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Abstract

A new inverse model to study the large scale ocean circulation and its associated heat and

fresh water budget is developed. The model relies on traditional assumptions of mass, heat

and salt conservation. A 3-dimensional velocity field which is in steady state and obeys

geostrophy is derived. Using this flow field, the steady state advection-diffusion equations

for temperature and salinity are solved and the corresponding density is calculated. An

optimization approach is used that adjusts reference velocities to get model parameters

close to observations and that the velocities are in geostrophic balance with the model

density field. In order to allow a variable spatial resolution, the finite element method is

used. The mesh is totally unstructured and the 3-dimensional elements are tetrahedra.

Climatological hydrographic data, observations of sea surface height (SSH) from satellite

altimetry and wind data are assimilated in the model. The advantages of the finite element

method make it possible to use an easy representation of the model parameters on the

tetrahedra. It is not difficult to find the adjoint form of the discrete equations. The

unstructured mesh agrees well with the complex geometry of the bottom topography.

The model is applied to the South Atlantic. First model results show, that the upper-level

circulation corresponds to the circulation known from literature. The volume transport

through Drake Passage is constrained to be 130 Sv. The transports of water masses, heat

and salt across the open boundaries (Drake Passage, 30◦S, 20◦E) are in agreement with the

literature. The formation rate of bottom water is 13.0 Sv and the heat transport across

30◦S to the north is 0.64 PW.
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1 Introduction

Describing the global ocean circulation is still a problem despite of more than hundred

years of systematic observation and research in oceanography. The large scale transport

and the distribution of water masses can be derived from hydrographic data (temperature

and salinity) using the geostrophic equations. The hydrographic data sets are spatial and

temporal inhomogeneous and geostrophy can be only used to describe the vertical shear

of the velocity field. To get absolute velocities it is often assumed that the flow velocity

vanished at some reference depth. The error made by this assumption is small near the

surface where the velocities are larger than in the deep ocean where they have an order of

0.01 m s−1. As a consequence a small shift of the reference level can produce errors of the

latter order of magnitude. In local regions where the ocean is shallower than the reference

depth the bottom depth has to be chosen as reference for example.

Another possibility to calculate absolute velocities is the determination of reference veloc-

ities at the ocean surface. The velocities in the deep ocean can be calculated by vertical

integration from the surface. As a second independent data set measurements from satel-

lite altimetry can be used to determine the reference velocities.

Using numerical models for the purpose the data are accounted by assimilation techniques.

The model states computed must fulfill the model equations and have to take into account

the data. Properly, data assimilation denotes prognostic models. Diagnostic models where

the model parameters are adapted to the data are called inverse models. An optimization

approach is applied to fit the parameters. A so-called cost function is minimized in consid-

eration of the model equality constraints. Basic concepts are described by Thacker (1988),
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Olbers (1989) and Wunsch (1996). First computations with this method were made e.g. by

Schröter (1989). Schröter et al. (1993) and Vogeler and Schröter (1995, 1999) applied the

method to regional eddy-resolving ocean models. Schlitzer (1993, 1995) developed a box

model for the Atlantic, which is extended to the global ocean (de las Heras and Schlitzer,

1999). Nechaev and Yaremchuk (1995) and Yaremchuk et al. (1998) presented an adjoint

model for analyzing hydrographic sections. A global model to investigate the barotropic

ocean circulation originated from Seiß (1996). Sloyan (1997) presented a box model for

the Southern Ocean.

The models mentioned above are box models and/or use the finite difference method

(FDM). In the present model the finite element method (FEM) is used. Originally the

FEM was developed in the 1950s and 1960s to solve problems occuring in elastomechanics.

Later the FEM was expanded for applications to many other physical processes which are

described by partial differential equations. The theory of the FEM is described in detail

for example by Zienkiewicz (1977) and Johnson (1990). There are successful applications

in tidal model since the beginning of the 1970s. Examples are the works of Connor and

Wang (1973), Walters and Werner (1989) and Le Provost and Vincent (1991). But there

are only a few works which use the FEM in (global) circulation models. A first work was

presented by Fix (1975) with a quasigeostrophic model. Haidvogel et al. (1980) compared

the FEM with the FDM. For problems in fluid dynamics and particular for convection- and

advection-diffusion problems the FEM became popular in the 1980s. At that time different

upwind methods for stabilization were developed. A basic work is given by Brooks and

Hughes (1982). In recent years Myers and Weaver (1995) used the FEM in a diagnostic

barotropic ocean model. Iskandarani et al. (1995) presented a spectral finite element model
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for the shallow water equations. With a similar model Haidvogel et al. (1997) described

the global circulation and Wunsch et al. (1997) investigated the dynamics of long-period

tides. This model was also used by Taylor et al. (1997), Levin et al. (1997) and Curchitser

et al. (1998,1999). Further developments of finite element models for the shallow water

equations were presented by Behrens (1996, 1998), Le Roux et al. (1998) and Giraldo

(1999,2000a,2000b). Zhu et al. (1994) worked with data assimilation in a 2-dimensional

finite element model for the shallow water equations.

Another finite element circulation model is QUODDY (Ip et al., 1995), which is used

for regional comprehensive coastal modeling (Lynch et al., 1996). QUODDY is based on

the conventional 3-dimensional shallow water equations. It is tide-resolving to investigate

shelf circulation. The meshes are created by prisms and a general terrain-following vertical

coordinate is used. Recently, a inverse model version of QUODDY is designed which uses

an assimilation scheme like the adjoint method (Lynch and Hannah, 2000).

Altogether applications of the FEM in oceanography – especially in 3-dimensional inverse

models – are still rare.

