
Remote Sensing of Environment 166 (2015) 243–261

Contents lists available at ScienceDirect

Remote Sensing of Environment

j ourna l homepage: www.e lsev ie r .com/ locate / rse
Global retrieval of marine and terrestrial chlorophyll fluorescence at its
red peak using hyperspectral top of atmosphere radiancemeasurements:
Feasibility study and first results
A. Wolanin a,b,⁎, V.V. Rozanov b, T. Dinter a,b, S. Noël b, M. Vountas b, J.P. Burrows b, A. Bracher a,b

a Alfred-Wegener-Institute Helmholtz-Centre for Polar and Marine Research, Bussestr. 24, 27570 Bremerhaven, Germany
b Institute of Environmental Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
⁎ Corresponding author at: Alfred-Wegener-Institute H
Marine Research, Bussestr. 24, 27570 Bremerhaven, Germ

E-mail address: Aleksandra.Wolanin@awi.de (A. Wola

http://dx.doi.org/10.1016/j.rse.2015.05.018
0034-4257/© 2015 Elsevier Inc. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 21 March 2014
Received in revised form 31 March 2015
Accepted 20 May 2015
Available online 2 July 2015

Keywords:
Sun-induced fluorescence
Retrieval
SCIAMACHY
GOME-2
Fraunhofer-line approach
Hyperspectral remote sensing
Ocean–atmosphere coupled radiative transfer
Chlorophyll fluorescence is directly linked to the physiology of phytoplankton or plants. Here, we present a new
satellite remote sensing approach to retrieve chlorophyll fluorescence at its red peak (~685 nm) by using mea-
surements from the hyperspectral instruments SCanning Imaging Absorption SpectroMeter for Atmospheric
CHartographY (SCIAMACHY) and Global Ozone Monitoring Experiment-2 (GOME-2). This method, which is
based on theDifferential Optical Absorption Spectroscopy (DOAS) technique,was used to exploit narrow spectral
structures resulting from the filling-in of the Fraunhofer Fe I line, which originates from fluorescence. The
reference spectra for chlorophyll fluorescence were calculated by the coupled ocean–atmosphere radiative
transfer model SCIATRAN. We compared our results on marine chlorophyll fluorescence observations with the
MODIS Terra normalized Fluorescence Line Height (nFLH) product for the average of years 2003–2011 and
year 2009. Our method also enables the retrieval of chlorophyll fluorescence above land vegetation scenes. The
results for the fluorescence observed above terrestrial vegetation for July and December 2009 were compared
to MODIS Enhanced Vegetation Index (EVI). The comparisons show good spatial agreement between different
retrievals providing evidence for the good performance of our algorithm. The method presented is generic and
can be applied to other hyperspectral instruments in the future. Having established the retrieval technique,
extensive studies of chlorophyll fluorescence will improve global knowledge on physiology and photosynthetic
efficiency, in both the marine and terrestrial realms, and its dependence on environmental factors.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Marine and terrestrial carbon pools are important reservoirs in the
carbon cycle, and they absorb a significant part of the emitted carbon
dioxide from fossil fuel combustion (IPCC, 2013). It is clear that due to
land-use changes worldwide, areas of pristine vegetation have been
decreasing, e.g., the deforestation of the rainforest. With respect to the
oceanic biosphere, there is an ongoing discussion about the changes in
health, composition and abundance of phytoplankton (Doney et al.,
2012). It has been reported that the biomass of phytoplankton has
declined significantly in the last decades at all scales (Boyce, Lewis, &
Worm, 2010; Gregg, 2003) and this decline is expected to continue
(Hofmann, Worm, Rahmstorf, & Schellnhuber, 2011; Olonscheck,
Hofmann, Worm, & Schellnhuber, 2013). However, the results of Boyce
et al. (2010) have been questioned (Mackas, 2011; McQuatters-Gollop
et al., 2011; Rykaczewski & Dunne, 2011), and studies showing the op-
posite sign have been published claiming that phytoplankton has been
elmholtz-Centre for Polar and
any.
nin).
increasing within the last years on both regional (e.g., McQuatters-
Gollop et al., 2007) and global scales (Gregg, Casey, & McClain, 2005).
Other studies have also shown that the ocean regions should be studied
separately, as there are opposite trends for different regions worldwide
(Siegel, 2010; Wernand, van der Woerd, & Gieskes, 2013).

Phytoplankton is responsible for about half of the estimated global
net primary production of carbon (Field, 1998). Moreover, because of
a rather short turnover rate of phytoplankton organic matter, in the
order of aweek (Falkowski, 1998), and changing phytoplankton growth
conditions in response to changing physical and chemical parameters of
the ocean, phytoplankton abundance and community structure con-
stantly change in time and space. Consequently, in order to assess accu-
rately the amount of phytoplankton and to identify its change, global
observations require a reasonable temporal and spatial resolution in
order to resolve their intrinsic natural variability. Observations from in-
strumentation on polar orbiting sun synchronous satellites have facilitat-
ed the study of changes in the phytoplankton biomass having a temporal
sampling of a day and a spatial resolution on the order of a km. Recently,
in addition to chlorophyll concentration products, ocean color products
of other oceanic parameters have also been retrieved from measure-
ments made by satellite-based instrumentation, e.g., particulate organic
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carbon, particulate inorganic carbon, euphotic depth, and fluorescence
line height (e.g., see http://oceancolor.gsfc.nasa.gov).

Information about chlorophyll fluorescence has been used to assess
the physiological state of phytoplankton, as a result of its relationship
to photosynthetic efficiency (Falkowski & Kolber, 1995). Photosynthesis
is theprocess bywhich light energy is transformed into chemical energy
and fixes atmospheric carbon dioxide into sugars. Oxygenic photosyn-
thesis is responsible for virtually all of the biochemical production of or-
ganic matter (Field, 1998). The first elementary step in photosynthesis,
the absorption of solar radiation in the visible part of the spectrum,
takes place in the thylakoidmembrane,where two pigmented function-
al units, photosystem II (PS II) and photosystem I (PS I), are located.
Photosystems carry out the primary photochemistry of photosynthesis:
the absorption of light and the transfer of energy and electrons. When
chlorophyll-a (chl-a) molecules absorb light, a fraction of the energy
absorbed is re-emitted as fluorescence. Although both photosystems
contain chl-a pigments that contribute among other pigments to light
absorption, the majority (95%) of fluorescence originates from chl-a of
PS II and only a small contribution is emitted from PS I (Krause &
Weis, 1991). However, for the second peak of fluorescence at longer-
wavelengths (~735 nm), PS I can contribute up to 40% to the fluores-
cence signal (Agati, Cerovic, & Moya, 2000).

In vivo, the efficiency of fluorescence is around 1% (Behrenfeld et al.,
2009; Maxwell, 2000 and references therein). The fluorescence signal is
clearly stronger in regionswith high phytoplankton biomass and low in
depleted areas, as the fluorescence of chl-a occurs only when the mole-
cule is present in the water column. The relationship between fluores-
cence and chl-a is curvilinear as a result of pigment packaging. This is
because fluorescence is proportional to the concentration of the excited
electronic state of chl-a, which depends on the number of photons
absorbed by chl-a and the quenching and other reactions of this excited
state. As incident irradiance is highly variable (due to clouds, surface
wave focusing, etc.), phytoplankton use three processes to protect them-
selves from excessive solar electromagnetic radiation: photoadaptation,
photoacclimation and photoregulation (Huot & Babin, 2010). When
incident photosynthetically active radiation (iPAR) increases, the
absorbed light energy proportionally increases, but the absorbed en-
ergy for charge separation and photochemistry is limited. As photo-
chemistry saturates, the fluorescence increases; however, additional
processes are invoked to dissipate the excess energy in order to min-
imize photodamage. These processes are collectively termed non-
photochemical quenching (NPQ) and they dissipate excess absorbed
energy as heat.

Chl-a fluorescence changes in response to phytoplankton physiolo-
gy. Consequently, monitoring these changes could be helpful in the
characterization of photosynthesis, health and the productivity of
oceans at global scales (Babin, Morel, & Gentili, 1996; Lichtenthaler &
Rinderle, 1988). For example, they reflect the effect of nutrient limita-
tions, e.g., macro-nutrients (Abbott & Letelier, 1999; Schallenberg,
Lewis, Kelley, & Cullen, 2008) or iron (Behrenfeld et al., 2009). Chl-a
fluorescence also depends on species composition (MacIntyre,
Lawrenz, & Richardson, 2010) and growth irradiance, i.e., irradiance
that phytoplankton has experienced during the growth phase of the
cells and hence to which it is acclimated (e.g., Morrison & Goodwin,
2010; O'Malley et al., 2014).

The marine chl-a fluorescence has been retrieved from space by the
multispectral instruments MODIS and MERIS. The fluorescence line
height algorithm (FLH) designed for MODIS (Abbott & Letelier, 1999),
later also applied to the MERIS instrument (Gower, Brown, & Borstad,
2004), derives the strength of the fluorescence signal by comparing ra-
diance in the fluorescence channel to background radiance. MODIS and
MERIS are high spatial resolution low spectral resolution instruments,
both having bands in the visible spectral region dedicated to fluores-
cence measurements. For MODIS, the radiances are measured in three
channels in 10 nm windows, two of which are used to account for
other effects (backscatter and Raman scattering) by calculating the
‘baseline radiance’ for fluorescence through interpolation of measure-
ments at 667 nm (band 13) and 748 nm (band 15), the latter one
being far from fluorescence emission due to water vapor absorption
lines near 730 nm. The third band, the fluorescence band, is centered
at 678 nm (band 14). This band does not cover the maximum of the
fluorescence signal at 685 nm in order to avoid oxygen absorption fea-
tures (Abbott & Letelier, 1999). Because of these limitations on band
placement, themeasuredMODIS FLHwill respond to only 57% of the ac-
tual fluorescence signal (Gower et al., 2004). In the case of theMERIS in-
strument, the FLH algorithm uses bands 7, 8 and 9, located at 665 nm,
681 nm and 709 nm, respectively, and hence measured MERIS FLH
will respond to 78% of the actual fluorescence signal (Gower et al.,
2004). FLH is calculated with water leaving radiances, while nFLH (nor-
malized FLH) uses normalized water leaving radiances. The schematic
of the algorithm and corresponding positions of relevant MODIS and
MERIS bands are shown in Fig. 1. Using the following algorithm, nFLH
for MODIS is calculated:

nFLH ¼ LWN;14−LWN;15 þ LWN;13−LWN;15
� � � λ15−λ14ð Þ= λ15−λ13ð Þ½ �;

ð1Þ

where LWN are the normalized water leaving radiances of the MODIS
band number given by the subscript; nFLH is currently a MODIS Level
3 standard product (available online at http://oceancolor.gsfc.nasa.
gov/cgi/l3).

