. Then the 1× 1, mean

3×3 and mean 5×5 MERIS ρwN(λ)matchup data were used

for deriving predicted (modeled) pigment concentrations, as

outlined in Sect. 2.3. The mean MERIS Polymer TChl a data

were validated with the in situ TChl a data of the satellite-

based data set. The R2, percent bias (PB), mean percent dif-

ference (MPD) and root mean square error (RMSE) between

the two collocated data sets were calculated as outlined in

Werdell et al. (2013) and used to determine pigment predic-

tion full-fit statistics (see Sect. 2.3.2).

2.3 Statistical methods to retrieve pigment

concentrations from reflectance

Figure 1 presents the distribution of collocated pigment and

reflectance measurements for both field and satellite-based

data sets that were used separately as input for the EOF pre-

diction analysis. The field data set covered 53 collocated re-

flectance and pigment data points (Fig. 1, red points). We

used three setups of the field Rrs(λ) spectra for the develop-

ment of pigment-specific models:

1. Rrs(λ) data in hyperspectral (1 nm resolved,

“hyper_Rrs”) from 350 to 700 nm,

2. “hyper_Rrs” from 380 to 700 nm and

3. Rrs(λ) data in MERIS band resolution (“band_Rrs”).

The three satellite-based data sets consisted of 139, 155

and 160 collocated reflectance and pigment data points from

2002 to 2012 for the 1× 1 (Fig. 1, stars), 3× 3 (Fig. 1, dia-

monds) and 5× 5 (Fig. 1, squares) pixel collocation criteria,

respectively, covering all months except January, March and

December (details on the spatial and temporal distribution of

collocations are given in the Supplement Table S1). Eighteen

collocations of the field data matched the 1×1 pixel satellite-

based data set (Fig. 1, red stars), but no additional field data

matched the two other (3× 3 and 5× 5 pixel) satellite-based

data sets.

The following pigments were included in the construction

of all different statistical models (further explained below):

MVChl a, DVChl a, chlorophyllide a, MVChl b, DVChl b,

Chl c1/2 (Chl c type 1 and 2), Chl c3 (Chl c type 3), Hex

(19-hexanoyl-fucoxanthin), But (19-butanoyl-fucoxanthin),

Allo (alloxanthin), Diadino (diadinoxanthin), Diato (diatox-

anthin), Fuco (fucoxanthin), Lut (lutein), Peri (peridinin),

Ocean Sci., 11, 139–158, 2015 www.ocean-sci.net/11/139/2015/
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Viola (violaxanthin) and Zea (zeaxanthin). In addition, the

concentrations of different pigment groups were considered,

such as the sum concentration of α- and β-carotene (Caro);

MVChl a, DVChl a and chlorophyllide a (TChl a); MVChl b

and DVChl b (TChl b); all pheopigments (TPheo); according

to Hooker et al. (2005) and Roy et al. (2011), the photosyn-

thetically active carotenoids (PSC: Fuco, But, Hex, Peri), and

the photoprotective carotenoids (PPC: Allo, Diadino, Diato,

Zea, Caro). PE, although measured by a different technique,

was also included since it also had a major impact on the op-

tical Lu(λ) data of the field data set (see Taylor et al., 2013).

Neo and PE were only considered in the models using the

field data set because, for some pigment samples of the data

set collocated to the satellite data, these pigments have not

been analyzed.

Figure 2 gives an overview describing the various steps of

the development and validation of our EOF method to predict

various pigments and pigment groups’ concentrations, which

are described in detail in the following subsections.

2.3.1 Empirical orthogonal function analysis

Following Taylor et al. (2013), the spectral data were sub-

jected to an EOF analysis, also known as a principal com-

ponent analysis, in order to reduce the high dimensionality

of the data and derive the dominant signals (“modes”) that

best describe variance within the data set. In addition to di-

mension reduction of spectral data, the use of EOF modes

in statistical model building also avoids problems associ-

ated with multicollinearity amongst the original predictor

variables. All calculations in the following were done with

the statistical computing software R (R Development Core

Team, 2013).

Spectral data were contained in a data matrix X with di-

mensions M , sample rows, by N , reflectance band columns.

Spectral samples were collocated to the respective pig-

ment data set Y with dimensions M by P , pigment

columns (pigments and pigment groups included are out-

lined above). While hyper_Rrs data consisted of 350–700 nm

(N = 351) or 380–700 nm (N = 321) bands, band_Rrs and

the satellite_ρwN data consisted of the eight MERIS visual

wavebands (N = 8). As in Taylor et al. (2013), spectral data

sets X were standardized for each sample row by first sub-

tracting the mean spectral value (centering) followed by di-

vision by the spectral standard deviation (scaling), which fo-

cused the analysis on the spectral shape rather than the mag-

nitude. The standardized matrix X was then subjected to sin-

gular value decomposition (SVD) in order to derive EOF

modes:

X= U6VT , xij =
∑
k=l,N

uikσkvkj , (1)

where V is a N ×N matrix containing the EOFs (spectral

pattern), U is anM ×N matrix containing the principal com-

ponents (PCs), 6 is an N ×N matrix containing the sin-

gular values on the diagonal and k is the EOF mode index

(lengthN). Only EOFs≤min (M ,N)will carry information.

This notation differs slightly from that presented in Taylor et

al. (2013), where a covariance matrix of the data set was sub-

jected to Eigen decomposition with subsequent projection of

data onto EOFs to derive PCs. The results of both approaches

are similar except that U derived via SVD is unitary, and 6

contains standard deviation rather than variance. The SVD

method is presented here due to its more straightforward no-

tation: EOFs and PCs are determined in a single step whereas

the alternate Eigen decomposition is a three-step calculation

(Fig. 2, the upper part of the panel on the left summarizes

these steps).

2.3.2 Log transformed general linear model

A general linear model was used to predict log-transformed

pigment concentrations of each pigment, yp, based on a

subset of PCs, U, as covariates (Fig. 2, the lower part of

the panel on the left summarizes these steps). The linear

model uses log-transformed pigment concentrations. Since

only positive, non-zero values are permissible with this trans-

formation, a small value was added to all concentrations

(0.00001 mg m−3) to allow for the inclusion of samples

where pigment concentrations were essentially zero or below

the detection limit. A truncated subset of PCs was used as de-

fined by the magnitude of their standard deviation. PCs with

standard deviations of ≤ 0.0001 times the standard deviation

of the first component were omitted. The resulting multiple

regression had the form

log(yp)= a+ b1u1+ b2u2+ ·· ·+ bnun, (2)

where log(yp) is the natural log-transformed concentration

of pigment p, u1,2,...n are the leading n PC scores from U, a

is the intercept and b1,2,...n are the regression coefficients. A

bidirectional stepwise routine was used to search for smaller

multiple regression models based on fewer predictor terms.

Best linear models were selected through minimization of

the Akaike information criterion (AIC). Once the best linear

model was determined, the relative importance of included

terms was defined by the change in AIC (1AIC) following

each term’s removal.