The major goal of this work is the development of an internally consistent 3-dimensional

adjoint model using finite elements to investigate the large scale ocean circulation. The

model solves the stationary advection-diffusion problem. A mesh is generated with tetra-

hedra. These elements are particular suitable to represent the complex 3-dimensional

geometry given by the bottom topography. The mesh is totally unstructured so that any

local refinement is possible. This is one of the great advantages of the FEM compared to

the FDM. Another advantage is that the adjoint code can be created relative easy.

The model describes a flow field in geostrophic balance and conserves mass and heat.
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The control variables of the inverse model are horizontal reference velocities at the ocean

surface and sources (heat and fresh water fluxes) in the advection-diffusion equation. As-

similated data are among others climatologic hydrographic data and sea surface height

(SSH) data from satellite altimetry.

The second major goal of this work is a first application of the model to the South Atlantic

to study the large scale circulation, the formation and spreading rates of water masses and

the exchange of heat and salt. The main attention directs to the Weddell Sea.

The organization of this paper is as follows: The governing model equations and the strat-

egy of the adjoint model is described in section 2. In section 3 the use of the FEM is

presented. The application of the model and its results are discussed in section 4 and 5.

Finally, a summary and conclusions are given in section 6.

2 The Inverse Model

In this section the strategy of the model is presented. The model parameters are temper-

ature T , salinity S, density ρ, velocities u = (uh, w) = (u, v, w) and sources F T and F S of

the advection-diffusion equation for temperature and salinity. The density ρ is calculated

from the temperature field and the salinity field with the equation of state. Using the

density and a prescribed reference velocity the horizontal flow field uh is computed and

from that the vertical velocities w are determined considering mass conservation. Solving

the advection-diffusion equations with this flow field yields new temperatures and salini-

ties. Data are assimilated with the adjoint method in the model. A cost function J fits

the model to the data and measures the quality of the model solution. The model para-
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meters are divided in independent parameters – the control variables of the cost function

– and in dependent parameters. We solve for a set of parameters which are minimizing

the value of the cost function. This set represents a certain circulation pattern (flow field)

and the corresponding temperature and salinity fields which are both in geostrophic and

advective-diffusive balance.

2.1 Model Equations

The general ocean circulation is described by equations of motion which are modified

Navier-Stokes equations including the effects of the rotating Earth. The fluid is only

a thin stratified layer on the Earth sphere. This is taken into consideration by certain

approximations. A detailed treatment and the concepts of this subject are given in the

book by Gill (1982) for example. The surface circulation is mainly wind-driven but the

deep circulation is determined by the gradients of pressure and density respectively. The

density ρ depends on the temperature T and the salinity S of the sea-water and is given

by a highly nonlinear equation of state:

Eρ = ρ− R (T, S, p) = 0, (1)

where p = 0.1 · ∆z is the pressure in bar. A formula (so-called UNESCO-formula, 1981)

for R is presented by Gill (1982).

For a small ratio between the nonlinear term and the Coriolis force in the equations of

motions and a small aspect ratio (ratio between the characteristic depth and the charac-

teristic length of the ocean) the horizontal flow field is described, to lowest order, by the
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geostrophic equations:

fv =
1

ρ

∂p

∂x
, fu = −1

ρ

∂p

∂y
. (2)

There u and v are the horizontal velocities, g is the acceleration of gravity and f =

2Ω sinφ is the Coriolis parameter. The geostrophic approximation represents the balance

between the Coriolis force and the pressure gradient. Together with the hydrostatic balance

∂p/∂z = −gρ the thermal wind relation

∂u

∂z
=

g

ρf

∂ρ

∂y
,

∂v

∂z
= − g

ρf

∂ρ

∂x
, (3)

can be derived which yields only the vertical shear of the flow field. On the other hand

the unknown pressure field of the geostrohpic relation is now replaced by the density field

which can be measured. Vertical integration of the thermal wind equations with reference

to the spatially varying velocities uref and vref at the surface results in

Eu = u(x, y, z) − uref(x, y) +
g

ρf

−he∫
z

∂ρ

∂y
dz′ = 0, (4)

Ev = v(x, y, z) − vref(x, y) − g

ρf

−he∫
z

∂ρ

∂x
dz′ = 0.

In the Ekman layer (0 ≥ z ≥ −he) uh(z) = uref = (uref , vref) is valid. The vertical veloc-

ities are computed by vertical integration of the equation of continuity. The integration

begins at the bottom with the kinematic boundary condition w(−H) = uh ·∇H and ends

at the depth −he of the Ekman layer:

Ew = w(z) +

z∫
−H

(
∂u

∂x
+
∂v

∂y

)
dz′ − w(−H) = w(z) + ∇ ·

z∫
−H

uhdz
′ = 0. (5)
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The advective transport and the diffusion of the thermodynamic tracers temperature and

salinity is given by the stationary advection-diffusion equation

ET = u · ∇T −Kh∆hT −Kv
∂2

∂z2
T − F T = 0, (6)

ES = u · ∇S −Kh∆hS −Kv
∂2

∂z2
S − F S = 0.

Kh and Kv are the horizontal and the vertical diffusion coefficients. The sources F T and

F S are implemented to parameterizing subscale processes which are not resolved by the

model because of its properties (e.g. local grid spacing).

Using this set of model equations to determine the deep circulation for a steady state is a

common choice for inverse models (see Wunsch 1996).

The independent model parameters (control variables) are the horizontal reference veloc-

ities uref and vref and the sources F T and F S:

p = [. . . , uref,j, . . . , vref,j, . . . , F
T
j , . . . , F

S
j , . . .]

T . (7)

The other horizontal velocities and the temperature T , the salinity S, the density ρ and

the vertical velocities w constitute the set of dependent parameters

q = [. . . , ui, . . . , vi, . . . , Ti, . . . , Si, . . . , ρi, . . . , wi, . . .]
T . (8)

The control variables p are initialized and varied in the inverse model part. The dependent

parameters q are calculated from the model equations.

