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On the importance of ice algae-based
energy in a summerly Arctic Ocean

Methods.
Trophic interactions of abundant under-ice zooplankton were studied using bulk stable
isotope analysis (BSIA) of natural abundance carbon and nitrogen1, fatty acid trophic
marker (FATM) fingerprinting, and compound-specific SIA (CSIA) of FATMs2.
Sample collection was carried out during ARK XXVII-3 expedition of RV Polarstern (August-
September 2012) within the Eastern Central Arctic Ocean north of 80°N. The under-ice
habitat was sampled by the SUIT, the Surface and Under-Ice Trawl3.
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The underside of sea ice in polar regions represents a natural habitat for heterotrophic organisms, e.g. copepods and amphipods.
These organisms constitute the under-ice community, which plays a key role in transferring ice algae-produced carbon into pelagic 

and benthic food webs of polar ecosystems. Animals at higher trophic levels show an indirect dependency on microalgae-
produced biomass. In order to improve our understanding of the potential ecological consequences of a changing sea ice 

environment, we aim to quantify the extent to which ice algae-produced carbon is channelled into the under-ice community, and 
from there to pelagic food webs. 
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Results.
Based on fatty acid patterns, copepods C. glacialis and C. hyperboreus were feeding
on both, ice algae and pelagic phytoplankton. Several amphipod species demonstrated
high amounts of diatom-related fatty acids. Besides, T. libellula and O. glacialis
indicated Calanus-integrated diets.
Based on diatom-specific FA 20:5(n-3), FA material derived from ice algae accounted
for averaged 56 % in zooplanktonic consumers (Table 1).

Differences in δ13C between primary producers allow
quantification of proportional distribution of ice algae-derived

carbon x in consumers based on certain FATMs (Two-end-
member mixing model, [Table 1])2.

Dinoflagellates are the main taxonomic group of P-POM, diatoms of I-POM. Taxonomic
composition of I-POM and P-POM communities can be similar, e.g. diatoms can occur in both

communities.
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Fig. 1. FATM proportions of primary
producers defined on total fatty acid content.
Pelagic phytoplankton is abbreviated as P-
POM, ice algae as I-POM.

FATMs are not getting
biotransformed by consumers and
are therefore originally traceable

along marine food chains.

Fig. 2. FATM proportions of Arctic copepods (a) and amphipods (b) defined on
total fatty acid content.

Fig. 3. Stable isotope compositions of bulk carbon and nitrogen compounds for
Arctic copepods (a) and amphipods (b). Isotopic ratios are expressed as: δX=
[(RSample/RStandard)-1] x1000, where X is δ13C or δ15N and RSample represents
13C/12C or 15N/14N relative to international standards.

Fig. 4. Compound-specific stable isotopic compositions of FATMs for Arctic
copepods (a) and amphipods (b).
Extracted FATMs were separated by gas chromatography and individually
analyzed in regard to their carbon stable isotope patterns.

Conclusions.
Fatty acid signatures reflect the

potential carbon sources, which are
supported by stable isotope values. 

Even in summer, ice algae-
produced carbon plays an 

important role for the diet of Arctic
ecological key species.
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Species x20:5(n-3) x22:6(n3)

Calanus glacialis 37.3±18.6 28.4±17.6

Calanus hyperboreus 39.1±16.7 16.7±15.0

Eusirus holmii 70.5±7.5 41.8±10.8

Themisto libellula 45.8±15.5 14.7±14.9

Onisimus glacialis 74.3±21.9 38.6±11.0

Gammarus wilkitzkii 71.3±12.6 34.3±12.7