MODIS nFLH delivered thefirst global picture ofmarinefluorescence
and initiated global studies of phytoplankton physiology and productiv-
ity (Behrenfeld et al., 2009; Huot, Franz, & Fradette, 2013; McKibben,
Strutton, Foley, Peterson, & White, 2012; Morrison & Goodwin, 2010;
Westberry, Behrenfeld, Milligan, & Doney, 2013). However, detecting
a weak fluorescence signal accurately is challenging. Atmospheric cor-
rection applied to multispectral data makes several assumptions about
atmospheric effects for differentwavelength regions and the nFLH algo-
rithm assumes the shape of the emission function. In case of the MODIS
nFLH retrieval, further problems may arise from backscattered light by
particulate matter that scatter light in the red wavelengths and from
which some nFLH signals originate (Abbott & Letelier, 1999). Negative
values of nFLHwere also observed during bloomsof some cyanobacteria
species (Wynne et al., 2008), which was later used for a cyanobacterial
bloom forecast system in Lake Erie (Wynne, Stumpf, Tomlinson, et al.,
2013).

We present in this manuscript a new method for the detection of
phytoplankton fluorescence utilizing hyperspectral measurements.
Hyperspectral satellite data are not traditionally used in optical remote
sensing of the oceans, but have already proven to be an interesting and
useful tool in studies of the photic zone by identifying vibrational
Raman scattering and phytoplankton composition (Bracher et al., 2009;
Sadeghi et al., 2012; Vountas, Dinter, Bracher, Burrows, & Sierk, 2007).
The hyperspectral instrument TANSO-FTS onboard the Japanese GOSAT
satellite has been used to detect land fluorescence (Frankenberg et al.,
2011;Guanter et al., 2012; Joiner et al., 2011)with promising results. Un-
fortunately, the method developed for fluorescence from terrestrial
plants, cannot be used for marine chl-a fluorescence, because TANSO-
FTS does not observe wavelengths of visible phytoplankton fluorescence
emission. More recently, the land fluorescence signal was also retrieved
from the GOME-2 instrument (Joiner et al., 2013), which also covers the
spectral range of marine fluorescence.

We present in this manuscript a new approach to retrieve the chl-a
fluorescence signal, emanating from the marine and the terrestrial bio-
sphere, frommeasurements of nadir sounding hyperspectral passive re-
mote sensing spectrometers. The retrieval has been developed using the
level 1 SCIAMACHY (SCanning Imaging Absorption SpectroMeter for
Atmospheric CHartographY) data, but has also been applied to data
fromGOME-2 (Global OzoneMonitoring Experiment-2). Themethod de-
veloped is generic and can also be applied to other hyperspectral instru-
ments. In this feasibility study we demonstrate that the hyperspectral
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Fig. 1. A schematic of the FLH algorithm, showing positions of MODIS and MERIS bands. The actual fluorescence signal, as well as FLH theoretically retrieved by MODIS and MERIS are
shown with arrows (red, purple and green, respectively). Water leaving radiances, including (red solid line) and excluding (red dashed line) chlorophyll fluorescence were calculated
with the radiative transfer model SCIATRAN for a chl-a concentration of 2 mg/m3.
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observations of the upwelling radiation at the top of the atmosphere have
the potential to observe the chl-a fluorescence. The retrieval presented
here will be beneficial for current and future studies on marine phyto-
plankton and terrestrial vegetation.

The manuscript is organized as follows: we describe briefly the
DOASmethod in Section 2.1. The reference spectra of chl-a fluorescence
and other components needed for the DOAS retrieval are introduced in
Section 2.2. The chl-afluorescence retrieval technique is described in de-
tail in Section 2.3. The SCIAMACHY and GOME-2 instruments, to which
our retrieval was applied, are described in Section 2.4. SCIAMACHY
and GOME-2 results along with their comparison to other retrievals
are presented and discussed in Section 3. We summarize our study in
Section 4.

2. Methods

2.1. Retrieval technique: DOAS

In order to retrieve the fluorescence signal from high spectrally re-
solved satellite data, a modified approach, based on the Differential Op-
tical Absorption Spectroscopy (DOAS) technique (Perner & Platt, 1979)
was used. DOAS was originally developed for active long path remote
sensing (Perner & Platt, 1979), but thenwas extended for passive remote
sensing on-ground observations (e.g., Eisinger, Richter, Ladstätter-
Weiβnmayer, & Burrows, 1997 and references therein). The DOAS re-
trieval approach utilizes the separation of high frequency from low fre-
quency spectral features in wavelength space. Variants of this approach
have been applied for several years for remote sensing of atmospheric
trace gasses (e.g., Burrows et al., 1999; Richter, Burrows, Nüβ, Granier,
& Niemeier, 2005), and has been lately extended to the aquatic domain
as PhytoDOAS (Bracher et al., 2009; Sadeghi et al., 2012; Vountas et al.,
2007). The theoretical consideration of the relationships between
different DOAS algorithms is given by Rozanov and Rozanov (2010).
The family of DOAS algorithms exploits the fingerprint spectral features
in backscattered solar radiance spectra that are caused by i) molecular
absorption by atmospheric constituents (e.g., Richter et al., 2005),
ii) spectral re-distribution features that are induced by inelastic
processes in the atmosphere and ocean and fill in the solar Fraunhofer
lines (e.g., Vasilkov, 2002; Vountas, Rozanov, & Burrows, 1998;
Vountas et al., 2007), and iii) absorption features from terrestrial plants
and marine phytoplankton (e.g., Bracher et al., 2009; Wagner, Beirle,
Deutschmann, Grzegorski, & Platt, 2007).

Inelastic processes (Raman scattering, Brillouin scattering and fluo-
rescence) lead to a redistribution of solar backscattered electromagnetic
radiation and a shift of the frequency toward higher or lower energy. In-
elastic scattering bymolecules in the air (mostly N2 and O2) is called the
rotational Raman scattering (RRS). In lakes, rivers and oceans there are
two dominant inelastic processes: vibrational Raman scattering by
water molecules (VRS), and fluorescence of phytoplankton pigments,
mainly chl-a, and colored dissolved organic matter (CDOM). The effect
of those processes on the backscattered radiation at the top of atmo-
sphere is possibly identified in the filling-in of Fraunhofer lines (spec-
trally narrow and often saturated absorption features in the solar
spectrum), known as the Ring effect after its discoverer James Ring
(Grainger & Ring, 1962). The Brillouin scattering, which also may fill
in Fraunhofer lines, is typically smaller than the spectral resolution of
SCIAMACHY and GOME-2 and is not considered further here. The im-
pact of the Brillouin scattering on the spectral structure of the radiation
reflected from the ocean surface can be found in Peters et al. (2014).

The DOAS method determines the amount of molecular absorbers
along the effective optical light path by fitting and scaling spectrawithin
a given wavelength window. The broad-band effects (e.g., Rayleigh and
Mie scattering) are removed by a low-degree polynomial that is also
fitted. The fitting in the DOAS method is formalized as a least-squares
minimization and is described by the following equation:

τ λð Þ−
XN
i¼1

σ i λð ÞSi−σR λð ÞSR−σV λð ÞSV−σ f λð ÞSf−
XK
k¼0

akλ
k

�����
�����
2

→min:

ð2Þ

Here, τ λð Þ ¼ − ln I λð Þ
I0 λð Þ is the so-called slant optical density, I(λ) and

I0(λ) are the measured backscattered radiance and extraterrestrial irra-
diance, respectively, σi(λ) is the absorption cross-section of the ith at-
mospheric absorber, N is the number of absorber, σR(λ), σV(λ), and
σf(λ) are reference spectra of RRS, VRS and chl-a fluorescence, respec-
tively, ∑k = 0

K akλk is the low order polynomial, typically of the order
K ≤ 4. The ratio of I(λ) and I0(λ) is taken in order tomake it less sensitive
to absolute radiometric calibration.

The minimization is carried out with Si, SR, SV, Sf and polynomial co-
efficients as the fitted parameters. The parameter Si is the integrated
number density of the ith atmospheric absorber along the slant optical
path,which is generally related to the concentration of a given absorber,
and SR, SV, and Sf parameters are called scaling or fit factors and carry
information about the strength of the corresponding inelastic process.
The method can be applied to SCIAMACHY and GOME-2 data or similar
data sets, which make measurements of both extraterrestrial radiation,
I0(λ), as well as backscattered radiation, I(λ), with sufficient spectral
resolution.

2.2. Reference spectra and spectral windows

In order to perform the chl-a fluorescence retrieval with the DOAS
method, an adequate reference spectrum has to be determined for use
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as a priori information. Because the effect of inelastic processes on the
top of atmosphere radiation can be modeled, the reference spectra
were calculated following Vountas, Richter, Wittrock, and Burrows
(2003) as:

σ j λð Þ ¼ ln
Iþ λð Þ
I− λð Þ ; j ¼ R;V ; f ; ð3Þ

where I+(λ) and I−(λ) are the modeled radiances at the top of atmo-
sphere calculated accounting for the jth inelastic process and neglecting
all inelastic processes, respectively.