2.2 Cost Function

The value of the cost function J calculated from all independent and dependent para-

meters p and q represents the quality of the actual model state with respect to the data.

7



The different terms contributing to the cost function penalize unwanted properties of the

model solution. The goal is to minimize the value of the cost function by driving the

model solution to the preferred model state. The model solution depends highly from the

characteristics of the cost function.

In this work the following terms determine the cost function:

J =
1

2

[ nuv∑
i, j = 1

(
vref,i − g

f

∂

∂x
ζi,dat

)T

W v
ij

(
vref,j − g

f

∂

∂x
ζj,dat

)
(9)

+

nuv∑
i, j = 1

(
uref,i +

g

f

∂

∂y
ζi,dat

)T

W u
ij

(
uref,j +

g

f

∂

∂y
ζj,dat

)
(10)

+

nF∑
i, j = 1

(
F T

i − F T
i,dat

)T

W FT
ij

(
F T

j − F T
j,dat

)
(11)

+

nF∑
i, j = 1

(
F S

i − F S
i,dat

)T

W FS
ij

(
F S

j − F S
j,dat

)
(12)

+

nw∑
i, j = 1

(
wi − curl

(
τw
i

fi

))T

Ww
ij

(
wj − curl

(
τw
j

fj

))
(13)

+

nT∑
i, j = 1

(
Ti − Ti,dat

)T

W T
ij

(
Tj − Tj,dat

)
(14)

+

nS∑
i, j = 1

(
Si − Si,dat

)T

W S
ij

(
Sj − Sj,dat

) ]
(15)

= Juv + JF + Jw + JT + JS .

The first and the second term (9,10 – connected to Juv) consider the gradient of the sea

surface height (SSH) ζ . ζdat are measurements of SSH from satellite altimetry. Deviations

between the SSH gradient an the corresponding reference velocities are penalized. The

terms (11) and (12) lumped into JF fit the sources F T and F S to F T
dat and F S

dat, which are

zero on the whole model domain. Term Jw (13) penalizes deviations between the vertical

velocities wi at z = −he and the curl of the wind field τw over f . The last two terms JT
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and JS (14 and 15) ensure that the temperatures T and salinities S are close to the data

Tdat and Sdat. The weighting matrices Wij are diagonal. The diagonal elements are the

inverse of the variances σ2
kk of the data.

2.3 The Adjoint Model

The main task of the model is that new model states, characterized by the set of new

parameters (pnew and qnew), are computed with a smaller value of the cost function J

than for the actual state with parameters p and q. After all the value of the cost function

ought to become a minimum. A descent direction must be found in the phase space

spanned by the control variables p so that the value of the cost function decreases. For

that the gradient of the cost function ∇J is provided to an optimization algorithm. In

this work a variable-storage quasi-Newton algorithm from Gilbert and Lemaréchal (1989)

is used. Minimizing the cost function is an optimization problem with equality constraints

which are the model equations (1 - 6). The model states have to obey the model equations

exactly. A well known method to solve such problems is the method of Lagrange multipliers

(see Le Dimet and Talagrand, 1986; Thacker, 1988; Schröter, 1989). The benefit is that

the so-called Lagrangian function L has a stationary point in the minimum of the cost

function J . The Lagrangian function L is a function of all model parameters p and q and

the unknown Lagrange multipliers λ = [. . . , λj, . . .]
T . It reads

L(p,q, λ) = J +

neq∑
j=1

λjEj (16)

where Ej = 0 denote the model equations (1 - 6). neq is the number of model equations.

The gradient of the Lagrangian function becomes zero at the minimum of the cost function
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(∇L = 0). Then all partial derivatives of L are vanishing:

∂L

∂λj
= Ej = 0 (17)

∂L

∂qi
=

∂J

∂qi
+

neq∑
j=1

λj
∂Ej

∂qi
= 0 (18)

∂L

∂pi

=
∂J

∂pi

+

neq∑
j=1

λj
∂Ej

∂pi

= 0. (19)

The derivatives with respect to the λj yield the model equations. The derivatives with

respect to the the dependent parameters q and the control variables p (18 and 19) are called

adjoint equations. The minimum of the cost function has to fulfill all three equations.

The optimization algorithm is an iterative process. First the Lagrange multipliers are

computed from equation (18) which can be written in an neq-dimensional system of linear

equations

A · λ+ b = 0 with Aij =
∂Ej

∂qi
and bi =

∂J

∂qi
. (20)

This system is solved with an iterative ILU-preconditioned GMRES-solver (see Saad and

Schultz, 1986; Barett et al., 1994). The Lagrange multipliers λj are substituted in equation

(19). One obtains then the partial derivatives ∂L/∂pi which are part of the input to the

optimization procedure of Gilbert and Lemaréchal (1989).

The entire model algorithm contains the following steps:

1. Initialization of the model including the control variables p.

2. Forward model: Computation of the dependent parameters q by solving the model

equations (1 - 6).

3. Compare model parameters with data. Stop if optimum is reached.
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4. Adjoint model:

(a) Compute the Lagrange multipliers from the adjoint equation (18).

(b) Compute the gradient ∇pL from the adjoint equation (19).

(c) Provide the gradient ∇pL to the optimization algorithm and receive new im-

proved independent parameters pnew.

5. Back to step 2.

Inverse models can use several independent and synoptic data sets. Different tracer can

be combined and different kinds of information can be provided to the model. Of course,

the necessity to create the adjoint of the forward model is not advantageous. The large

requirements of cpu-time and memory of an adjoint model is another important task.