Since the range of concentration varies greatly among the

different pigments, we calculated mainly relative error statis-

tics. According to Werdell et al. (2013), the coefficient of

determination (R2), the RMSE, the slope (S) and the inter-

cept (a) of the linear regression are based on the log-scaled

predicted (log(yp)) as opposed to the log-scaled observed

(log(yo)) pigment concentration data, while the MPD, the PB

and the median percent difference (MDPD) are based on the

non-log-transformed pigment concentrations. The following

www.ocean-sci.net/11/139/2015/ Ocean Sci., 11, 139–158, 2015
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Figure 2. Schematic overview of the steps used in model building and prediction. Multiple linear regression models are fit to log-transformed

pigment concentrations, yp, as the response variable and EOFs derived from a spectral (reflectance) data set, X, as predictor variables. Model

building (left) is used for “full-fit” models to all data samples (M) or to a training subset of samples for cross-validation (Sect. 2.3.3).

Prediction (right) is used for the assessment of the model error on a validation subset of samples (I) for cross-validation (Sect. 2.3.3) or in the

extrapolation of model predictions to an new data set of reflectance spectra, as was done for the larger area of the tropical eastern Atlantic

region in this study (Sect. 2.3.4).

equations for these statistics were used:

RMSE= root of
1

N

N∑
i=1

(
log(ypi)− log(yoi)

)2
, (3)

MPD=
100

N

N∑
i=1

∣∣(ypi − yoi

)∣∣/(yoi) [%] , (4)

PB=
100

N

N∑
i=1

(
ypi − yoi

)
/(yoi) [%] , (5)

MDPD=Median of
[∣∣(ypi − yoi

)∣∣/(yoi) × 100
]

i = 1,N [%] . (6)

2.3.3 Model prediction error

In addition to the statistics performed for each pigment lin-

ear model (Sect. 2.3.2), we performed a cross-validation of

the linear model fitting in order to better test the robustness of

the models’ prediction error. Data were split into two groups:

the first part of the data was used for model fitting (Fig. 2, left

panel), while the second part was used for prediction valida-

tion (Fig. 2, right panel). According to Craig et al. (2012),

we assessed the number of observations required to achieve

adequate predictions by the pigment linear models using the

variable jack-knife procedure of Wu (1986). So the propor-

tion used for data splitting for the cross-validation procedure

was varied as follows, where n is the total number of sam-

ples, tp is the number of training points and vp is the number

of points used for validation:

tp= n× d, with d = 0.1, 0.15, 0.2, . . ., 0.9, (7)

vp= n(1− d). (8)

Since the number of permutations for data splitting af-

fects the overall computing time, the procedure was run for

500 permutations, similar to the recommendation of Craig et

al. (2012). Such a high number of permutations rules out the

model error being assessed based on a spatially or temporally

biased data set.

Each cross-validation procedure was as follows:

1. For 500 permutations, do steps 2–8.

2. Randomly select n×d of collocated samples to include

in training sets Xtrain and Ytrain for spectra and pigment

data, respectively. Remaining n(1− d) of samples are

allocated to the validation sets Xvalid and Yvalid.

3. Standardize Xtrain and perform EOF following Eq. (1)

to obtain Utrain, 6train and Vtrain.

4. For each pigment concentration yvalid
p of Yvalid, do steps

5–9.

5. Fit linear model to log-transformed pigment concentra-

tions using selected Utrain as in Eq. (2):

log
(
ytrain

p

)
= a+ b1u

train
1 + b2u

train
2 + ·· ·+ bnu

train
n . (9)
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6. Perform bidirectional stepwise search for smaller linear

model.

7. Standardize validation set and project Xvalid onto the

EOFs Vtrain and the inverse of singular values 6train−1

to derive their PCs Uvalid:

Uvalid
= Xvalid

·Vtrain
·6train−1

. (10)

Use selected PCs of Uvalid as variables in Eq. (10) in or-

der to predict pigment concentrations for the validation

data set:

log
(
yvalid

p

)
= a+ b1u

valid
1 + b2u

valid
2 + ·· ·+ bnu

valid
n . (11)

8. Record pairs of observed and predicted validation pig-

ment concentrations yo and yvalid
p in a new object for all

permutations for later calculation of prediction error.

For each permutation, the R2 based on the log-scaled

predicted (log
(
yvalid

p

)
) versus the log-scaled measured

(log(yp)) were derived and finally, over all permutations, the

mean value (R2cv) was calculated. In accordance with statis-

tics in Sect. 2.3.2, the prediction error was described in terms

of the absolute squared difference based on log-transformed

pigment concentrations, (log(yvalid
p )−log(yo))

2, and relative

difference based on non-log-transformed pigment concen-

trations, (yvalid
p − yo)/yo. Mean and median relative differ-

ence (MPDcv and MDPDcv, respectively) and the root mean

square absolute difference (RMSEcv) over all permutation

were determined as follows:

MPDcv=
100

N

N∑
i=1

[
(yvalid

p − yo)/yo

]
[%] , (12)

RMSEcv=

√√√√ 1

N

N∑
i=1

[
log

(
yvalid

p

)
− log(yo)

]2

, (13)

MDPDcv=median valueof

ypred

i,p − y
valid
i,p

yvalid
i,p

× 100

 ,
i = 1,N [%]. (14)

2.3.4 Pigment concentration predictions with MERIS

reflectance data

In order to predict pigment concentration from MERIS

ρwN(λ) for a whole month of data in November 2008, for

which we did not have corresponding pigment measure-

ments, the following method was applied: we projected stan-

dardized MERIS ρwN(λ) data onto the EOF loading (V) to

derive their principal components (U), which were subse-

quently used for the prediction with the fitted linear model

(as in Sect. 2.3.3, step 7, Eq. 11, Fig. 2, right panel), where

b1,2,...n are taken from the EOF model developed with the

1× 1 MERIS Polymer ρwN(λ) matchups (following Fig. 2,

left panel).

3 Results and discussion

3.1 Characteristics of input data sets

Figure 3 shows the original and standardized spectra of the

field and satellite-based data sets. Considering the conver-

sion of Rrs(λ) to ρwN(λ) data by a factor of π , the magnitude

and shape of the original and standardized spectra are simi-

lar for the band-resolved data sets, except that the standard-

ized satellite_ρwN data set contains only one spectrum with

maximum reflectance in the green at 560 nm, while the stan-

dardized field data set contains four spectra with maxima at

510 nm.