The radiances I+(λ) and I−(λ) have been calculated using the
coupled ocean–atmosphere radiative transfer model SCIATRAN (Blum,
Rozanov, Burrows, & Bracher, 2012; Rozanov, Rozanov, Kokhanovsky,
& Burrows, 2014). The details of the solution and the verification of
the radiative transfer equation including the rotation Raman scattering
in the atmosphere can be found in Rozanov & Vountas (2014) and
Vountas et al. (1998). The implementation of inelastic processes (such
as VRS and chl-a fluorescence) was performed in SCIATRAN following
Haltrin and Kattawar (1993). The verification of VRS was achieved by
comparing the VRS reference spectra with model data (Kattawar & Xu,
1992), as well as with VRS spectra, obtained from hyperspectral ship-
bornemeasurements of the solar radiation reflected from the ocean sur-
face (Peters et al., 2014). The accuracy of the implementation of chloro-
phyll fluorescence has not been verified by a dedicated study, but the
method is similar to that used for VRS. The fluorescence emission func-
tion was modeled by a Gaussian:

f em λð Þ ¼ 1ffiffiffiffiffiffi
2π

p
σ1

exp −
λ−λ0

1

� �2

2σ2
1

2
64

3
75; ð4Þ

where λ10 = 685 nm is the wavelength of maximum emission and σ1 =
10.6 nm is the standard deviation of the Gaussian, which corresponds to
a value of 25 nm for the full width at half maximum of the emission
band (Mobley, 1994). The chl-a concentration and quantum efficiency
of fluorescence were set to 1 mg/m3 and to 0.02, respectively, homoge-
neously in the 100m deepwater column. The radiative transfer calcula-
tions were performed in the spectral range of 370–720 nm, where the
chlorophyll-a fluorescence excitation wavelength range is 370–
690 nm and emission wavelength range is 650–720 nm. The absorption
of chlorophyll was taken into account in the whole spectral range of
370–720 nm, including the red peak absorption.

The DOAS retrieval technique, generally and as implemented in this
study, is sensitive to errors resulting from correlations between the ref-
erence spectra in the fit, i.e., the fit algorithm will not be able to distin-
guish between similar spectral features originating from different
sources. Unfortunately, all inelastic processes have similar spectral be-
havior, as they all lead to the filling-in of Fraunhofer lines. Hence,
some of the retrieved signal does not originate from fluorescence, but
from Raman scattering. As in the wavelength region where chlorophyll
fluoresces Raman scattering is not negligible, an optimal selection of the
spectral region is essential. Ideally awindowwhere fluorescence is at its
strongest and Raman scattering is relatively weak, is required. The
choice of the fitting wavelength region is also limited by strong atmo-
spheric absorption features of O2 and water vapor. These regions are
avoided because they attenuate the solar radiation and for that matter
the fluorescence. The selection of an optimal spectral fitting window is
critical for optimal retrieval because marine fluorescence itself is a
very weak signal (Abbott & Letelier, 1999; Neville & Gower, 1977).

The deepest Fraunhofer lines in the chl-a fluorescence region, which
lead to the strongest features of filling-in, are Hα and Fe I. Although the
Fraunhofer Hα line at 656 nm is the strongest, it was not used in this
work, because it is in a region of weak fluorescence andwhere rotation-
al and vibrational Raman scattering is relatively strong. Thiswavelength
region is also substantially affected by water vapor absorption. The
second deepest Fraunhofer line is the Zeeman triplet line Fe I at
684.3 nm, which is located close to the maximum of the fluorescence
emission peak andwas thus chosen for this study. The DOAS fit was car-
ried out in the wavelength window 681.8–685.5 nm, which is close to,
but outside of the oxygen-B band. This spectral region exhibits features
from other inelastic processes and weak water vapor absorption fea-
tures, but to amuch lesser extent than the region around the Fraunhofer
Hα line.

The reference spectrum of chl-a fluorescence calculated according to
Eq. (3) alone with the selected fit window is shown in the left panel of
Fig. 2. In order to demonstrate the differential structure of the obtained
reference spectrum within the selected fit window the reference spec-
trum before and after polynomial subtraction is shown in the right
panels of Fig. 2.

As pointed above, we account in the selected fit window not only for
the contribution of inelastic processes but also for the absorption by
water vapor. Because water vapor cross-sections depend on tempera-
ture and pressure, we decided not to choose one absorption cross-
section for a given temperature and pressure, but to calculate the refer-
ence spectrum for water vapor analogously to the reference spectra for
inelastic processes. In particular, the reference spectrum forwater vapor
was calculated according to Eq. (3), where I+(λ) and I−(λ) aremodeled
radiances at the top of atmosphere calculated including and excluding
the absorption by water vapor, respectively.

All reference spectra were determined using average conditions,
namely the pressure, temperature, and water vapor profiles were set
as default in themodel for April and latitude of 45°, according to a clima-
tological data base obtained using a 2D chemical transportmodel devel-
oped at the University of Bremen (Sinnhuber, Sheode, Sinnhuber,
Chipperfield, & Feng, 2009).

2.3. Retrieval technique of chlorophyll fluorescence

Using the information and setting described in the previous section,
the DOAS algorithm used for the retrieval of chl-a fluorescence in the
spectral window 681.8–685.5 nm, which will be referred to hereafter
as the WF spectral window, is formulated as follows:

τ λð Þ−σw λð ÞSw−σ f λð ÞSe−
XK
k¼0

akλ
k

�����
�����
2

→min; ð5Þ

whereσw(λ) and Sw are thewater vapor reference spectrumand scaling
parameter, respectively, and Se is the effective scaling parameter of the
fluorescence reference spectrum which accounts for the filling-in of
the Fe I Fraunhofer line caused by all inelastic processes.

Despite the fact that water vapor is fitted in the fluorescence DOAS
fit, numerous numerical experiments have shown that the retrieved
fluorescence fit factors are still to some extent sensitive to changing
water vapor concentrations. As our fluorescence retrieval is additionally
sensitive to the Raman scattering, we decided to apply corrections for
these processes. In order to estimate the influence of water vapor ab-
sorption and the contribution of Raman scattering, we performed two
additional DOAS retrievals in spectral windows 688.0–700.0 nm and
615.9–620.9 nm, respectively. Hereafter these spectral windows will
be referred to as the WW and WR spectral windows. We note that the
WW spectral window has been used by Noël, Buchwitz, Bovensmann,
and Burrows (2005) and Noël, Mieruch, Bovensmann, and Burrows
(2008) to retrieve water vapor from SCIAMACHY. The locations of all
the spectral windows are shown along with the example of a
SCIAMACHY measurement in Fig. 3.

Performing the DOAS retrieval of the simulated data in the fluores-
cence, water vapor, and Raman scattering spectral windows for the dif-
ferent atmospheric scenarios and solar zenith angles, we have derived
the correction scheme for the fluorescence fit factor. The specific correc-
tions are explained in detail below.



Fig. 2. Left panel: simulated reference spectrum of chl-a fluorescence for a concentration of 1mg/m3. Locations of the oxygen B band and Fraunhofer lines Hα and Fe I are also shown. The
green area covers the wavelength region used in the retrieval (fit window) and is shown expanded in the right panel. Right upper panel: polynomial (blue) subtracted from the absolute
reference fluorescence spectrum (red). Right lower panel: the fluorescence differential fluorescence spectrum (magenta).
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Reference spectra for all components involved in the DOAS fitting
process were pre-calculated with high spectral resolution (0.01 nm).
To account for the different spectral resolution of the instruments, the
simulated spectra needed to be convolved with the appropriate slit
function. We used a Gaussian type slit function, of which the full
width at half maximum (FWHM) parameter was optimized with re-
spect to the chi-square errors for each retrieval for a sample data set
(odd days of January 2009). The process was done for each instrument
separately (SCIAMACHY, GOME-2). Additionally, to account properly
for the instrument resolution in the modeling, the simulated data of
top of atmosphere radiances that were used for calculating corrections,
were also convolved with a Gaussian type slit function. The FWHM
functions used for convolving simulated radiances were 0.4 nm and
0.488 nm for SCIAMACHY and GOME-2, respectively, for the main fluo-
rescence and water vapor correction retrievals; those values have al-
ready been used in other DOAS retrievals at the WW spectral window
(Noël et al., 2005, 2008). For the Raman scattering simulations (impor-
tant for further correction of ourfluorescence results as detailed below),
we convolved the radiances with a Gaussian of the FWHMof 0.3 nm for
Fig. 3. The locations of all the spectral windows used in the DOAS chl-a fluorescence retrieval.
irradiance (red line) and scaled backscatter radiance (green) correspond to the sample DOAS s
SCIAMACHY and 0.4 nm for GOME-2. Those values were based on the
difference between the optimized FWHM for reference spectra for fluo-
rescence and the Raman scattering.
2.3.1. Water vapor correction
To obtain thewater vapor correction,we used the uncoupled version

of the radiative transfermodel SCIATRAN. In this casewe set thefluores-
cence emission in the WF window to a number of specific constant
values at the surface and hence it was not further dependent on other
environmental parameters such as solar zenith angle (SZA), chl-a ab-
sorption, light penetration depth, etc. The simulations were performed
for the aerosol free atmosphere and the following scenarios:

• the water vapor vertical columnwas set to 0.1, 1.0, 2.0, 3.0, 4.0, and
5.0 [g cm−2];

• fluorescence emission at the surface was set to 0.1, 0.5, 1.0, and
2.0 [mW m−2 sr−1 nm−1];

• SZA varied from 20° to 70° with 10° step increments;
SCIAMACHY measurements (9th April 2009; lat = 47° S, lon = 40° E) of extraterrestrial
hown further in Fig. 8.
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• the surface albedo was set to a constant value of 0.1 (following Noël
et al., 2004).

The water vapor fit factors were obtained solving two following
minimization problems:

τ λð Þ−Swfσw λð Þ−σ f λð ÞSe−
XK
k¼0

akλ
k

�����
�����
2

→min; WF ∈ 681:8;685:5½ �;

ð6Þ

τ λð Þ−Swwσww λð Þ−SO2 σO2 λð Þ−
XK
k¼0

akλ
k

�����
�����
2

→min; WW ∈ 688:0;700:0½ �;

ð7Þ

where Swf and Sww are thewater vapor fit factors inWF andWW spectral
windows, respectively, σww(λ) and σO2 λð Þ are reference spectra of the
water vapor and O2-B absorption band in the WW window calculated
in the same way as described above.