Following from the model algorithm the density of the k-th iteration is calculated from

the temperature and the salinity of the previous iteration (ρk = R(T k−1, Sk−1, p)). This

fact results in a separation of the neq-dimensional system of linear equations (20) into six

subsystems with dimensions not larger than the number of nodes of the model grid.

The initialization of the model algorithm includes the computation of an initial hori-

zontal flow field uh from the geostrophic equations using an initial density field ρ =

R(Tdat, Sdat, p). The reference depth of the flow field is 3000 m. In regions shallower than

3000 m the local depth of the ocean is used as reference. In the Ekman layer (z ≥ −he)

Ekman velocities are added to uh.
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3 The Finite Element Model

Physical processes and mathematical models of engineering are often described by partial

differential equations. Only very simple cases can be treated analytically. In general it

is necessary to apply numerical methods for finding approximate solutions. A common

one is the finite element method (FEM) which was developed first in the 1950s and 1960s

to treat problems in elastomechanics. Later the method was expanded to a lot of other

physical problems.

In any numerical model the given continuous problem with infinitely many degrees of free-

dom is transformed to a discrete problem with a finite number of degrees of freedom. In

the classical finite difference method the derivatives of a differential equation are replaced

by difference quotients to obtain the discrete equations. In finite elements the discretiza-

tion originates from a variational principle and uses a low order expansion of the unknown

fields. The goal is that the solution of the discrete system of equations yields a sufficiently

good approximation of the solution of the original continuous problem. Using the FEM

to create a model to solve a given partial differential equation contains four basic steps

(Johnson, 1990): (1) variational formulation of the given problem, (2) discretization of the

problem with the FEM, (3) solving the discrete problem and (4) implementation of the

model on a computer.

The theory and the basic concepts of the FEM are described in detail in several book like

those of Zienkiewicz (1977) and Johnson (1990). Here we discuss our use of finite elements

and we describe the variational formulation and the discretization (section 3.1) including

stabilization (section 3.2) for the stationary advection-diffusion problem (6).
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A great advantage of finite element models is that unstructured meshes can be used. The

FEM is very useful to treat problems on complex geometries, which is much more difficult

to deal with using finite differences. Unstructured grids are very suitable to describe the

bottom topography and the coast lines of the oceanic basins. Also, any local mesh refine-

ment is possible without increasing the number of nodes too much. 3-dimensional meshes

can be generated by tetrahedra, prisms, parallelepipeds or curvilinear elements.

The variational principle includes integration by parts which results in a reduction of the

order of the highest derivative to only half of the order as the derivatives of the original

partial differential equation. Thus, the elements and their transition conditions can be

chosen rather simple.

The parameter fields are defined continuous on the whole domain in finite elements as a

superposition of the so-called basis functions. The basis functions are polynomial func-

tions of low order. They are defined respectively on a single element in a way that they

are equal to unity at one node of that element and that they are vanishing at all other

nodes (see below).

An additional item interesting for inverse models is that the adjoint of the discrete equa-

tions given by the weak formulation of the variational principle are easily derived.

In this work tetrahedra (fig. 1) are the basic elements used in a totally 3-dimensional

unstructured mesh. They are much more flexible in 3-d mesh generation than prisms for

example and they have easy basis functions and transition conditions. Of course, the ratio

between the horizontal and the vertical diameter of the tetrahedra reaches an order of

magnitude up to O(100) - O(1000). However, the ratio between the scales of the horizon-

tal and the vertical terms in the advection-diffusion equation (6) has the same order of
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magnitude. A vertically stratified mesh using a 2-d unstructured mesh which is copied to

each depth-level or a terrain-following vertical coordinate mesh like in QUODDY (Lynch

et al., 1996) is not quite as flexible as a 3-d unstructured mesh for local refinement. In

addition, a terrain-following vertical coordinate is not well suited to describe the ocean

dynamics at large gradients of the topography across the shelf breaks.

3.1 The Standard Galerkin Method for Advection-Diffusion

Problems

Advection-diffusion problems are occuring in many physical processes like in fluid dynamics

or in transport problems. The advection-diffusion equation for any tracer C = C(x, t) like

temperature T or salinity S is written

∂C

∂t
+ ∇ (u(x) · C −K∇C) = f(x), x = (x, y, z) ε Ω ⊂ R3. (21)

Here u is the velocity field and K is the diffusion coefficient. f is a source term on the

right-hand side and t is the time. In the case of incompressible fluids (∇ · u = 0) and

steady states this equation simplifies to

u∇C −K∆C = f(x) in Ω ⊂ R3. (22)

This equation corresponds to the model equation (6). Here, for the sake of simplicity of

description the diffusion coefficient is set to K = Kh = Kv. In the application of the

model (see section 4) the coefficients are different and values of Kh = 5 · 104 m2s−1 and

Kv = 5 · 10−2 m2s−1, respectively, are used.
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The conditions on the boundary Γ = Γ1 ∪ Γ2 of Ω are supposed as

C(x) = Cb(x), x ε Γ1 (Dirichlet conditions) and

K
∂C

∂n
= q, x ε Γ2 (Neumann conditions).

(23)

The standard Galerkin method (SGM) (see Johnson, 1990 or Dobrindt, 1999) is the funda-

mental technique in finite elements when treating non-symmetric problems. The stationary

advection-diffusion equation (22) is one of them.