The composition and range of pigments (as detailed with

maximum, minimum, mean and standard deviation in Sup-

plement Table S2) show, for all pigments, that the colloca-

tions to the field data set contain higher maxima and min-

ima than the collocations to the satellite-based data set (ex-

cept for Fuco, for which it is equal and for Zea, for which it

is inverted). For most pigments, mean values are very sim-

ilar for both data sets. However, standard deviations for the

field data set are 2 to 3 times higher than the mean for all

pigments. In the satellite data set, the standard deviation is

of a similar magnitude to the mean value. The higher con-

centration of total pigments in the field data set may explain

the small differences in the shape of the reflectance spectra

of the two (field versus satellite-based) data sets. However,

DVChl b, MVChl b, TChl b, Allo, Diato, Lut, Neo, Peri, Vi-

ola and TPheo had values of 0 mg m−3 in more than 20 % of

all stations in both data sets. Also, Chl c3 had a concentra-

tion of 0 mg m−3 in one sample collocated to the field and in

over 30 % of samples collocated to the satellite-based data

set. Several pigments had concentrations of 0 mg m−3 only

occasionally (< 10 %) in samples collocated to the satellite-

based data set (Caro, Chl c1/2, But, Hex, Zea, DVChl a, Di-

adino and Fuco) and in the field data sets (DVChl a, Diadino

and Fuco). All other pigments not listed here had detectable

concentrations in all samples.

3.2 EOF analysis – shape of modes and relevance for

predictions

Following the EOF truncation criteria outlined in Sect. 2.3.2,

the decomposition of the standardized spectra resulted in

nine modes (EOF-1 to EOF-9) for the hyper_Rrs and seven

modes for the band_Rrs and satellite_ρwN data sets (the first

four modes are presented in Fig. 4). EOF modes for the three

satellite_ρwN data sets were nearly identical. For simplicity

we only show (Fig. 4) and discuss the EOF modes of the

1×1 pixel collocation data set. For all data sets, the first three

modes explain over 99.8 % of the variance for all three data

sets, with EOF-1 explaining between 94.5 % and 96 % of the

variance (Table 1).

The shapes of the first three EOF modes are very similar

among all three reflectance data sets. They are nearly iden-
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Figure 3. (a)–(c) Original (in sr−1) and (d)–(f) standardized (subtracted mean and divided by standard deviation) reflectance spectra of

hyper_Rrs (a) and (d), band_Rrs (b) and (e) and satellite_ρwN (from MERIS Polymer) data within the 1× 1 pixel collocation boxes (c) and

(f).

Table 1. Percent of total variance explained (Expl. variation; upper panel) and cumulative proportion (Cum. proport.; lower panel) by the

significant EOFs derived from field Rrs spectra in hyperspectral resolution (hyper_Rrs) and multispectral resolution (band_Rrs) and from

satellite_ρwN (from MERIS Polymer) using the 1× 1 pixel collocation criterion.

% Expl. variation EOF-1 EOF-2 EOF-3 EOF-4 EOF-5 EOF-6 EOF-7 EOF-8 EOF-9

hyper_Rrs 95.0 4.1 0.7 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

band_Rrs 94.5 5.0 0.4 < 0.1 < 0.1 < 0.1 < 0.1

satellite_ρwN 95.9 3.9 0.1 < 0.1 < 0.1 < 0.1 < 0.1

% Cum. proport. EOF-1 EOF-2 EOF-3 EOF-4 EOF-5 EOF-6 EOF-7 EOF-8 EOF-9

hyper_Rrs 95.0 99.1 99.8 99.9 99.965 99.981 99.990 99.994 99.996

band_Rrs 94.5 99.5 99.9 99.95 99.990 99.999 100.0

satellite_ρwN 95.9 99.7 99.9 99.95 99.985 99.996 100.0

tical for the band_ Rrs and the satellite_ρwN data sets but

show smoother shapes and peaks for hyper_Rrs for the first

two modes. Due to the limited number of wavelengths for

the two multispectral data sets, EOFs show evidence of a

shift in peak location, starting with EOF-3 (peak at 412 and

443 nm for EOF-3 and EOF-4, respectively), as compared

to hyper_Rrs (peak at 360 and 410 nm for EOF-3 and EOF-

4, respectively). This is likely due to the increased spectral

resolution of the hyperspectral data, which allows for more

precision in identifying spectral regions of higher variance.

For EOF-4, the satellite_ρwN mode is much flatter beyond

500 nm and shows no trough between 600 and 650 nm com-

pared to the EOF-4 for the other two data sets. Not much

similarity is seen among the EOF-5 modes of the different

spectra data sets; for EOF-6, the two field data sets are simi-

lar in the overall shape, but peak locations are shifted towards

longer wavelengths for the satellite data set. EOF-7 and EOF-

8 show very similar shapes for hyper_Rrs and deviate from

EOF-7 in the band data sets, while EOF-9 from hyper_Rrs

looks much more like the later ones.

The EOF analyses identify dominant modes of variance,

which can be interpreted as imprints of changes in the opti-

cal properties of water constituents in the water column. For

this study, only reflectance spectra taken in high TChl a wa-

ters with measurable mineral fraction (identified as cluster V

for the ANTXXV/1 data in Taylor et al., 2011) show any re-

semblance to spectral shapes obtained in the case 2 waters of

Lubac and Loisel (2007, e.g., class 5) and Craig et al. (2012).

The remaining spectra (typical case 1 water) show character-

istics not observed in those studies. This difference explains
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Figure 4. First four EOF modes (EOF-1 to EOF-4) derived from field Rrs data set in hyperspectral resolution (hyper_Rrs, solid lines) and

in multispectral band resolution (band_Rrs, dashed lines) and from using satellite_ρwN (from MERIS Polymer, dotted line) data within the

1× 1 pixel collocation box.

the minor variations in the shape and loading of EOFs be-

tween their and our data sets. In the following, we focus the

discussion on our hyper_Rrs data set results with specific

comparison to the study by Craig et al. (2012), which was

also based on hyperspectral Rrs data.

Our first three EOF modes correspond to the ones derived

for the hyperspectral case 2 reflectance data set of Craig et

al. (2012). As pointed out in their study, EOF-1 is likely the

signature of bulk oscillations in phytoplankton biomass con-

centration (including its effect on backscattering). However,

our EOF-1 already explains much more of the variance than

in Craig et al. (2012), where it only accounted for 72.4 %

and showed much more structure and a weaker exponential

decrease from 400 to 550 nm. EOF-2 superficially resem-

bles the overall changes in the total absorption over broad

band structures. It strongly decreases from 350 to 510 nm

and increases again above 570 nm, which is connected to

total pigment and water absorption, respectively. There is a

peak around 683 nm which can be linked to MVChl a and

DVChl a fluorescence. While this peak is present in EOF-1

in the Craig et al. (2012) data set, it is not in the EOF-1 of our

data set likely because of the lower TChl a concentrations.

EOF-3 of our data set as compared to the one of Craig et

al. (2012) shows a much steeper decrease with wavelength

in the blue spectral range. These changes may reflect con-

comitant changes of absorption by chlorophyll, colored dis-

solved organic matter and non-algal particles expected to be

co-varying and of much lower concentration in our case 1

waters. Scattering by particles other than phytoplankton was

much higher in the case 2 water of Craig et al. (2012), lead-

ing to a less steep slope of this EOF mode. EOF-4 appears

different in relation to the three peaks. Similar to EOF-2 and

EOF-3, these differences are caused by the different compo-

sition and overall loading of water constituents of our and

their sampled stations.