The results obtained show that the retrieved Swf values are much
noisier than Sww because the water vapor absorption is smaller in the
WF window. Moreover, the retrieved fluorescence fit factors are still
sensitive to the variation of the water vapor concentrations. In order
to mitigate the impact of water vapor on the fluorescence fit factors
we used the following correction algorithm:

Ŝe ¼ Se−Δww; ð8Þ

where Ŝe is a corrected fluorescence fit factor. The functionΔwwwas cal-
culated as a difference between the retrieved fluorescence fit factors Sfw
and Sf0 obtained for the case of simulation with and without water
vapor in the atmosphere, respectively. The function was described
best in a least-squares sense by a second order polynomial:

Δww ¼ Sfw−Sf0 ¼ 0:0160S2ww þ 0:0029Sww þ 0:0024: ð9Þ

It can be seen that the introduced correction enables the obtained
fluorescence fit factor to be extrapolated to the case of a water vapor
free atmosphere using the retrievedwater vapor fit factor Sww. It follows
from the left panel of Fig. 6 that the relationship between Δww and Sww

does not change significantly with respect to SZA (different angleswere
Fig. 4. Simulated reference spectra of RRS and VRS and the locations of all
not highlighted) and chl-a fluorescence emission, even though water
vapor and fluorescence fit factors themselves are dependent on these
parameters. It should be noted that due to the weak dependence of
the water vapor correction factor on the surface albedo we have used
only a single albedo value for performing these radiative transfer simu-
lations. This allows us to employ the same correction factor for the fluo-
rescence retrieval over the ocean and land. We assume that this
approximation is suitable in the framework of this feasibility study
and can easily be improved in the future.

2.3.2. Raman scattering correction
In order to account for Raman scattering, we separate its contribu-

tion to filling-in of Fraunhofer lines from filling-in originating from fluo-
rescence. The reference spectra of all inelastic scattering processes show
similar spectral structures mirroring the spectral structures of the solar
irradiance spectrum, even though within the broad spectral range they
exhibit significant differences (Fig. 4). However, within a narrow spec-
tral range, as used in this study, after polynomial subtraction they differ
only by a scaling factor (Fig. 5). From the mathematical point of view
thismeans that in thefluorescencefitwindow theRaman scattering ref-
erence spectrum can be represented by a scaled fluorescence reference
spectrum, i.e.,

σR λð Þ≈ Cσ f λð Þ: ð10Þ

It follows that the effective scaling parameter Se introduced in Eq. (5)
can be represented as a linear combination

Se ¼ Sf þ CSR: ð11Þ

Thus, to correct the impact of Raman scattering on the filling-in of
the selected Fraunhofer line we need to estimate CSR and subtract it
from the effective parameter Se.

For this purpose, Raman scattering was retrieved in theWR window
using the DOAS algorithm. This wavelength region is already outside,
but it is still close to the fluorescence emission band. This assures that
the relationship between the Raman scattering fit factors obtained in
theWR andWF spectral windows does not change significantly with re-
spect to atmospheric/aquatic conditions.

The model radiances at the top of the atmosphere were calculated
including the rotational Raman scattering, but neglecting the water
vapor absorption and fluorescence emissions. The DOAS fit can be
the spectral windows used in the DOAS chl-a fluorescence retrieval.



Fig. 5.Differential spectra for chl-a fluorescence, RRS and VRS in the spectral windowWF. Spectra of RRS and VRSwere scaled by factors 5 and 10, respectively, for the clarity of the picture.
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formulated under these assumptions in the form of two following min-
imization problems:

τ λð Þ−xσ x λð Þ−
XK
k¼0

akλ
k

�����
�����
2

→min; WR ∈ 615:9;620:9½ �; ð12Þ

τ λð Þ−yσR λð Þ−
XK
k¼0

akλ
k

�����
�����
2

→min; WF ∈ 681:8;685:5½ �; ð13Þ

where σx(λ), x and σR(λ), y are the Raman scattering reference spectra
and fit factors from theWR and WF spectral windows, respectively.

The simulations of RRS were performed for the following atmo-
spheric scenarios:

• aerosol optical thickness at 650 nm set to 0, 0.05, and 0.12;
• SZA varied from 20° to 70° with 5° step increments;
• the surface albedo varied from 0.01 to 0.5 with 0.01 step increments.

Preliminary simulations showed that VRS leads to minor filling-in as
compared to RRS, which can also be seen in the comparison of the am-
plitudes of their differential reference spectra (Fig. 5).

As a result, we modeled the impact of VRS for a limited set of condi-
tions. VRS was modeled using the coupled version of SCIATRAN for the
aerosol free atmosphere, the wind speed set to 5 m/s, and the following
scenarios:

• chl-a concentration was set homogeneously to 0, 1 and 10 mg/m3;
• SZA varied from 20° to 70° with 10° step increments.
Fig. 6. Corrections applied to original fluorescence fit factors based on modeled data
As expected, VRS leads to negligiblefilling-in, as compared to RRS. As
a result we decided to calculate the correction based on RRS simulations
only. Having solved the minimization problems given by Eqs. (12) and
(13) for different SZAs, we have found that the relationship between
RRS fit factors in both spectral windows can be represented in the
form of the following regression:

y ¼ a ϑ0ð Þx2 þ b ϑ0ð Þxþ c ϑ0ð Þ; ð14Þ

where coefficients a, b and c depend slightly on SZA (a ∈ [0.0116,0.0182],
b ∈ [0.0701, 0.0849], and c ∈ [0.0138, 0.0288]).

A subset of these resulting relationships for three SZAs is shown
in the right panel of Fig. 6. The fit factor values determined from
the Raman scattering fit in the WR window are subtracted from the
retrieved fluorescence fit factors, according to the following equa-
tion:

b̂Se ¼ Ŝe−C yð Þ; ð15Þ

where Ŝe is the fluorescence fit factor calculated according to Eq. (8),
C is the factor obtained by the scaling of the reference fluorescence
spectrum according to Eq. (10); y is calculated according to
Eq. (14) for a given SZA of the measurement, and for SZAs not used
in the simulations, we interpolate the y value between the two
nearest SZAs.

Taking the above corrections into account to remove the interfer-
ence of water vapor and Raman scattering in filling of the Fraunhofer
. Left panel: water vapor correction. Right panel: Raman scattering correction.
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Fe I line in the 681.8 nm to 685.5 nm spectral window, the retrieved
fluorescence emission fit factor Sf is calculated as follows:

Sf ¼ Se− 0:0160S2ww þ 0:0029Sww þ 0:0024
� �

−C a ϑ0ð ÞS2R þ b ϑ0ð ÞSR þ c ϑ0ð Þ
h i

;

ð16Þ

where, the parameters Se, Sww, and SR are obtained performing multi-
windowDOAS fit in theWF,WW, andWR spectralwindows, respectively.

2.3.3. Relationship between fluorescence fit factor and absolute emission
spectrum

The fluorescence DOAS fit factor Sf obtained as a solution of the cor-
responding minimization problem is readily recalculated in the form of
the absolute fluorescence emission spectrum. To demonstrate this, let
us consider thefluorescence reference spectrumgiven by Eq. (3) and re-
write it in the following form:

σ f λð Þ ¼ ln
Iþ λð Þ
I− λð Þ ¼ ln

I− λð Þ þ ΔI λð Þ
I− λð Þ ≈

ΔI λð Þ
I− λð Þ ; ð17Þ

where we have taken into account that the variation of radiance at the
top of the atmosphere, ΔI(λ), caused by the fluorescence emission is
much smaller than the elastic radiance, i.e.,ΔI(λ)≪ I−(λ). Assuming fur-
ther that the a priori absolute fluorescence emission spectrum at the
surface is ea(λ), we can write

ΔI λð Þ ¼ Ca ea λð Þ; ð18Þ

where the factor Ca depends on the environmental conditions, i.e., I−(λ).
Comparing Eqs. (17) and (18), we can state that for the elastic radi-

ance I−(λ):

e λð Þ ¼ Sf ea λð Þ; ð19Þ

i.e., the fluorescence DOAS fit factor Sf is also the scaling factor of the a
priori absolute fluorescence emission spectrum; e(λ) is then the
resulting fluorescence emission spectrum at the surface.

The elastic scattering varies over an orbit and is not constant for
the satellite measurements. As a result, the conversion from retrieved
Sf into fluorescence emission at the surface is a function of I−(λ). As
Fig. 7. Conversion scheme between retrieved fluorescence fit factors Sf and the fluores
explained in Section 2.1, and seen in Eq. (2), the polynomial carries
the information about the background signal and broad-band effects.
To address this issue, we developed a conversion scheme from Sf to ab-
solutefluorescence emission,which is dependent on themeasured radi-
ance, i.e., on the mean value of the polynomial fitted in the WF spectral
window. In order to simulate a variety of atmospheric and surface con-
ditions and hence different background radiances and different polyno-
mials obtained in the DOAS fitting, the following simulations were
performed for a water-vapor free and excluding RRS atmosphere:

• three atmosphere scenarios: no aerosols and Rayleigh optical thick-
ness at 600 nm amounting to 0.07 or 0.1; aerosol optical thickness at
650 nm amounting to 0.3 with Rayleigh optical thickness at 600 nm
amounting to 0.07;

• fluorescence emission at the surface varying from 0.01 to
5 mWm−2 sr−1 nm−1 with 0.01 mW m−2 sr−1 nm−1 step;

• SZA varying from 17° to 70° with 1° step increments;
• the surface albedo varying from 0.01 to 0.5 with 0.01 step increments.

We have simulated top of atmosphere radiances for all the combina-
tions of these parameters (4,050,000 combinations). The fluorescence
retrieval was performed on simulated data for which the mean value
of the polynomial fitted within the spectral window was calculated.

We have obtained that the relationship between the absolute fluo-
rescence emission and the fluorescence fit factor Sf can be represented
in the following form:

e ¼ aS2f þ bSf þ c; ð20Þ

where the polynomial coefficients depend on the mean radiance value,
i.e., on the mean value of the polynomial fitted within the spectral win-
dowWF. Coefficients a, b, and c in Eq. (20) were calculated for the mean
polynomial values between 2.2 and 5.4 with 0.01 step increments. A
subset of these functions is shown in Fig 7. As we compare our results
of marine chlorophyll fluorescence with MODIS data (see Section 3),
wewill call the resultant absolute fluorescence emission as fluorescence
line height for SCIAMACHY (FLH) for the Fe I Fraunhofer line. The latter
is given by:

FLH ¼ Sf ea W Fð Þ: ð21Þ
cence emission at the surface, for a subset of calculated mean polynomial values.
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2.4. Satellite data

The retrievalwas developed for and applied to SCIAMACHYdata. In a
second step itwas also applied to data fromGOME-2 in order to demon-
strate its applicability to other sensors.