The weak formulation in the SGM arises by multiplication of equation (22) with a so-called

test function φ and integration over the domain Ω

(u∇C, φ) + (K∆C, φ) = (f, φ) (24)

where the scalar product is defined by

(a, b) :=

∫
Ω

a · b dΩ. (25)

Partial integration (1. Greens formula) is applied to get rid of higher order derivatives:

(u∇C, φ) + (K∇C,∇φ) −K

(
φ,
∂C

∂n

)
Γ

= (f, φ). (26)

The index Γ means that the scalar product is integrated along the boundary Γ. Taking

into consideration the boundary conditions (23) and assuming that the test functions

are vanishing on Γ1 (φ(x) = 0 on x ε Γ1, homogeneous boundary conditions), the weak

formulation reads:

Find C(x) ε H1
0 (Ω), so that

(u∇C, φ) + (K∇C,∇φ) = (f, φ) + (q, φ)Γ2 (27)

for any φ(x) ε H1
0 (Ω). H1

0 (Ω) is the Sobolev space of functions with square integrable first

derivatives in space.
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In the next step the weak formulation (27) will be approximated by finite dimensional

subspaces of H1
0 (Ω). Then the discrete formulation reads:

Find Ch ε Vh ⊂ H1
0 (Ω) with

Vh = {φ ε H1
0 (Ω) | φh|τ ε P1(τ), τ ε Th}, (28)

so that

(u∇Ch, φh) + (K∇Ch,∇φh) = (f, φh) + (q, φh)Γ2 . (29)

Th is the partition of Ω in subdomains (finite elements) τ . Here the elements are tetrahedra.

P1 denotes the space of linear functions defined on the elements τ . The finite series by

linear functions is sufficient because only first derivatives occur in the weak formulation.

The approximated Ch are

Ch =
N∑

j=1

Cj · ϕj(x) + Cb, (30)

where Cb ε H
1
0 (Ω) satisfies the inhomogeneous Dirichlet boundary conditions (eq. 23). N

is the number of grid points given by the elements τ . The functions ϕi form a finite basis

ϕ = {ϕ1, ϕ2, . . . , ϕN} which span the subspace Vh. They are called basis functions and

satisfy the homogeneous boundary conditions. Now, any φh ε Vh can be written as a linear

combination of the ϕi:

φh =

N∑
i=1

φh,i · ϕi. (31)

Piecewise linear basis functions on the elements (tetrahedra) τ can be defined by

ϕi(x) = aix+ biy + ciz + di, ϕi(xj) = δij , (32)
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where x ε τ (see Appendix). The four corner points of the tetrahedra τ are denoted by the

index i, j = 1, . . . , 4. The so-called global basis functions φh are expressed by the so-called

local basis functions ϕi.

Using (30) in equation (29) and substituting the φh by the local basis functions ϕi, equation

(29) can be written as a system of N (index i) ordinary differential equations with N

unknown coefficients Cj (index j):

N∑
j=1

Cj [(u · ∇ϕj , ϕi) + (K∇ϕj,∇ϕi)] = (f, ϕi) + (q, ϕi)Γ2 −Qb (33)

with Qb = (u · ∇Cb, ϕi) +K(∇Cb,∇ϕi) and i = 1, 2, . . . , N.

In the next step we have to define a representation of the current field u. It is well known

that a main problem of the FEM is the proper choice of discrete spaces to guarante the

property of conservation for the discrete problem. In equation (33) the tracer C is approxi-

mated by piecewise linear basis functions. Using piecewise constant velocities u = (u, v, w)

in conjunction with piecewise linear tracers C is a well known approximation (Thomasset,

1981; Brezzi et al., 1992). Firstly, because this set of velocities is non-divergent within

each element and it simplifies the stabilization scheme (see next section). Secondly it was

demonstrated (Brezzi et al., 1992) that different stabilization methods result in the well

known “streamline diffusion” stabilization method, which is described below. In addi-

tion, this low order approximation minimizes the number of control variables p (7) and

dependent model parameters q (8), which is an important task to limit the requirements

of memory and cpu-time of the adjoint model. The piecewise constant velocities used in

the advection-diffusion equation (6) are derived by projection from the piecewise linear

velocities (Thomasset, 1981) given by the thermal wind equations (4) and the equation
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of continuity (5). The diffusion coefficient K is also chosen piecewise constant on the

elements.

Finally equation (33) can be written in the form of a system of linear differential equations:

S · c = f . (34)

S is denoted the stiffness matrix and f is denoted the load vector.

c = (C1, . . . , Cj, . . . , CN)T is the unknown solution vector.

3.2 Stabilization

The FEM used to be unpopular for treating advection-diffusion (convection-diffusion)

problems. The reason was that numerical instabilities may occur for advection dominated

flows. This is also a well-known problem when using finite differences. As a consequence

various stabilization techniques (upwind-schemes) were developed. In this subsection we

will have a brief look on some common techniques which turn out to be equivalent to each

other for the case considered here. For more details we refer to the cited literature.

The local Péclet number Peτ describes the relation between the advective and the diffusive

term of the advection-diffusion equation (22) in the local element τ :

Peτ = max
(
Peτ,h , P eτ,v

)
= max

(‖ uh ‖ hτ,h

2 Kh
,
‖ w ‖ hτ,v

2 Kv

)
. (35)

hτ,h is the horizontal and hτ,v the vertical diameter of the element τ . The flow is advec-

tive/convective dominated for large Péclet numbers.

A well known stabilization technique is the streamline upwind Petrov Galerkin method

(SUPG). This method has been developed first by Brooks and Hughes (1982). Starting

from equation (24) of the SGM we will use now augmented test functions φ̃ = φ + ψ.
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The φ are continuous but the ψ can be discontinuous over the boundaries of the elements.