In summary, in contrast to more coastal waters where mea-

surable mineral fraction can affect Rrs properties, the total

attenuation is much more affected by total pigment concen-

tration in our open-ocean, case 1 data set. Our data set was

largely composed of samples from waters with lower TChl a

concentration, ranging from 0.005 to 3.553 mg m−3, while

in the study of Craig et al. (2012) it ranged from 0.584

to 18.02 mg m−3. EOFs greater than 4 were not presented

in Craig et al. (2012) because they were not used to pre-

dict TChl a from Rrs data, as was the case for our TChl a

(and MVChl a) linear model predictions (Sect. 3.3.3). Higher

EOF modes probably reflect the influence of specific pigment
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groups or pigments, as indicated by the results of the 1AIC

values and further discussed in Sect. 3.3.3.

3.3 Pigment prediction by linear models

3.3.1 Field data set linear models

All pigments that were detected in the full set of the field data

samples were well predicted by linear models based on hy-

perspectral (hyper_Rrs) or the reduced eight-band (band_Rrs)

resolution spectra. The correlations between predicted and

observed concentrations for these pigments were highly sig-

nificant (p < 0.0001) and cross-validation statistics reached

reasonable quality with R2cv≥ 0.5, MDPDcv≤ 45 % and

MPDcv≤ 60 % (Table 2a, upper part). For some pigments

(TChl a, PSC, MVChl a, Hex, Caro) EOFs based on 380

to 700 nm produced much better linear model results using

hyper_Rrs data than based on 350 to 700 nm (for all statis-

tical parameters see Supplement Table S3; models based on

hyper_Rrs (a) at 350 to 700 nm and (b) at 380 to 700 nm and

(c) on band_Rrs). Lower quality for one statistical parameter

for both linear models was reached for Zea (R2cv 0.35 and

0.28), But (MPDcv 81 and 95 %) and for two parameters for

PE (MDPDcv 65 and 67 %, MPDcv 139 and 156 %).

Plots of observed versus predicted values for the full data

set of well-predicted pigments TChl a, PSC, PPC, Hex and

Zea are shown in Fig. 5. For pigment groups and pigments

with a high range of data (TChl a, PSC and Hex), covering

about 3 orders of magnitude, the intercept is much lower and

the regression closely aligns with the 1 : 1 reference line. The

predicted versus observed regression for Zea was of lower

quality (R2< 0.6) likely due to a much lower range of ob-

served concentrations.

For all other pigments, predictions were of low quality (re-

sults not shown), demonstrating that the linear model ap-

proach does not produce robust predictions for situations

where pigment were not detected (i.e., 0 mg m−3) in every

sample (see results for all pigment predictions in Supplement

Table S3). Even pigments that were only occasionally un-

detected (e.g., DVChla, TChlb, MVChlb) showed increased

error in cross-validation prediction as revealed by MDPDcv

and RMSEcv values far above 100 % and 1, respectively. We

re-ran the predictions for specific pigments where only a few

samples (< 10 %) had concentrations of 0 mg m−3, as was

the case for DVChl a, Fuco, Diadino and Chl c3 (see Sup-

plement Table S2). In those specific linear model runs we

only included as input data the data points where the specific

pigment concentrations were> 0 mg m−3. The resulting pre-

dictions (Table 2a, lower part; for DVChl a see full-fit re-

sults in Fig. 5d) from using the adjusted input data for those

pigments show robust and significant cross-validation results

within the same quality range as for the pigments which were

detected in all data. For other pigments, where non-detection

occurred more frequently (> 20 % of the samples), the re-

moval of non-detection samples did not result in robust pre-

dictions (results not shown).

Cross-validation results of well-predicted pigments (Ta-

ble 2a) show that, especially regarding the R2cv and RM-

SEcv values, hyper_ Rrs-based linear models perform either

the same (PSC), slightly better (PPC, Chl c1/2) or much bet-

ter (TChl a, MVChl a, But, Hex, Zea, Caro, PE, DVChl a,

Chl c3, Diadino, Fuco) than predictions based on eight wave-

lengths (band_Rrs data set). In particular, RMSEcv is much

improved for several pigment predictions where RMSEcv

reaches high values (> 0.65 mg m−3), i.e., for PE, Fuco, But,

Chl c3, Diadino and Hex. The benefit was less clear when

observing the statistics of MDPDcv and MPDcv in several

pigments (MVChl a, Chl c1/2, TChl a and PSC predictions).

For these pigments the multispectral resolution appears to be

sufficient for obtaining similarly robust predictions. TChl a

(in line with MVChl a) and PSC dominate the overall phyto-

plankton pigment composition and absorption. TChl a con-

centrations have been well retrieved by band-ratio algorithms

as a main phytoplankton biomass indicator (e.g., see Brewin

et al., 2014). For pigments very similar in spectral range,

such as But, Hex and Fuco, the hyperspectral resolution of

the linear models provides much more robust pigment pre-

dictions (Table 2a). The hyper_Rrs linear models also pro-

duced better predictions for DVChl a, Zea, Diadino and PPC,

where the specific linear models included a much larger set

of EOF modes (see Sect. 3.3.3) which may indicate the im-

portance of higher-resolution spectral details not available in

the band_Rrs data.

3.3.2 Satellite-based data set linear models

Results for the models predicting pigment concentration

from the satellite-based data set were very similar when

using 1× 1, 3× 3 or 5× 5 collocated MERIS ρwN data

(for all statistical parameters see Supplement Table S3:

satellite_ρwN models based on 1×1 (d), 3×3 (e) and 5×5 (f)

collocations). Deviations were within 1 to 3 % for all sta-

tistical parameters. R2cv values were best in all cases for

well-predicted pigment concentrations in the 1× 1 colloca-

tions, while MPDcv was best in the 3× 3 collocations. Re-

sults clearly show that even models based on 5×5 pixel col-

locations can produce robust results. For simplicity, in the

following we present and discuss the results of the 1×1 col-

located reflectance data only.

In line with field data linear model results, pigment

groups and pigments, which were detected in every sample

(MVChl a, TChl a, PSC and PPC; the full-fit linear model

results are shown in Fig. 6a–c), are well predicted with sim-

ilar cross-validation statistic values using the satellite_ρwN

data set (Table 2b, upper part). Also, good predictions for

some pigments (DVChl a, Zea, Diadino, Hex, But, Fuco

and Chl c1/2) could be obtained by re-running the linear

model analysis with concentrations of 0 mg m−3 excluded

(Table 2b, lower part). For example, the full-fit linear model
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Table 2. Statistics of linear models using EOF modes based on a) field Rrs data in hyperspectral (hyper; normally 350–700 nm; when *

then 380–700 nm) resolution and multispectral (band) resolution and (b) the satellite_ρwN (from MERIS Polymer) using the 1× 1 pixel

collocation criterion data set. Cross-validation results are presented with 500 permutations for data splitting into 80 % of the data used for

training and 20 % for validation. Only well-retrieved pigment prediction results, with correlations being highly significant at p < 0.0001,

are given. Abbreviations of pigments are explained in Sect. 2.3.1. Pigments listed in the upper part of each table show high-quality results

using the entire data set. In the lower part of each table (listed under “> 0 mg m−3”) models are based only on the data set of collocated Rrs

samples where the respective pigment reached concentrations above 0 mg m−3. Bold: here band-model performs better than hyper-model.