SCIAMACHY is a grating spectrometer measuring transmitted,
reflected and scattered sunlight in three different viewing geometries:
nadir, limb, and both solar and lunar occultations (Bovensmann et al.,
1999; Burrows, Hölzle, Goede, Visser, & Fricke, 1995). In addition, it
measures solar irradiance. SCIAMACHYmakesmeasurements of the up-
welling radiation at the top of the atmosphere in nadir and in limbview-
ing geometry from 214 to 2380 nm in eight spectral channels,
continuously from 214 to 1750 nm at relatively high resolution
(0.2 nm to 1.5 nm). The channels with high spectral resolution have a
variable ground scene footprint, which is typically 30 km × 60 km.
The instrument was launched in February 2002 on board the
ENVISAT satellite into a sun synchronous orbit in descending node
having a 10:00 am equator crossing time. ENVISAT was in operation
until April 2012 when ESA unexpectedly lost contact. Each nadir
measurement is followed by a limb measurement, which leads to in-
termittent nadir scan along-track. The swath width for both mea-
surement cycles is 960 km. SCIAMACHY's main objective was to
measure trace gasses in the atmosphere; however, part of the detect-
ed radiation is influenced by absorption and scattering from the sur-
face layer of the ocean. This characteristic was already used to
estimate vibrational Raman scattering by water and retrieve differ-
ent phytoplankton groups (see above). In this study spectra from
SCIAMACHY channel 4 are used.

GOME-2 are a series of three identical instruments operating from
polar orbiting meteorological satellites MetOps (Callies, Corpaccioli,
Eisinger, Hahne, & Lefebvre, 2000; Munro et al., 2006). The data used
here are from the first GOME-2, which was launched in October 2006
onboard MetOp-A, which, like ENVISAT, flies in a sun-synchronous
orbit having an equator crossing time of 9:30 am. Itmeasures the Earth's
backscattered radiance and the solar irradiance atwavelengths between
232 and 793 nm. In comparison to SCIAMACHY, GOME-2 has a larger
footprint (40 km × 80 km) and a large nominal scan swath width
(1920 km), though approximately once a month a narrow swath
mode (320km) is used. GOME-2has near daily global coveragewhereas
SCIAMACHY, with its alternate limb and nadir viewing coupled with
a swath width of 960 km, achieves global coverage in only six days at
the equator. Moreover, as the second GOME-2 onboardMetOp-B was
launched in September 2012, from July 2013 onwards the MetOp-B/
GOME-2 instrument replaced the MetOp-A/GOME-2 in default
swath mode, and MetOp-A/GOME-2 is now in a reduced swath
mode, which means that swath is reduced to 960 km and pixel size
is 40 × 40 km. The third satellite, MetOp-C, is scheduled for launch
at the end of 2017.

Satellite observations included in the presented results were limited
to SZA up to 70°. Cloudy ground scenes were removed by using a
threshold reflectance, which was set empirically beforehand. Because
detecting fluorescence is sensitive to clouds, the threshold was set to a
very low value, which also removes ground scenes having large aerosol
abundance, sun glint or glimmer, and very bright surfaces (e.g., Sahara
and snow cover). The threshold was chosen to be relatively low for
oceans (0.08 for SCIAMACHY and 0.075 for GOME-2) in order to remove
the glint contaminated scenes.

For land, the value of the threshold selected was higher than that for
ocean scenes (0.16 for SCIAMACHY and 0.15 for GOME-2). This is be-
cause the land has a higher surface reflectance than the ocean for the
wavelength ranges used in this study. We also set a threshold for chi-
square values below 10−5, and filtered outmeasurements that were as-
sumed outliers (based on the standard deviations (std) of retrieved
fluorescence emission from the mean value for the two-year results
for SCIAMACHY or yearly results for GOME-2: data included were ≤5
std).
3. Results and discussion

The DOAS method, described in detail in Section 2, was applied to
SCIAMACHY data for the years 2003–2011. Although our retrieval was
designed for SCIAMACHY and for themarine realm, it was subsequently
also applied to GOME-2 data for the year 2009, and to land areas for July
and December 2009 for both SCIAMACHY and GOME-2.
3.1. Observations of marine fluorescence with SCIAMACHY

An example of the spectral fits of the SCIAMACHY measurement
over the ocean corresponding to one of the smallest chi-square values
is shown in Fig. 8 (the SCIAMACHYmeasurements of extraterrestrial ir-
radiance and backscatter radiance for the same scene are shown in
Fig. 3). It follows that the measured differential optical depth (DOD)
contains spectral structures of fluorescence (upper right panel) and
water vapor (upper left panel) and those are successfully discriminated.
The top panels of Fig. 8 clearly show that the residuals of the fit are very
low (∼0.02 %). This indicates that there are no strong unidentified fea-
tures in the selected spectral window and this provides an additional
evidence for the validity of our retrieval.

The global yearly composite average of the marine phytoplankton
fluorescence retrieved from SCIAMACHY for years 2003–2011 and sep-
arately for year 2009 are presented in Fig. 9a. The data points were
gridded in 0.5° by 0.5° boxes. The SCIAMACHY results are presented in
the form of FLH as defined by Eq. (21). Chlorophyll a concentrations
from MODIS Terra (http://oceancolor.gsfc.nasa.gov/cgi/l3) for the
same years are shown in Fig. 9d. It is important to point out that the
SCIAMACHY FLH is the fluorescence energy retrieved in the Fe-I Fraun-
hofer band in the spectral window 681.8 nm to 685.5 nm whereas the
MODIS nFLH is the difference between the spectral band L14 and the
mean of L13 and L15. Thus the tow retrievals are measuring fluorescence
in different ways and in different, but overlapping, spectral windows. It
is therefore not expected that the amount of energy determined by the
two techniques is identical.

In general, we observe strong fluorescence signals in areas of high
chlorophyll concentration, although the relationship is not thought to
be constant (Behrenfeld et al., 2009 and references therein). The highest
fluorescence values are observed in the North Atlantic and Pacific and in
many coastal areas. Because of the coarse spatial resolution of
SCIAMACHY data, small areas of high fluorescence very close to the
shore are averaged across the larger scene and thus not well observed.
For larger coastal regions (e.g., Persian Gulf and the upwelling regions
along the west coast of Africa) high fluorescence values are derived,
but not for narrow marine regions, such as the Gulf of Ob (Northern
Russia).

The interannual variability is also observed readily in the
SCIAMACHY FLH data, e.g., stronger phytoplankton blooms at the
coast of Antarctica, which are observed in 2009 in MODIS Terra chl-
a maps, are clearly noticeable in SCIAMACHY FLH results. Some
values in the Atlantic east of Brazil are attributed to instrumental
noise from the passage of the instruments through the South Atlantic
Anomaly. This effect is also visible in the chi-square values of
SCIAMACHY (Fig. 10a).

It is important to note, when comparing the yearly global compos-
ites, that at high-latitude areas ground scenes for fluorescence are
only available for a limited time of the year. Areas, which are covered
by ice or clouds during some period in the year, are biased to the
cloud or ice free period (e.g., Indian monsoon region, which is mostly
cloudy during the summer monsoon season). In Fig. 11 we present the
number of data points of our retrieval per grid pixel. The number of
points is inversely proportional to the global cloud fraction (during day-
time only) product from MODIS. Very cloudy regions are poorly-
sampled and in high latitudes we are additionally limited by the high
solar zenith angle. Because of the large pixel size and limb–nadir

http://oceancolor.gsfc.nasa.gov/cgi/l3


Fig. 8. Example of a SCIAMACHY fluorescence DOAS fit (9th April 2009; lat = 47° S, lon = 40° E). a) Top left panel: the fitted DOAS DOD (red) and measured DOD (black). b) Top right
panel: the residual from theDOASfit. c) Bottom left panel: the scaled chlorophyllfluorescence reference spectrum (red) and chlorophyllfluorescence fit (black). d) Bottom right panel: the
scaled water vapor reference spectrum (red) and water vapor fit (black).
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mode of SCIAMACHY, less cloud and ice free scenes are available as
compared to multispectral sensors with higher spatial resolution.

3.2. Comparison with MODIS nFLH data

The SCIAMACHY FLH data should be verified by performing compar-
isonswith independentmeasurements of sun-induced chlorophyllfluo-
rescence. Both MERIS and MODIS instruments provide measurements
in spectral bands designed to map the chlorophyll fluorescence signal
(Gower & King, 2012).

MappedMODIS nFLH data are easily available from the web (http://
oceandata.sci.gsfc.nasa.gov/), whereas MERIS data need to be derived
from the Level 1 product. Hence, we decided to us MODIS data, as it
was shown thatMODIS andMERISmeasurements offluorescence close-
ly agree (Gower & King, 2004). In particular, we compared SCIAMACHY
results to a MODIS Terra Level 3 standard nFLH product (http://
oceancolor.gsfc.nasa.gov/cgi/l3). Although for such comparison the
MODIS Aqua data can also be used, and we gave preference to MODIS
Terra because the time of MODIS Terra overpass is similar to
SCIAMACHY (~10.00 local time for ENVISAT; ~10.30 and ~13.30 for
Terra and Aqua, respectively). We note that the different overpass
times of satellites impact the retrieved fluorescence values, as the fluo-
rescence increases as photochemistry saturates.