They assume the part of the upwind corrections. Following the weak formulation of the

SGM the discrete equations with the upwind corrections read:

(
u∇Ch, φh

)
+

(
Kh∇hCh,∇hφh

)
+

(
Kv

∂

∂z
Ch,

∂

∂z
φh

)
+

∑
τεTh

(
u∇Ch, ψh

)
τ

=
(
f, φh

)
+

∑
τεTh

(
f, ψh

)
τ

(36)

with the scalar product (a, b)τ =

∫
τ

a · b dΩ. The summations have to be carried out over

all elements τ . These terms represent a kind of artificial diffusion. For the functions ψh

Brooks and Hughes (1982) introduced

ψh = Aτ u · ∇φh with

Aτ =
hτ,h ξ(Peτ)

2 ‖ uh ‖ for Peτ,h ≥ Peτ,v and Aτ =
hτ,v ξ(Peτ)

2 ‖ w ‖ otherwise. (37)

There are various suggestions for the parameter ξ depending on the local Péclet number

Peτ (Hughes et al., 1986, Franca et al., 1992):

ξ(Peτ) = coth(Peτ ) − Pe−1
τ ‘optimal’,

ξ(Peτ) = min
(

1
3
Peτ , 1

)
‘double asymptotic’,

ξ(Peτ) = max (0, 1 − Pe−1
τ ) ‘critical approximation’.

The functional relationships for ξ(Peτ ) show that there is no or only a small effect of the

stabilization scheme for small Péclet numbers (Peτ . 1).

Hughes et al. (1989) presented a modified version of the SUPG denoted Galerkin least-

squares method (GLS). In this case the term ∇φh of the function ψh (eq. 37) is substituted

by the residuum of the advection-diffusion equation applied to the test function φh. The
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function ψh is written then

ψh = Ãτ

(
u∇φh −Kh∆hφh −Kv

∂2

∂z2
φh

)
= Ãτ

(
u · ∇φh

)
. (38)

The second and the third term in the brackets vanishes because φh is piecewise linear.

In this special case ψh of equation (38) is equivalent to the ψh of equation (37) if the

parameter Ãτ = Aτ is used.

Brezzi et al. (1992) presented another rather new stabilization technique which uses the

so-called bubble functions. However, they showed as well that in the case of piecewise

linear tracers and piecewise constant velocities this method is also equivalent to SUPG

and GLS.

4 An Application to the South Atlantic

The model presented in section 2 and 3 is first applied to the South Atlantic. The model

domain extends from 70◦W to 20◦E and from 30◦S to 74◦S. Our interest is focussed on

the Weddell Sea which is embedded in the model domain.

4.1 The Mesh

The mesh is unstructured and contains 13431 nodes and 65623 tetrahedra. The grid

spacing is ≤ 2◦ horizontally and ≤ 750 m in the vertical direction. There are prescribed

levels in 50 m, 100 m, 200 m and 400 m. Normal to the bottom the grid spacing is smaller

than 500 m. The mesh is generated with the IBG grid generator written by I. Schmelzer

(1995) using ETOPO5 data (National Geophysical Data Center, 1988) for topography.

The IBG generator is a grid based generator and works with a combined Octree/Delaunay
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method. Figure (2) shows the bottom topography and the open boundaries of the model.

The mesh yields a sparse stiffness matrix S with rank 13431 and nz = 182103 nonzero

elements.

4.2 Data and Boundary Conditions

The climatologic data for temperature Tdat and salinity Sdat used in the model are data

provided by the WHP Special Analysis Center (Gouretski and Jancke, 1998). Wind stress

is taken from Hellerman and Rosenstein (1983). The annual mean is used for the stationary

model.

The data set for the sea surface height ζ (SSH) was produced from measurements of

satellite altimetry. The mean sea surface – originating from the CLS/SHOM1 (Hernandez

and Schaeffer, 2000) – is referenced to the EGM96 geoid (Lemoine et al., 1998). To reduce

small scale noise of the geoid model a filtering technique according to Wahr et al. (1998)

is used. The averaging kernal of the filter has a radius of 4.5◦. Filtered SSH data are

presented in figure (3).

The advection-diffusion equation (6) is solved for the temperature (C = T ) and the salinity

(C = S) on the model domain. The boundary conditions for T and S are ∂T/∂n =

∂S/∂n = 0 at the bottom. Along the open boundaries T = Tdat and S = Sdat is prescribed.

In the regions with outflow between 0◦E and South Africa along the northern boundary at

30◦S (Benguela Current) and between 40◦S and 60◦S along the eastern boundary at 20◦E

(Antarctic Circumpolar Current) ∂T/∂n = 0 and ∂S/∂n = 0 is set as outflow conditions.

The horizontal and the vertical diffusion coefficients are prescribed with Kh = 5·104 m2s−1

1Collecte Localisation Satellites/ Service Hydrographique et Océanographic de la Marine
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and Kv = 5 · 10−2 m2s−1. The total volume transports across the open boundaries are

prescribed, too. Through the boundary along 70◦W 130 Sv (1 Sv = 106 m3s−1) flow into

the South Atlantic. This value is also given by Reid (1989). The same amount leaves

the model domain at 20◦E. The total transports across the northern and southern open

boundaries vanish. Constraining the transport of the ACC to investigate the circulation in

the Weddell Sea is a common practice. For example Beckmann et al. (1999) also prescribed

the ACC transport through the Drake Passage with a value of 130 Sv.

4.3 Solving the Systems of Linear Equations

The model computations performed on a Cray J90 computer. The system of linear equa-

tions (34) arising from the finite element discretization of the advection-diffusion equation

and the calculation of the Lagrange multipliers are solved using the GMRES-solver (Gen-

eralized Minimal RESidual, Saad and Schultz, 1986; Barett et al., 1994) of the SITRSOL

routine. The SITRSOL routine is part of the scientific library (SCILIB) for Cray systems.

It provides iterative solvers for real general sparse systems using preconditioned conjugate-

gradient-like methods. ILU(m)-factorization (Incomplete LU) is used for preconditioning.