Red signifies only medium quality as specified in the text.

(a) MDPDcv MPDcv RMSEcv R2cv

Band/hyper N band hyper band hyper band hyper band hyper

TChl a* 53 28 32 42 43 0.54 0.49 0.72 0.77

PSC* 53 32 34 51 53 0.62 0.62 0.75 0.75

PPC 53 28 27 51 49 0.57 0.56 0.52 0.52

MVChl a* 53 31 34 45 44 0.54 0.50 0.77 0.79

Chl c1/2* 53 34 36 48 49 0.57 0.56 0.79 0.80

But 53 44 43 95 81 0.90 0.82 0.50 0.55

Hex* 53 37 36 57 53 0.69 0.60 0.64 0.70

Zea 53 31 28 45 42 0.52 0.48 0.28 0.35

Caro* 53 34 33 55 50 0.62 0.54 0.55 0.62

PE* 53 67 65 156 139 1.28 1.16 0.65 0.69

> 0 mg m−3:

DVChl a 49 26 24 45 39 0.49 0.44 0.59 0.67

Chl c3* 52 40 37 61 58 0.86 0.69 0.71 0.73

Fuco* 52 45 40 92 73 1.02 0.82 0.65 0.66

Diadino 52 37 33 59 53 0.71 0.61 0.57 0.67

(b) satellite_ρwN N MDPDcv MPDcv RMSEcv R2cv

TChl a 139 32 47 0.64 0.67

PSC 139 42 59 0.79 0.70

PPC 139 27 40 0.49 0.50

MVChl a 139 40 55 0.67 0.72

> 0 mg m−3:

DVChl a 124 40 59 0.73 0.25

Chl c1/2 127 41 89 0.84 0.64

X19_But 126 39 55 0.63 0.74

X19_Hex 132 40 60 0.68 0.68

Fuco 128 40 65 0.85 0.71

Zea 138 29 46 0.51 0.40

Diadino 132 45 91 0.84 0.57

results for DVChl a, Hex and Zea are shown in Fig. 6d–f.

Nevertheless, some of these pigments show only medium

quality for one cross-validation statistical parameter (lower

R2cv for DVChl a and Zea, higher MPDcv for Fuco, Chl c1/2

and Diadino).

The full-fit results shown in Fig. 6 show that the mod-

els based on the satellite data show much poorer predictions

(e.g., a, R2 and RMSE) than the field data models for all pig-

ment or pigment groups (except Zea) even though the satel-

lite data models are based on more samples. This may be

caused by the lower quality of water-leaving reflectance data

obtained from the satellite as opposed to direct radiometric

measurements in the water column. Another explanation may

be that the lower standard deviation of the pigments in the

satellite-based data set leads to less precision of the EOF-

based models. The latter may explain why the full-fit results

for predicting Zea concentrations are very similar for the two

model types.

Similar to the field data linear models, no robust pre-

dictions were obtained for all other pigments that reached

www.ocean-sci.net/11/139/2015/ Ocean Sci., 11, 139–158, 2015



150 A. Bracher et al.: Using empirical orthogonal functions derived from remote-sensing reflectance

Table 3.1AIC for the robust pigment predictions of the pigment groups TChl a, PSC and PPC and the pigments MVChl a, Zea and DVChl a

by the EOF models based on field Rrs in (a) hyperspectral resolution (hyper_Rrs) and (b) multispectral resolution (band_Rrs) and (c) the

satellite_ρwN (from MERIS Polymer) using the 1× 1 pixel collocation criterion. The pigments listed under “no 0 mg m−3” were predicted

using a reduced data set where the respective pigment reached concentrations above 0 mg m−3. Bold highlights the EOF mode with the

highest 1AIC.

(a) hyper_Rrs EOF-1 EOF-2 EOF-3 EOF-4 EOF-5 EOF-6 EOF-7 EOF-8 EOF-9

TChl a 80 16 16

PSC 78 9 8 4

PPC 35 33 0.4 3 2

MVChl a 88 16 11

Zea 5 6 21 10 7 1 5 9

no 0 mg m−3:

DVChl a 7 10 21 21 1 20 9 4 7

(b) band_Rrs EOF-1 EOF-2 EOF-3 EOF-4 EOF-5 EOF-6 EOF-7

TChl a 86 10 15 3 1

PSC 80 5 5 6

PPC 38 20 9 1

MVChl a 90 10 9 1

Zea 2 5 6 10 4 7 0.3

no 0 mg m−3:

DVChl a 12 17 20 23

(c) satellite_ρwN EOF-1 EOF-2 EOF-3 EOF-4 EOF-5 EOF-6 EOF-7

TChl a 7 148 1

PSC 5 146 0.2 16

PPC 10 62 3 3 4

MVChl a 4 151 5

no 0 mg m−3:

Zea 38 63 17 1 11 6

DVChl a 13 26 35 2

> 0 mg m−3 in less than 80 % of all samples concentrations,

even when only data points with specific pigment concentra-

tions > 0 mg m−3 were included (results not shown).

3.3.3 EOF modes relevant for pigment predictions

Table 3 presents the results of EOF significance based on

1AIC from their removal as model terms. For the hyper_Rrs

data set, the prediction linear models used EOF-2 and EOF-

3 for all pigments. EOF-2 was the most relevant in the re-

spective models for all pigment prediction except for Zea and

DVChl a, for which EOF-3 was the most important, closely

followed by several other EOF modes. For all other well-

predicted pigments, EOF-3 followed EOF-2 in importance,

except for Chl c3 (EOF-4) and PE (EOF-1). Besides PE, only

EOF-1 was included (with medium importance) for the pre-

diction of But, DVChl a and Zea concentrations. Nearly all

linear models using the hyper_Rrs data set to predict pigment

concentrations incorporated the loadings of three to five EOF

modes. In contrast, predictive models for DVChl a, Zea and

PPC incorporated nine, eight and six EOF modes, respec-

tively.

As discussed in Sect. 3.2, EOF-2 reflects the optical im-

print of all phytoplankton pigments. The high1AIC value of

EOF-2 for most pigments’ linear models is probably caused

by the increase in concentration of these specific pigments

and most phytoplankton groups when TChl a increases. In

contrast to that, cyanobacteria and especially its subgroup

Prochlorococcus, containing the marker pigments Zea and

DVChl a, respectively, are the most abundant phytoplank-

ton under low TChl a concentrations. This has manifested

in the abundance-based algorithms to retrieve picoplankton

from TChl a data (Uitz et al., 2006; Hirata et al., 2011) and

may explain why predictions of those marker pigments by

our linear models show lower 1AIC for EOF-2 and require

several different EOF modes in their linear models.