The standardMODIS product is available in the form of nFLH.We re-
mind the reader that according to Gordon and Voss (2004) and Gordon
and Clark (1981) the following relationship between nFLH and FLH can
be easily derived:

nFLH ¼ FLH
F0 λ14ð Þ

Ed 0þ;λ14
� � : ð22Þ

Here, F0(λ14) is the solar irradiance at the top of the atmosphere and
Ed(0+, λ14) is downwelling irradiance just above the surface, bothmea-
sured inMODIS band 14. It follows that the quantitative comparison re-
quires the calculation of Ed(0+, λ14), which depends on the aerosol
optical thickness and solar zenith angle among others. Ed(0+, λ14) can
be calculated running any coupled ocean–atmosphere radiative transfer
model. However, this is a very time-consuming process requiring the
global information of all atmospheric and oceanic parameters. Vice
versa, the MODIS Terra Level 1 data (http://oceandata.sci.gsfc.nasa.
gov/MODIST/L1/) in combination with SeaDAS software (http://
oceancolor.gsfc.nasa.gov/seadas/) can be used to calculate MODIS FLH
for each single measurement point. However, to obtain yearly compos-
ite average values, which are needed for comparison, a very large num-
ber of MODIS Level 1 data has to be reprocessed.

In order to estimate the expected quantitative relationship between
FLH and nFLH representation of fluorescence emission, we compared
measurements for an arbitrary chosen day (20th January 2009) of
MODIS Terra FLH and nFLH. For this purpose the Level 1 data were
downloaded and processed with SeaDAS software. The default setting
for atmospheric corrections and standard flags as in the Level 3 nFLH
product were used. The obtained results show that nFLH values are on
average ~1.5 times larger than FLH. However, they are up to four
times different for low FLH values and the highest solar zenith angles.

Having this in mind, we decided to present our results also in the
form of a simplified nFLH (snFLH), in which case we could at least ac-
count for the SZA dependence. Hence, we define snFLH for the purpose
of this study, as follows:

snFLH ¼ FLH
F0 WFð Þ

Ed;s 0þ;WF
� � : ð23Þ

where Ed,s(0+WF) is a simplified downwelling radiance, calculated with
the SCIATRAN radiative transfer model with F0(WF) as extraterrestrial
irradiance, in the wavelengths of fluorescence fit window WF. We call
it simplified, as we account only for changes in the SZA. Considering
that the main goal of our case study is to demonstrate the applicability
of the DOAS approach to derive information about chlorophyll fluores-
cence, we restricted ourselves with the qualitative comparison of
SCIAMACHY FLH and snFLH with MODIS nFLH data. For snFLH calcula-
tions, the aerosol optical thickness τa and Rayleigh optical thickness τR
were set to constant values for all scenarios (τR was set to 0.04, follow-
ing Bodhaine, Wood, Dutton, and Slusser (1999) and τa was set to 0.05
after Halthore and Caffrey (2006)). Halthore and Caffrey (2006) investi-
gated τa at remote Pacific Ocean locations, and found a minimum τa of
0.017 at 670 nm for the Coconut Island measurements. However, for
most presented measurements, the common values was ~0.05, and
this value was chosen for this study. The aerosol distribution varies

http://oceandata.sci.gsfc.nasa.gov/
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Fig. 9. Global maps of SCIAMACHY FLH (a) and SCIAMACHY snFLH (b) compared with nFLH MODIS Terra (c) and MODIS Terra chlorophyll a concentration (d) for year 2009 and years
2003–2011.
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over oceans, and is highest in the Atlantic Ocean next to Sahara, the Ara-
bian Sea and the Bay of Bengal. However, in this studywe focused solely
on SZA dependency. For these SCIATRAN calculations, we used the Bidi-
rectional Reflectance Distribution Function as surface reflection type,
and set the wind speed to 5 m/s.
The yearly composite average nFLH values fromMODIS Terra for the
years 2003–2011 and year 2009 are presented in Fig. 9c. Comparing
these data to the SCIAMACHY FLH and snFLH values presented in
Fig. 9a and b, one can see a good spatial agreement between both data
sets.



(a) SCIAMACHY chi-square values for year 2009

(b) GOME-2 chi-square values for year 2009

Fig. 10.Globalmaps of chi-square for DOASfluorescence retrieval applied to SCIAMACHYandGOME-2 for the year 2009,with the location of the SouthAtlantic Anomaly (SAA) circled (left
panel).
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After applying simplified normalization, we observe that the values
of SCIAMACHY snFLH are higher than SCIAMACHY FLH, especially
snFLH close to the Antarctic coast is muchmore pronounced, and equa-
torial values are smaller as compared to high latitudes.

However, SCIAMACHY snFLH values are also higher than MODIS
nFLH. It is expected as our retrieval spectral window is placed exactly
at the top of fluorescence emission, as opposed to theMODIS algorithm.
The measured MODIS nFLH responds to only 57% of the actual fluores-
cence signal (Gower et al., 2004), as discussed in Section 1. Another pos-
sible reason of observed discrepancies can be the overestimated τa, used
SCIAMACHY points per grid cell
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GOME−2 points p

0 50 100

Fig. 11. Global maps of SCIAMACHY and GOME-2 number of points per grid cell compared wit
measurements made with the narrow swath mode.
for calculating Ed,s(0+WF). The slightly earlier time of overpass of
SCIAMACHY can also lead to different values.

It is important to note that after applying all correctionswe obtained
some negative values for SCIAMACHY. These negative values can be
caused by random noise (especially in cases close to the fluorescence
detection limit) and when the applied corrections (for water vapor
and Raman scattering) are overestimated (see Eq. (16)). Negative
values also occur for the MODIS nFLH algorithm, where they are re-
moved assuming bad atmospheric correction or cloud contamination
(Behrenfeld et al., 2009). However, in a recent study it was suggested
er grid cell
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MODIS Terra and Aqua cloud fraction (Day only)
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h MODIS cloud fraction (day only) for July 2009. Stripes in the GOME-2 figure result from
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that the negative values represent a normal distribution of the data and
arise from noise in the sensor, as they were found to constitute an in-
creasing part of pixels with decreasing chlorophyll concentration
(Huot et al., 2013). Following this recommendation we have included
negative fit values in the averages, except for measurements which
were removed by the quality checks. Nevertheless, excluding negative
values does not significantly change the results presented in Fig. 9a
and b.

Comparing the multispectral MODIS and hyperspectral DOAS re-
sults, one has to keep in mind that the position of spectral bands used
in theMODIS fluorescence retrieval algorithm reflects an assumed spec-
tral shape of fluorescence. In particular, the fluorescence band is cen-
tered at 678 nm near the maximum of the fluorescence signal located
at 685 nm (see Section 1). However, as shown by Gitelson (1992) and
Xing et al. (2007) the apparent peak in the water leaving radiance is
shifted toward longer wavelengths with increasing chlorophyll concen-
tration, due to the strong chlorophyll absorption of red wavelengths
(and re-absorption of chlorophyll fluorescence). The impact of this
shift on nFLH is discussed by Gower and King (2004), who suggested
that for retrieving chlorophyll fluorescence at high chlorophyll concen-
trations the measurements at longer wavelengths should be used addi-
tionally. Moreover, owing to the differences in light harvesting systems
(pigment–protein binding in particular), especially in dinoflagellates
and cyanobacteria (see MacIntyre et al., 2010; Millie, Schofield,
Kirkpatrick, Johnsen, & Evens, 2002), the peak wavelength of fluo-
rescence depends also on the species composition of phytoplank-
ton. Thus, for example, phycocyanin-rich cyanobacteria have
an additional emission peak at ~655 nm due to phycocyanin
(MacIntyre et al., 2010; Simis, Huot, Babin, Seppälä, & Metsamaa,
2012), which is close to the first chosen baseline for the MODIS al-
gorithm (667 nm). Therefore, in the case of multispectral retrievals
the position of spectral bands for the nFLH retrieval can lead to a
smaller sensitivity and lower fluorescence values. It was also
noted that during blooms of some cyanobacteria species the fluo-
rescence signal is overwhelmed by scattering at longer wavelengths
(peaks at 700–710 nm), which can lead to negative values of nFLH
(Wynne et al., 2008). Hence, a computational equivalent to the neg-
ative values of MODIS nFLH has been used to detect cyanobacteria
blooms in Lake Erie, first with MERIS (Wynne, Stumpf, Tomlinson,
et al., 2013) and then with MODIS data (Wynne, Stumpf and
Briggs, 2013).

In contrast to the multispectral retrieval, the hyperspectral method
presented here uses a narrow spectralwindow for detecting thefluores-
cence emission, and subtracts a polynomial from the reference spec-
trum of fluorescence to account for broad-band features. The shape of
the whole fluorescence emission band, and especially the apparent po-
sition of the fluorescence peak, is not relevant for the algorithm. It was
demonstrated for terrestrial vegetation fluorescence retrievals using
satellite hyperspectral data, that small changes in the fluorescence
emission spectrum have indeed little impact on the estimated fluores-
cence values (Fournier et al., 2012; Joiner et al., 2013).

3.3. Temporal variations in SCIAMACHY marine chl-a fluorescence

As an example of a possible application for open ocean waters, we
present time series of monthly SCIAMACHY FLH values averaged over
two regions, in comparison to other satellite products and climate
variables.

Firstly, the region in the Indian Ocean near the coast of Madagascar
exhibits low chl-a concentrations (b0.1 mg/m3, shown as MODIS chl-a
in Fig. 12 a), as it is located in the oligotrophic waters of the Indian
Gyre. A seasonal cycle typical for all ocean gyres is observed, for which
the common forcing factor is the change in surface thermal forcing
that stimulates shallowing of mixed layers and increase of dynamic
heights within the gyres. The higher dynamic height indicates strength-
ening of the gyre circulation and consequently promotes the deepening
of thermocline/nutricline, which combined with shallower mixed layer
depths, reduces the transport of nutrients to the euphotic zone. As a re-
sult, chl-a is reduced during the austral summer, and the opposite oc-
curs for the austral winter cooling period (Signorini & McClain, 2007,
2012). On top of this clear seasonal cycle, for most of the years, we ob-
serve the additional impact of theMadagascar bloom. It occurs typically
early in the year and then spreads eastward for the nextweeks, creating
a feature called a plankton wave (Srokosz, 2004). This feature is one of
the largest phytoplankton blooms in the world ocean, and has received
much attention in the recent years (e.g., Huhn, von Kameke,
Pérez-Muñuzuri, Olascoaga, & Beron-Vera, 2012; Lévy et al., 2007;
Longhurst, 2001; Raj, Peter, & Pushpadas, 2010; Srokosz, 2004; Srokosz
&Quartly, 2013;Uz, 2007). Interannual variability of this phytoplankton
bloom is linked to the upwelling along the south coast of Madagascar,
precipitation along the east coast of Madagascar, light limitation and
local mesoscale circulation features (Raj et al., 2010). The time series
of SCIAMACHY FLH and MODIS nFLH follow for most parts the variabil-
ity of MODIS chl-a concentration. Correlation coefficients between the
three parameters are high (similar for SCIAMACHY FLH and MODIS
nFLH to MODIS chl-a: 0.75 and 0.74, respectively, and weaker between
the two fluorescence variables). SCIAMACHY FLH values for this region
indicate robustness of the retrieval, because both features, the seasonal
cycle and the plankton wave, can be observed.