The (integer) parameter m denotes the level of fill-in for the factorization. The amount

of fill-in in the lower and the upper triangular matrices L and U is given by 2m · nz. To

improve the performance of the GMRES-solver and to reduce the requirements of memory

for the fill-in elements the Metis package (Karypis and Kumar, 1998) is used for reordering

the coefficient matrix S. The high quality of the reordering produced by the Metis package

for our problem was demonstrated earlier by Dobrindt and Frickenhaus (2000).
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5 Results

We now discuss the results of the model application to the South Atlantic. The model

solution found is distinguished by reference velocities uref , vref close to those calculated

from the gradient of the SSH data and by temperatures T and salinities S close to the

data Tdat and Sdat. The differences between model values and hydrographic data are in

the range of the errors of the hydrographic data. The deviations of the reference velocities

from their equivalent are very small. First we have a look on the spreading of different

water masses. Afterwards we discuss the circulation pattern of the model solution, the

volume transports and the exchange of heat and salt.

5.1 Water Masses

The classification of water masses depending on the neutral density γ is the same as in

Sloyan (1997): Surface Water (SW) is defined by γ < 26.5. For the Antarctic Intermediate

Water (AAIW) 26.5 ≤ γ < 27.6 is valid. The deep water (27.6 ≤ γ < 28.2) is composed

of the North Atlantic Deep Water (NADW) and the Circumpolar Deep Water (CDW).

The CDW flows as a part of the Antarctic Circumpolar Current (ACC) through the Drake

Passage into the South Atlantic. The Antarctic Bottom Water (AABW) has a neutral

density of γ ≥ 28.2. The upper limit for the AABW is in agreement with Orsi et al.

(1999). The AABW which is formed in the basin of the Weddell Sea (Weddell Sea Deep

Water, WSDW and Weddell Sea Bottom Water, WSBW) is denser (γ ≥ 28.27). But the

WSDW and WSBW is modified by the lower Circumpolar Deep Water (LCDW) when it

is transported to the north by the deep western boundary currents. Therefore γ ≥ 28.2 is
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a reasonable value for the AABW in the South Atlantic.

The figures (4 - 7) show the spreading of surface water, intermediate water, deep water

and bottom water in the South Atlantic along the Greenwich meridian, 20◦W, 40◦W and

30◦S. The solid lines represent the model solution while the distribution computed from

the hydrographic data is shown in dashed lines. The agreement of the model and the

data is very good. Surface water occurs only in the upper 400 m north of circa 40◦S. The

γ = 27.6 isosurface extends up to ∼1300 m at 30◦S and reaches the ocean surface between

56◦S and 60◦S. The lower boundary of the deep water ranges from the ocean bottom at

30◦S up to 1000 m depth at the southern boundary of the model domain. The AABW

is found in the Weddell Sea below 1000 m and spreads through the deep channels of the

Argentine Basin and the Cape Basin at 30◦S.

5.2 The Large Scale Circulation

Figure (8) presents the reference velocity field (uref , vref). The surface circulation is

smooth because it reflects the structure of the SSH data. The upper-level flow field is

similar to that circulation pattern. Comparisons of the circulation of the South Atlantic

with that from literature (e.g. Reid, 1989; Peterson and Stramma, 1991) show much

agreement. The ACC flows through the Drake Passage in the Scotia Sea and turns to the

north-east. When leaving the Scotia Sea the ACC shifts back to flow in eastern direction.

The ACC flows out of the model domain at the eastern boundary between 40◦S and 56◦S.

The Subtropical Gyre enters into the model domain across the northern boundary east of

the Brazilian coast and flows as South Atlantic Current (SAC) parallel to the ACC. In

the region around 6◦E the SAC turns to the north and leaves the model domain.
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In section 4 we have already mentioned that our major attention is directed to the Weddell

Sea where the circulation forms the Weddell Gyre. The upper-level Weddell Gyre is shown

in the figures (8) and (9). The southward flowing part into the Weddell Sea occurs east

of 6◦E. Then the current turns to the west and flows along the coast of Antarctica. The

center of the gyre is at (3◦W, 64◦S). There is a wide part of the gyre flowing to the north

with an intensification near the Antarctic Peninsula. The ACC-Weddell Gyre boundary

runs along 58◦S. This agrees with the schematic representation of the large scale upper-

level currents in figure 1 of Peterson and Stramma (1991). The figures (10, 11 and 12)

present the pattern of the Weddell Gyre in the depths of 1112 m, 3962 m and 4675 m.

The gyre keeps its structure from the upper layers down to the depth. The beginning of

the western boundary current which transports WSBW and WSDW respectively from the

Weddell Sea Basin to the north is recognizable in 3962 m depth. At the depth of 4675 m

the Weddell Sea Basin is separated from the Argentine Basin and the Cape Basin. The

circulation pattern of the Weddell Gyre agrees at all depth levels with that from Reid

(1989). The velocities of the Weddell Gyre decrease from 3-4 cm s−1 near the surface to

less then 2 cm s−1 at the bottom. These are typical values compared to Fahrbach et al.

(1994a,b).

In the upper-level circulation (fig. 8) the Falkland/Malvinas Current separates from the

ACC in the Scotia Sea. This western boundary current flows along the coast of South

America to the north. The Brazil Current and the so-called confluence region (Gordon,

1989) near 40◦S where the Brazil Current meets the Falkland/Malvinas Current is not

marked. This was expected because the SSH data contain only large scale features yield-

ing only a smooth flow field and because of the mesh resolution in the present model
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version. Near South Africa the Benguela Current and the Agulhas retroflection is only

weakly represented because of the smooth SSH data. Nevertheless the Agulhas retroflec-

tion has its maximum east of 20◦E. North of the Weddell Gyre the circulation is dominated

by the ACC and the Subtropical Gyre. Figure (13) shows the horizontal flow field of the

whole model domain in 3962 m. The Weddell Gyre at this depth was already presented in

figure (11). There is a current from the Weddell Sea basin into the Argentine Basin that

transports bottom water from the Weddell Sea into the Argentine Basin. Along this way

the bottom water is modified by the LCDW. But the flow field in the Argentine Basin is

dominated by a counterclockwise flow pattern. The reason is that the northern compo-

nent of the reference velocities depending on the smooth SSH data are not large enough

to produce a northward flow at the bottom.