As in Craig et al. (2012), EOF-2 to EOF-4 were relevant

for our hyper_Rrs-based TChl a and MVChl a predictions.
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Figure 5. Examples of regressions between observed (obs.) and predicted (pred.) concentrations for pigment groups, (a) TChl a, (b) PSC and

(c) PPC, and specific pigments, (d) DVChl a, (e) Hex and (f) Zea. Observed values have been measured by HPLC (obs.), while predictions

are made using a linear model based on EOF modes derived from field Rrs data in hyperspectral resolution (hyper_Rrs). For DVChl a, the

model data set was reduced by excluding collocated samples where DVChl a had concentrations of 0 mg m−3.

EOF models developed by Taylor et al. (2013) to predict PE

concentrations based on Lu data required the first four EOF

modes, while our PE prediction based on Rrs data required

the first three EOFs only. For all other pigments, the higher

EOFs were also necessary for robust predictions.

Similarly to the hyper_Rrs linear models, the two multi-

spectral linear models also showed EOF-2 to be the most

important predictor for specific pigment models except for

DVChl a (both models) and Zea (only band_Rrs).

3.4 Number of data points to construct robust models

Our presented linear models to predict specific pigment or

pigment group concentration are calibrated for an ocean-

color data set of a specific region with coincidental pig-

ment measurements. Results of the variable jack-knife pro-

cedure indicate that the minimal number of training points

needed to set up a robust linear model varies among pig-

ments and pigment groups, as revealed by several statistical

error measures: the ratio of R2cv to R2 (R2cv /R2), the ratio

of MPDcv to MPD (MPDcv /MPD) and the ratio of RMSE

to RMSEcv. Examples for predicting TChl a, PSC, PPC and

PE are shown in Fig. 7. The ratio R2cv / R2 for PPC in all

linear models (Fig. 7a, d) drops below 0.8 after a threshold

of 50 training data and then decreases exponentially with di-

minishing data, while other pigments can maintain a high ra-

tio with as few as 30 samples and even 15 samples in the

case of the hyper_Rrs PE linear model. The threshold where

the slope increases in RMSEcv /RMSE (Fig. 7c, f) is for all

pigments and linear models probably around 20 to 30 train-

ing points. MPDcv/MPD ratios below 1.4, which would indi-

cate robust fits, are obtained for all pigments above 50 train-

ing points for the satellite_ ρwN (Fig. 7e) and above 30 for

the hyper_Rrs data sets (Fig. 7b). Generally, we observe that

band_Rrs-based models are more sensitive to training sam-

ple size as compared to the hyper_Rrs-based models, espe-

cially for TChl a and PE. As a general recommendation, a

requirement of at least 45 to 50 training data points is advised

for most cases, while some pigments (e.g., TChl a) may be

well predicted with as few as 25 training samples when using

models based on hyper_Rrs data. Based on these results, we

are confident that the models presented in Sect. 3.3 are able

to provide robust predictions for both field and the satellite-

based data. In the case of PE, the number of samples seems

to have been too small, especially for the multispectral reso-

lution, to provide robust PE predictions.

3.5 Comparison to other approaches deriving pigment

concentration

Our hyper_Rrs TChl a linear model results (R2
= 0.84,

RMSE= 0.4, R2cv= 0.77, RMSEcv= 0.49; Fig. 5 and Ta-

ble 2) are comparable to results by Craig et al. (2012;

R2
=0.84, RMSE= 0.3, R2cv= 0.76, RMSEcv= 0.21).

Craig et al. (2012) used measurements only from a single lo-

cation, sampled about weekly over the course of 1 year, while
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Figure 6. Examples of regressions between observed (obs.) and predicted (pred.) concentrations for pigment groups, (a) TChl a, (b) PSC and

(c) PPC, and specific pigments, (d) DVChl a, (e) Hex and (f) Zea: observed values have been measured by HPLC (obs.), while predictions are

made using a linear model based on EOF modes derived from satellite_ρwN (from MERIS Polymer) data within the 1× 1 pixel collocation

box. For DVChl a, Hex and Zea, the model data set was reduced by excluding collocated samples where DVChl a had concentrations of

0 mg m−3.

our field data set was from a much larger region (covering

95◦ in latitude and 85◦ in longitude) and sampled during two

seasons in 2008 and 2010 only. In their study the same linear

model setup was used with collocated in situ reflectance and

TChl a data sampled at Compass Buoy station in the Bedford

Basin near Halifax as input data. The number of collocations

used for training to obtain robust results for TChl a predic-

tions was also similar for both studies, with more than 25

recommended for our hyper_Rrs linear model and more than

15 in the Craig et al. (2012) study.

Chase et al. (2013) used Gaussian functions to derive dif-

ferent chlorophyll types, PSC and PPC concentrations from

a large global data set of hyperspectral particulate absorp-

tion measurements. Their validation results showed MDPD

values between predicted and observed concentrations of 30

and 36 %, 40 and 53 %, 49 % and 51 % for TChl a, TChl c,

PSC and PPC, respectively. Our linear models show sim-

ilar (TChl a 27–32 %) or even much better MDPDcv val-

ues (Chl c1/2: 34–41 %, PSC: 32–43 %, PPC: 24–28 %). We

believe that this further indicates the robustness of our ap-

proach, especially given that we use a more indirect measure

of pigments, AOP (reflectance), as opposed to the IOPs used

in their study.

Pan et al. (2010) developed pigment specific band-ratio

algorithms with collocated in situ Rrs(λ) and pigment mea-

surements from the northeastern coast of the United States.

Those algorithms are based on deriving pigment-specific co-

efficients for third-order polynomial functions using the band

ratio of either 490–550 nm or 490–670 nm (for SeaWiFS;

for MODIS changed accordingly to MODIS bands 488 and

547 nm). Validation of results with collocated satellite (Sea-

WiFS and MODIS) reflectance data and pigment concentra-

tions showed very good-quality predictions for several pig-

ments (TChl a, TChl c, Caro, Fuco, Diadino and Zea) using

SeaWiFS bands (MPD from 36 to 48 %, RMSE from 0.23

to 0.29, and R2 from 0.65 to 0.90; similar results were also

obtained using MODIS bands). This method was modified

to the northern South China Sea using globally derived re-

lationships and locally identified links between pigment con-

centration and sea surface temperature (Pan et al., 2013) with

similar validation results as in Pan et al. (2010). Compared

to our linear model results, the quality of pigment concentra-

tion prediction is similar: while our results for MPDcv and

R2cv are slightly worse (42–50 % and 0.61–0.80, respec-

tively), our results for RMSEcv (0.48–0.61 mg m−3, except

Fuco: 0.82 mg m−3) are much better.