We present a second time series for the equatorial Pacific region, for
which El Niño/Southern Oscillation (ENSO) is the dominant source of
interannual climate variability (Fig. 12 b). During ‘normal’ or La Niña
conditions, the Pacific equatorial ecosystem is productive due to the
supply of nutrients to the euphotic zone in the cold tongue of waters
upwelled in the eastern equatorial Pacific and stretching westward to
the date line (Wyrtki, 1981). During El Niño conditions, physical forcing
dramatically reduces phytoplankton productivity, impacting food webs
across the equatorial and coastal environments of the eastern tropical
Pacific (e.g., Barber & Chavez, 1983; Barber & Chávez, 1986; Chavez
et al., 1999; Ryan, Polito, Strutton, & Chavez, 2002; Strutton & Chavez,
2000; Strutton, Evans, & Chavez, 2008). ENSO can be monitored with
the Multivariate ENSO Index (MEI), which is based on the climate vari-
ables observed over the tropical Pacific (Wolter & Timlin, 1998). The
MEI is positive in the El Niño phase and negative in the La Niña phase
(data available at NOAA Earth Systems Research Laboratory http://
www.esrl.noaa.gov/psd/enso/mei/). The evident link between biology
and the physical environment related to climate variability expressed
by MEI has been shown for the Equatorial Pacific in the study by
Rousseaux and Gregg (2012). In our case, we can also observe high cor-
relations between monthly anomalies of SCIAMACHY FLH and MEI and
MODIS sea surface temperature product (MODIS SST) (Fig. 12b and
Table 1). MODIS SST data used in this study were produced with the
Giovanni online data system, developed and maintained by the NASA
GES DISC. SST is one of the input variables for calculating MEI and is di-
rectly related to the upwelling conditions. MODIS FLH and chl-a prod-
ucts are also significantly correlated to MEI and MODIS SST (Table 1).
In essence, using SCIAMACHYfluorescence datawe can observe season-
al variability in the phytoplankton community and its response to cli-
mate fluctuations for the equatorial Pacific.

3.4. Observations of marine fluorescence with GOME-2

The fluorescence signal from oceans was also retrieved with the
GOME-2 onboard MetOp-A instrument for the year 2009 (Fig. 13).
MetOp-A has a slightly earlier overpass time than ENVISAT, ~9:30 am.
As a result the solar zenith angle of the ground scene is larger for
GOME-2 than for SCIAMACHY and the observed fluorescence signal is
expected to beweaker. The regions of strongfluorescence are readily re-
trieved from the measurements of both sensors, but it is noticeable that
the negative values aremore frequent for theGOME-2 results. This is at-
tributed to the smaller fluorescence signal associated with higher SZA
and the fact that the slit function is broader for GOME-2 than for

http://www.esrl.noaa.gov/psd/enso/mei/
http://www.esrl.noaa.gov/psd/enso/mei/


Fig. 12. Time series of SCIAMACHY FLH for selected regions: a) comparedwithMODIS nFLH andMODIS chlorophyll a (chl-a) concentration products for the region SE ofMadagascar (40–
69° E, 21–33° S); b) SCIAMACHY FLH monthly anomalies compared with monthly anomalies of MODIS nFLH and multivariative ENSO index (MEI) for the upwelling region in the Equa-
torial Pacific (85–155° W, 2° S–6° N) (b). Correlations shown in (a) are significant at p b 0.01.
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SCIAMACHY, making the separation of spectral features of fluorescence
from water vapor absorption more difficult. While the retrievals'
threshold for chi-square values is the same for both instruments, the
chi-square values are substantially higher for GOME-2 than for
SCIAMACHY (Fig. 10 b). For SCIAMACHY, 82% of pixels of the yearly
composite for 2009 have a chi-square value smaller than 3 ⋅ 10−6,
while for GOME-2 it is only 23%. We also see that the number of high
chi-square vales increases for darker scenes (right panel of Fig. 10 b).
There are also larger errors for GOME-2 observed in the South Atlantic
Anomaly region, as compared to SCIAMACHY retrieval results. It is diffi-
cult to remove those erroneous measurements from global composites
by setting a lower chi-square threshold, because such observations are
scattered globally. In addition, note that the GOME-2 ground scene
used in this study is larger (40 km × 80 km) than SCIAMACHY, which
further increases the chance of cloud contamination and thus reduces
the number of ground scenes available. Overall, the GOME-2 results
are significantly noisier than the SCIAMACHY results.

The regions of strong fluorescence are readily identified in GOME-2
FLH, e.g., summer phytoplankton blooms in the North Atlantic Ocean,
the Benguela Upwelling or the Peruvian Coastal Upwelling. The in-
creased chlorophyll concentration at the edges of the Antarctic coast is
Table 1
Correlation coefficients for variables shown as anomalies (an.) in Fig. 12 b, for the upwell-
ing region in the Equatorial Pacific (85–155W, 2 S–6N). All correlations are significant at p
b 0.01.

SCIA FLH
an.

MODIS nFLH
an.

MODIS chl-a
an.

MEI MODIS SST
an.

SCIA FLH an. 0.4418 0.3664 −0.5624 −0.5561
MODIS nFLH an. 0.4418 0.7815 −0.4188 −0.4991
MODIS chl-a an. 0.3664 0.7815 −0.3211 −0.5360
MEI −0.5624 −0.4188 −0.3211 0.8362
MODIS SST an. −0.5561 −0.4991 −0.5360 0.8362
also observed. However, we have obtained a lot of negative values for
chlorophyll fluorescence in most oceanic regions, and some regions of
increased chlorophyll concentration, though noticeable, still display
negative values (e.g., the increased chlorophyll concentration at 40° S
belt in the Indian Ocean, or the upwelling in Equatorial Pacific).

It is advantageous to apply the fluorescence retrieval to GOME-2
data, because the satellites, which are already in orbit (MetOp-A,
MetOp-B), and the upcoming satellite MetOp-C, provide potentially a
long time series of chlorophyll fluorescence data. Because of the broader
slit function of the GOME-2 instrument, for future studies to retrieve
chl-a fluorescence at its red peak, it might be more advantageous to ad-
ditionallymake the use of filling-in of telluric absorption lines, following
the example of Joiner et al. (2013). The application of our method to
GOME−2 FLH  (mW/m2/nm/sr)
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Fig. 13. Global map of FLH from GOME-2 for year 2009.
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Fig. 15.Global composite of SCIAMACHY chlorophyll fluorescence for both land and ocean
for years 2003–2011. The cloud threshold used for filtering the differs for ocean and land
(0.08 and 0.16, respectively).
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other hyperspectral instruments will also be possible after optimization
for the particular instrument.

3.5. Observations of SCIAMACHY and GOME-2 fluorescence from the terres-
trial biosphere

Todemonstrate the applicability of our retrieval to terrestrial chloro-
phyll fluorescence observations, we present initial results for land chl-a
fluorescence at its red peak. In general, the fluorescence over land is
more intense than that over the ocean because of the larger amount of
chl-a in terrestrial plants and lower variability in the distribution of
chl-a (nomovement of terrestrial plants). In addition, results are not af-
fected by the effects of VRS by water molecules.

Fig. 14 shows monthly mean values for July and December 2009 of
terrestrial fluorescence emission retrieved by the DOAS algorithm for
SCIAMACHY and GOME-2, compared with MODIS Terra Enhanced Veg-
etation Index (EVI) product, which is a popular greenness-based index.
MODIS Terra EVI data used in this study were produced with the
Giovanni online data system, developed and maintained by the NASA
GES DISC.

Recently, two algorithms to retrieve terrestrial chl-a fluorescence at
its second peak have been applied to GOME-2 (Joiner et al., 2013) and
GOSAT (Guanter et al., 2012) and show good spatial agreement
(Joiner et al., 2013).While ourDOAS technique retrieves the redfluores-
cence features near 685 nm, the other two algorithms retrieve fluores-
cence in the far-red emission peak near 740 nm (736.8 nm for GOME-
2, Joiner et al. (2013) and 757 nm for GOSAT, Guanter et al. (2012)).
The wavelength used by Guanter et al. (2012) is ~17 nm shifted from
the far-red fluorescence peak. To compare GOME-2 results with
GOSAT, Joiner et al. (2013) multiplied the 736.8 nm fluorescence by a
factor of 0.59, which is consistent with the spectral shape of the fluores-
cence emission they assumed. Assuming the same fluorescence shape
for our study, values similar to those of Guanter et al. (2012) are expect-
ed to be retrieved using our DOAS technique at 685 nm. However, the
ratio between the two peaks of fluorescence cannot be assumed con-
stant, and varied also for the top-of-canopy spectra simulated by
Joiner et al. (2013).

All satellite terrestrial fluorescence retrievals (see Fig. 15a and b in
Joiner et al., 2013) show similar spatial patterns of high signals in
SCIAMACHY fluorescence at 684 nm (mW/m2/nm/sr)
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Fig. 14. Global monthly mean for July (a) and December (b) 2009 of terrestrial chl-a fluoresce
MODIS EVI (MODIS Terra Enhanced Vegetation Index, right panel).
areas of active vegetation and low signals in areas of barren land, as in-
dicated by the MODIS EVI (Fig. 14). We can also observe similar differ-
ences between the seasons for all fluorescence retrievals. The highest
values for July are in the east of North America. In December,we observe
muchweaker fluorescence from this region, and enhanced fluorescence
in Central and Southern Africa during the local rainy season for all re-
trievals. However, regional discrepancies between different retrievals
are visible, e.g., our results show higher values in the high latitudes for
July. Large errors in the South Atlantic Anomaly region are also observed
in our results, in particular for the GOME-2 retrieval (Fig. 10). In this re-
gion, our DOAS GOME-2 fluorescence emission values are substantially
noisier than the GOME-2 retrieval results by Joiner et al. (2013), where
the quality checks applied weremore successful in removing erroneous
measurements. Nevertheless, they also obtained the highest errors in
the South Atlantic Anomaly area (Joiner et al., 2013).