PE is not well predicted by both our linear models based

on the field data set. Still, hyper_Rrs linear model cross-

validation measures are much better than the PE band_Rrs

linear model. In Taylor et al. (2013), PE concentrations were

predicted from the same underwater light measurements but

using Lu instead of Rrs data and the model was based on pig-
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Figure 7. R2cv /R2 (a, d), MRDcv /MRD (b, e) and RMSEcv /RMSE (c, f) as a function of number of training points (tp) for the linear

models. Shown are results for specific models for TChl a, PSC, PPC and PE using reflectance data from the field (a–c) in hyperspectral

(hyper_Rrs, solid lines) and multispectral band (band_Rrs, dotted lines) resolution and from satellite MERIS Polymer within the 1× 1

pixel collocation box (satellite_ρwN, (d–f)). The number of total samples points was n= 53 for hyper_Rrs and band_ Rrs and n= 139 for

satellite_ρwN. Cross validation is based on 500 permutations using tp for training and as number of validation points (vp): vp= n−tp.

ment concentrations at surface and deeper depths. No cross-

validation was performed within their study. Our results for

R2cv (0.69) are even better than their results for using the

data from all three cruises for predictions (R2 of 0.58). The

data set of Taylor et al. (2013) was nearly 3 times larger

than our field data set and a log-link generalized linear model

(GLM) was used instead of a log-transformed linear model.

For the latter we tested both settings for our pigment linear

models. Cross-validation revealed a similar prediction error

for PE using the log-link GLM instead of the log-transformed

linear model, but the error increased when GLM was used for

other pigment predictions.

As for TChl a predictions from the satellite_ρwN linear

model, validation results of the MERIS Polymer TChl a

product collocations with in situ TChl a from the satellite-

based data set showed marginal differences for the 1×1, 3×3

or 5×5 pixel collocations (Table 4, upper panel). The TChl a

Polymer product obtained 3 % higher MPD and similar R2,

RMSE and PB values (of about 0.74, 0.51 and 10 % on av-

erage, respectively) to the TChl a linear model predictions.

In the global validation by Brewin et al. (2015), the OC4V6

(Ocean-Chlorophyll-4 algorithm version 6; O’Reilly et al.,

2000) was selected from amongst various TChl a satellite

products as the best TChl a algorithm. This algorithm is used

to produce the MERIS Polymer TChl a from atmospheric-

corrected MERIS Polymer data. Global validation by Brewin

et al. (2015), with 1039 collocations and retrievals of TChl a

directly from in situ ρwN(λ) data, showed an R2 of 0.87 and

a RMSE of 0.29 for OC4V6 based on non-log-transformed

concentrations (which compares to our RMSE values on log-

scale shown in Table 4 of Bracher et al., 2014). We conclude

that both MERIS Polymer TChl a products, the level 2 and

linear models, show high quality within the eastern Atlantic

Ocean although they are retrieved from satellite data and not

in situ ρwN data.

The comparison with other methods of retrieving pigment

concentrations from reflectance data shows that our method,

based on a linear model using EOFs from reflectance data,

gives robust results for pigment groups and pigments that are

always present in the region investigated. To test our EOF

methods for independent data sets using the method estab-

lished by a certain testing data set, we have used the cross-

validation technique. The technique allows the re-sampling

of all data for 500 different subsets (i.e., run by 500 permu-

tations) into testing and validation data sets.

The advantage of our approach is that it allows for the es-

timation of several pigments and pigment groups using ei-

ther reflectance data measured directly in the ocean water or

obtained from a satellite ocean-color sensor. For the eastern

tropical Atlantic Ocean data set, these additional pigments

(other than TChl a) include PPC, PSC, DVChl a and MChl

a. Additional pigments may also be accurately predicted with

this approach; however, the results suggest that the prediction

error increases for pigments that are found in lower concen-

trations or with a high number of samples below the detec-

tion limit (i.e., referred to in statistics as “censoring”). This

poor performance may be in part due to the fact that pigments

found in small concentrations are likely to have a limited ef-
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Table 4. TChl a validation statistics for MERIS Polymer TChl a (left panel) and TChl a obtained from the full-fit linear model on satellite_

ρwN (from MERIS Polymer data, EOF full-fit model, right panel) with different collocation criteria (either 1×1 or the mean of 3×3 or 5×5

pixel values) for the MERIS Polymer data compared to the in situ (from HPLC) value.

MERIS Polymer EOF full-fit model

Collocation N R2 RMSE PB MPD R2 RMSE PB MPD

1× 1 pixel 139 0.74 0.51 6 39 0.72 0.54 10 37

3× 3 pixel 155 0.75 0.50 10 39 0.74 0.52 10 36

5× 5 pixel 160 0.73 0.51 11 40 0.74 0.52 10 36

fect on spectral shape, but further modeling work may also

need to focus on better approaches for the treatment of cen-

sored values. Generally, we can also see from the field data

linear models that using a coherent in situ data set, where

all pigments have been measured by the same method and

instrumentation, may be better suited for the modeling ap-

proach due to the homogeneous error across the range of pig-

ment concentrations. An advantage of our linear method to

pigment-specific band algorithms is that we require a much

smaller data set for establishing the prediction (about 50 as

opposed to several hundreds) of collocated pigment and re-

flectance data.

3.6 Application of linear model to study large-scale

pigment distributions

For demonstrating the application of our linear model, we

used the satellite_ρwN specific pigment’s full-fit models for

TChl a, MVChl a, PSC and PPC and ran these specific mod-

els using November 2008 MERIS Polymer ρwN level 2 data

to retrieve those pigments for an example time period on a

larger spatial scale. By subtracting the MVChl a value from

TChl a we also derived concentrations of DVChl a. Fig-

ure 8 shows the monthly averages for those various pigment

groups and pigments. Also, the MERIS Polymer TChl a con-

centration for the same time and region is shown.

The distributions of TChl a from the EOF model predic-

tion or from the Polymer algorithm are very similar, rang-

ing from 0.00003 to 7.52 mg TChl am−3. For this particular

month, the total biomass of phytoplankton shows a strong

phytoplankton bloom (> 2 mg m−3) at the Mauritanian up-

welling spread in two parts, 190–24◦ N and 14–7◦ N, and

high values (> 0.5 mg m−3) at all coastal areas of the African

continent. Enhanced TChl a concentrations > 0.3 mg m−3

are also spreading into the open ocean especially at 5–20◦ N

and 30–40◦W, along the 0◦ latitude from Africa to South

America, and south of this at 3–10◦ S from 3◦ E to about

25◦W. MVChl a follows more or less the TChl a distri-

bution, however, only reaching the magnitude indicated by

the TChl a values at the northern bloom. The deviation be-

tween TChl a and MVChl a is obvious in the distribution

of DVChl a, which indicates that at the northern part of

the Mauritanian upwelling bloom, Prochlorococcus (the only

phytoplankton genus which contains DVChl a) seems to

have contributed to this bloom by only a very minor fraction

(i.e., a few percent), while elsewhere it presents a substantial

background of about 30 % of all phytoplankton.

Our predicted PPC concentrations show values in the same

range as TChl a at the oligotrophic areas and about 50 %

in the enhanced TChl a areas and the southern part of the

bloom. As for DVChl a, in the northern part of the bloom

PPC concentrations are significantly lower and only con-

tribute less than 10 % to the total pigment concentrations.

PSC concentration in the oligotrophic and enhanced TChl a

areas are much lower than PPC or even DVChl a concentra-

tions but reflect the TChl a distribution more or less on the

large scale. Within the northern part of the Mauritanian up-

welling PSC concentrations reach values even as high as for

TChl a, while concentrations at the bloom further south con-

tribute to less than 10 % of the total pigment concentrations.

In Taylor et al. (2011) the analysis of pigment and additional

microscopic data clearly showed very high concentrations of

Fuco, a main pigment of PSC, and a high dominance of di-

atoms within water samples at the northern bloom collected

at the same time period.

From our results, we can conclude that the northern phyto-

plankton bloom at the Mauritanian upwelling seems to have

been freshly growing with very high photosynthetic activity,

while for most of the other areas a lot of the energy build-up

via photosynthesis was used for photoprotection. We have

no information on photodegradation since no significant pre-

diction linear model could be developed for phaeopigments.

These pigments had only been identified in less than 60 %

of all samples collocated to the field and satellite-based data

sets, and the results show that this pigment group was not

well predicted by the linear model. Based on the biogeogra-

phy of Longhurst (2006), the oligotrophic areas on our maps

fall in the North Atlantic Subtropical Gyre Province East at

> 25◦ N (the border between the two is the subtropical con-

vergence) and the North Atlantic Tropical Gyre Province at

25◦ N to about 12◦ N. At the eastern corner towards the coast

of these provinces, in the Canary Coastal Province (CNRY),

concentrations of all predicted pigments and pigment groups

may have been increased due to eddy-driven processes that

increase the supply of nutrients. In Taylor et al. (2011), the

two blooms analyzed by field samples at CNRY have been
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Figure 8. Monthly mean concentrations (in 0.25◦ grid resolution) for November 2008 of (a) TChl a of the MERIS Polymer algorithm

(TChl a MERIS Polymer) and predicted (b) TChl a, (c) MVChl a, (d) DVChl a, (e) PSC and (f) PPC by the LM, based on the full fit of

satellite ρwN data within the 1× 1 pixel collocation box and the EOFs of this month’s MERIS Polymer ρwN data.

identified to cluster differently due to their pigment compo-

sition. The northern “fresh” bloom with low photoinhibition,

high dominance of phytoplankton and strong photosynthetic

efficiency was related to a major upwelling focusing in the

area south of Cape Blanc (western Sahara) off the coast of

Mauritania. DVChl a was absent in this bloom, which is in

line with our results obtained from the linear model. The

southern part of the CNRY bloom was placed within the

African dust veil where mineral-rich dust fertilizes the ocean.

In the northern bloom stations, the spectral shape and abso-

lute values of particulate non-phytoplankton absorption spec-

tra, presented in Taylor et al. (2011) and coinciding with the

pigment data used in our study, clearly indicated that mineral

particle absorption was very high.

Comparisons of our predictions to pigment data not used

for the development and validation of our EOF model show

consistent results: Partensky et al. (1996) measured TChl a

concentrations of about 1.2 mg m−3 in December 1992 (EU-

MELI 5 cruise) at a station within a phytoplankton bloom

at 18◦ 29′ N and 21◦ 05′W, similar to the range of our pre-

dicted values at the southern edge of the northern bloom.

Barlow et al. (2002) measured, within the area of our pre-

dictions, concentrations of TChl a, DVChl a, PSC and PPC

during the AMT-3 cruise in October 1996 at 20◦ N and 20◦W

(0.4, 0.05, 0.175 and above 0.09 mg m−3, respectively) and

30◦ N and 22◦W (0.05, 0.01, 0.022 and above 0.04 mg m−3,

respectively), similar to our predicted concentrations for the

same pigments just east of the northern bloom of the Mauri-

tanian upwelling and at the North Atlantic Subtropical Gyre

Province East, respectively.

4 Conclusions

We present robust predictions of concentrations of various

pigments and pigment groups from linear models based on

fitting empirical orthogonal function on a set of reflectance
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data to collocated pigment concentrations. Spectral shapes

of the reflectance spectra from the eastern Atlantic and

of their derived EOF modes reflect typical case 1 water

characteristics. In our study, it was shown that EOFs de-

rived from both hyperspectral underwater radiometric mea-

surements and multispectral reflectance data from field or

satellite (MERIS Polymer) enable reliable predictions of

the concentration of nine different pigments/pigment groups

(TChl a, PPC, PSC, MVChl a, Chl c1/2, But, Hex, Zea, Caro,

PE). A limitation of all predictions was that only those pig-

ments can be predicted that have been identified in every

collocated sample; adding a small value (0.0001 mg m−3)

to censored samples was not an appropriate solution to this

problem.

The method proves for the first time to be applicable for

predicting concentrations of not only TChl a and PE but

also of other pigments and pigment groups with weaker, but

spectrally unique, features on the underwater light field. Sta-

tistical resampling used for cross-validation indicates that

predictions were robust (R2cv≥ 0.5, MDPDcv≤ 44 % and

MPDcv≤ 60 %) for all pigments (except for PE, Zea and

But, which deviated for one of these measures) and pigment

groups. Hyperspectral linear models proved to be already sta-

ble with less collocated samples for most pigment or pigment

groups used for training (n> 30 to 40) than linear models

based on multispectral reflectance data (n> 50). The linear

models using MERIS Polymer reflectance data as input were

applied to 1 month of satellite data to predict the concen-

trations of TChl a, PSC, PPC, MVChl a and DVChl a for

the whole eastern tropical Atlantic. For the first time a con-

sistent picture of several phytoplankton pigments indicating

group-specific behavior and photophysiology on a larger spa-

tial scale for this area was shown.

Our presented linear models are generic and can be applied

to even a small, consistently collocated reflectance and pig-

ment data set to enable various specific pigment predictions

from continuous optical measurements. The optical data can

be obtained from radiometric measurements based on vari-

ous platforms (buoys, gliders, floats or satellite). On a global

scale, TChl a, PSC and PPC are consistently accurately pre-

dicted, while other pigments may be better predicted on

smaller spatial scales. Highly temporally resolved time series

data, which – depending on the platform – may even provide

good spatial coverage, can be used to study variability and

change of overall phytoplankton and photophysiological re-

sponses to environmental variables. While we established the

linear models for prediction of various pigments in typical

case 1 waters, the method should be tested in the future for

its applicability in case 2 waters as well.

The Supplement related to this article is available online

at doi:10.5194/os-11-139-2015-supplement.
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