Overall, our SCIAMACHY and GOME-2 fluorescence values are lower
than values previously retrieved within the far-red wavelength region
e (mW/m2/nm/sr)

0.30 0.45 0.60

MODIS−Terra Enhanced Vegetation Index (unitless)

0.00 0.25 0.50 0.75 1.00

e (mW/m2/nm/sr)

0.30 0.45 0.60

MODIS−Terra Enhanced Vegetation Index (unitless)

0.00 0.25 0.50 0.75 1.00

nce radiance from SCIAMACHY (left panel) and GOME-2 (middle panel) compared with
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(Guanter et al., 2012; Joiner et al., 2013). This is particularly the case for
theGOME-2 results. These data showmany negative values, particularly
for December (note that color scales are different for GOME-2 and
SCIAMACHY). Observed discrepancies are significant, and larger than
expected for the different wavelengths of the spectral windows within
which the fluorescence emission is retrieved. Some of the differences
between the previous far-red land fluorescence algorithms were partly
assigned to the coarser GOME-2 pixels and the low sampling of GOSAT
(Joiner et al., 2013). Timeof overpass (~13:00 for GOSAT) is also expect-
ed to lead to differences in fluorescence (Joiner et al., 2013).

Nevertheless, the qualitative spatial agreement of land fluorescence
among the different fluorescence algorithms and EVI product, implies
that it is plausible to retrieve a signal from the red fluorescence peak
as well. Observed differences also reflect real differences in the fluores-
cence emission spectrum. Recent land fluorescence studies using
GOME-2 (Joiner et al., 2013) and SCIAMACHY (Khosravi, 2012) have fo-
cused on the far red wavelength fluorescence features. However, as
shown in this study, land fluorescence is also readily observed in the
spectral region of the red peak of the fluorescence. In contrast to longer
wavelengths, at these shorter wavelengths the fluorescence originates
mostly from Photosystem II (e.g., Franck, Juneau, & Popovic, 2002).
Combining the fluorescence measurements from Photosystems I and II
provides potentially new information about the terrestrial biosphere.
Chlorophyll fluorescence reflects the energy portioning and its regula-
tion within PS II, although the relationship between the fluorescence
and photochemical efficiency is not constant. The signal is mostly influ-
enced by photochemical quenching (absorbed energy used for photo-
chemistry) and non-photochemical quenching (dissipation of energy
as heat, which can be increased in the photoprotective response in the
excess of light). PS I does not exhibit variable fluorescence and usually
emits a low, constant background fluorescence signal due to more effi-
cient quenching of excited states in PS I than in PS II (Blankenship, 2002).

As a result of the chlorophyll fluorescence spectrum overlapping the
chlorophyll absorption spectrum, the fluoresced photons can be further
reabsorbed by chlorophyll. The red fluorescence peak is much more
sensitive than the near infrared peak to fluorescence re-absorption by
chlorophyll, which affects the ratio of red and far red fluorescence. The
decrease of this ratio is already visible on the leaf scale (the chlorophyll
fluorescence is partially reabsorbed by the pigments within the leaf,
Gitelson, Buschmann, & Lichtenthaler, 1999), but is further enhanced
when observed at the canopy level. This decline, which dependsmainly
on the canopy structure, was observed in measurements (Daumard
et al., 2012; Fournier et al., 2012; Moya, Daumard, Moise, Ounis, &
Goulas, 2006), as well as in simulations (Fournier et al., 2012). The in-
crease of chlorophyll concentration (and hence the effect of the fluores-
cence re-absorption) also shifts the position of the observed red peak of
fluorescence toward longer wavelengths (e.g., Buschmann, 2007). Envi-
ronmental stress is additionally influencing the ratio of red to far-red
fluorescence (e.g., Agati et al., 2000; Genty, Wonders, & Baker, 1990;
Lichtenthaler & Rinderle, 1988). However, the re-absorption effect driv-
en by the canopy structure was suggested by Fournier et al. (2012) to
predominate.

Satellite-derived fluorescence has been shown to have a significant
relationship to modeled gross primary production (GPP) (Frankenberg
et al., 2011; Guanter et al., 2012; Joiner et al., 2013). Hyperspectralmea-
surements of fluorescence above the canopy, and especially red fluores-
cence, were also shown to improve the daily empirical model of GPP
when used together with Photochemical Reflectance Index (Cheng
et al., 2013). More on the link between chlorophyll fluorescence and
photosynthesis, with focus on remote sensing application, can be
found in the recent review by Porcar-Castell et al. (2014).

4. Summary and conclusions

In this work, we present a novel and alternative method for retriev-
ingmarinefluorescence using high spectrally resolved satellite data and
a DOAS algorithm. The algorithm was developed for and tested on two
hyperspectral instruments: SCIAMACHY and GOME-2. The retrieval
was also applied to land areas in order to test its application for terres-
trial vegetation fluorescence. The method uses filling-in of the Zeeman
triplet Fraunhofer line Fe I at 684.3 nm, which is located close to the
red emission peak of fluorescence. The DOAS fitting is performed in a
narrow spectral window of about 4 nm. In order to account for broad-
band phenomena a polynomial of low order was subtracted. Because
of the influence of water vapor absorption and Raman scattering on
the retrieval, we implemented a correction scheme which utilizes fits
carried out in two other spectral regions for those specific targets. Addi-
tionally, we added a conversion dependent on the elastically scattered
radiance. Those corrections are based on simulations with the coupled
ocean–atmosphere radiative transfer model SCIATRAN (Blum et al.,
2012; Rozanov et al., 2014) that were optimized for the optical charac-
teristics of each instrument.

Marine fluorescence results from SCIAMACHY and GOME-2 show
overall good spatial agreement. Their global distribution agrees reason-
ably well with MODIS nFLH in regions where high MODIS chlorophyll
concentration are observed. Our study has demonstrated for the first
time that the weak fluorescence signal is retrievable from the oceans
using hyperspectral data. Noting that our results deliver the fluores-
cence or FLH from the filling-in of the Fe I Fraunhofer line and that the
MODIS nFLH uses three bands and the baseline algorithm, our fluores-
cence observations verify the MODIS nFLH product. The latter and the
MERIS data product (Gower & King, 2007) were up to this publication
the only available data sets to assess chlorophyll fluorescence from the
ocean on the global scale. The observed quantitative differences be-
tween SCIAMACHY and GOME-2 DOAS FLH and MODIS nFLH arise
from differences among the instruments, retrieval methods, spatial
and temporal sampling, overpass time and the spectral shape of the
fluorescence emission as well as difference between FLH and nFLH rep-
resentation of fluorescence data. Hence, our fluorescence results can be
used in the future for further studies and interpretation of chl-a fluores-
cence to better understand the fluorescence signal seen in both types of
algorithms and its dependency on the algorithms and instruments for
different marine regions.

Clearly, MODIS nFLH results are less noisy, but with an increase in
spatial resolution and sampling of future hyperspectral instruments,
the quality of DOAS FLH results will improve. In addition, hyperspectral
measurements are not as susceptible to certain problems as the multi-
spectral nFLH data products, which arise from backscattered light by
particulate matter, such as detritus, or phycocyanin fluorescence. For
our DOAS retrieval, we obtain better results for SCIAMACHY where
the spectral resolution is higher and the size of the footprint is smaller.
However, GOME-2 results are still valuable anddeliver a future perspec-
tive for this algorithm. There are now twoGOME-2 instruments orbiting
Earth and as the pixel size of first of them (MetOp-A) was reduced, we
hope to obtain more cloud-free pixels and better results from July
2013 onwards. We have shown that hyperspectral instruments can be
in principle a new source of marine fluorescence information, indepen-
dent of multispectral instruments. In the future, modified versions of
our approach can also be applied to the measurements of the
TROPOMI Instrument onboard Sentinel 5 Precursor, planned for launch
in 2016 (Veefkind et al., 2012) and the Copernicus Sentinel 5 instruments
which will fly on the MetOp second generation platforms from 2020
onwards. Adapted and adjusted algorithms,when applied tomore instru-
ments, could provide global andmore frequent fluorescence information,
utilizing the different times of satellites overpasses, thus providing infor-
mation about the diurnal cycle of chlorophyll fluorescence.

The ability to observe fluorescence from land vegetation in the Fe I
Fraunhofer line in the spectral window 681.8 nm to 685.5 nm is also re-
ported. This is the first example of retrieving chlorophyll fluorescence
from space for the SCIAMACHY instrument for land vegetation. As ter-
restrial fluorescence has been extensively retrieved and studied in its
far-red peak (e.g., Guanter et al., 2012; Joiner et al., 2013), it is important



259A. Wolanin et al. / Remote Sensing of Environment 166 (2015) 243–261
to prove that the signal from the red peak of fluorescence can be ob-
served. This retrieval approach and the new data set should attract the
attention of the terrestrial fluorescence community to the red peak of
chlorophyll fluorescence. Knowledge about the strength of two fluores-
cence peaks can be used for several applications, e.g., the determination
of the chlorophyll content at leaf level (Gitelson & Merzlyak, 1997;
Gitelson et al., 1999) or of the canopy structure (Fournier et al., 2012).
Furthermore, changes in fluorescence ratio also occur in response to en-
vironmental factors, like temperature (Agati et al., 2000) and light
(Genty et al., 1990). More detailed information about fluorescence will
be valuable for complex vegetation studies. What is additionally inter-
esting, is that we can retrieve chlorophyll fluorescence from both the
land and the ocean with the same approach, which has never been
done before (see Fig. 15). In conclusion knowledge obtained from the
observation of the red peak of fluorescence will contribute to combined
studies of fluorescence, both in themarine and land environment on the
global scale.
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