Comparisons of the model circulation with the flow fields produced by other numerical

models show also agreements. The upper-level circulation is similar to that from England

and Garcon (1994) and Barnier et al. (1996). In the work of Barnier et al. (1996) a similar

westward current in northern part of the Argentine Basin at 4375 m depth is presented.

5.3 Transports

As mentioned before the total volume transports across the open boundaries are prescribed.

However, the transports of the different water masses described in paragraph 5.1 are model

results. They are presented in figure (14). Through the Drake Passage 38.2 Sv intermediate

water (IW), 87.7 Sv deep water (DW) and 4.1 Sv bottom water (BW) are flowing into the

South Atlantic. 0.2 Sv SW, 44.1 Sv IW, 70.3 Sv DW and 15.4 Sv BW are exported into the

Indian Ocean across 20◦E. Across the northern open boundary of the model at 30◦S 4.1 Sv
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SW and 20.4 Sv AAIW are transported to the north which is compensated by a southward

flow of 23.6 Sv NADW. The transport of 0.9 Sv AABW to the south is due to the deep

flow field in this region which has the wrong direction as we have discussed above. A closer

inspection shows its characteristic as modified bottom water with 28.2 ≤ γ < 28.27. The

northward spreading of denser bottom water with γ ≥ 28.27 extends up to about 35◦S

which is in agreement with Orsi et al. (1999). 13.0 Sv of this water mass are formed in

the Weddell Sea. These are exported totally across 20◦E. The formation rate of AABW

with a neutral density of γ ≥ 28.2 over the whole model domain is 10.4 Sv. Rintoul (1991)

estimated a formation rate of 9 Sv in his standard case and 13 Sv in the ‘warm-water-path’

case. Other values from by previous studies are 12.3 Sv (de las Heras and Schlitzer, 1999;

study B), 5 Sv (Matano and Philander, 1993) and 1 Sv (Sloyan and Rintoul, 2000). In the

work of Macdonald (1995) no bottom water production is detected. Additional estimates

of AABW formation rates of previous studies are in the range from 2-15 Sv (see Table 3

in Orsi et al., 1999).

These transports result in a heat transport of 0.64 PW across 30◦S to the north. This value

is compared with the heat transports presented in previous studies in figure (15). The heat

transports across 70◦W and 20◦E amount to 1.06 PW and 1.25 PW. The ratio between

the transports of intermediate and deep water together with the heat transports across

the open boundaries compares well with the ’warm-water-path’ case of Rintoul (1991). In

that study the total volume transports across 32◦S, 68◦W and 20◦E are likewise 0 Sv, 129

Sv and 130 Sv. The heat transport across 32◦S is assumed to be 0.69 PW (the value given

by Hastenrath, 1982), which results in a transport of 22 Sv NADW across 30◦S to the

south. The heat transports across 68◦W and 20◦E are 1.3 PW and 1.12PW. The export

27



of bottom water into the Indian Ocean amounts to 16 Sv. A transport of surface water

into the South Atlantic across this section like the 13 Sv in Rintoul’s work is absent in our

model results.

The transports of salt are 4628 kt s−1 eastwards across 70◦W, 4631 kt s−1 eastwards across

20◦E and 13 kt s−1 across 30◦S to the south. The heat and salt transport across the

southern open boundary at 74◦S are nearly vanishing.

5.4 Vertical Velocities and Sources

Figure (16) shows the vertical velocity field w in 100 m depth. The order of magnitude

of w is 10−6 ms−1. This is in good agreement with vertical velocities presented by Olbers

and Wenzel (1989) and Schlitzer (1995). For clarity only the zero and the 1.0 · 10−6 ms−1

contour lines are printed. Regions with w < −2.0 · 10−6 ms−1 occur south-west of South

Africa and eastern of 35◦W in the Weddell Sea. Western of 35◦W w increases up to

6.0 · 10−6 ms−1. Near the cost of South America we find a small area around 45◦S where

the vertical velocity is in the range between ±8.0 · 10−6 ms−1. The maximum value of

14.0 · 10−6 ms−1 occurs at the Antarctic Peninsula.

The distribution of the sources F T and F S of the advection-diffusion equation (6) yields

a pattern with no regular structure. Changes of sign are frequent. The strength of the

sources increases near the bottom especially in the vicinity of steep gradients in the model

topography. In such regions tetrahedra have small volumes to get a mesh close to the

topography. As an example figure (17) shows the sources field along 20◦W.
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6 Summary and Conclusions

In this study we have presented a new adjoint model with finite elements applied to a

stationary advection-diffusion problem. The usage of the finite element method (FEM)

is still rare in ocean modeling. As shown in section 3 the FEM is very suitable to treat

problems on complex geometries given by the coast lines and the bottom topography. It

provides the possibility to work with structured or unstructured grids and local refinement.

The weak formulation of the variation principle (Standard Galerkin Method, section 3.1)

reduces the order of the partial differential equation by integration by parts, so that one

can use simple basis functions. Different stabilization techniques for advective problems

are well known (section 3.2). The adjoint equations are given by the transpose of the

stiffness matrix and by derivatives of the stiffness matrix.

We presented a first application of the new model to the South Atlantic with the major

attention directed to the Weddell Sea. We assimilated climatological hydrographic data

and SSH data from satellite altimetry in the model. The transports of the model solution

across the open boundaries agree with the values from literature. The heat transport of

0.64 PW across 30◦S to the north connected with a southward transport of 23.6 Sv NADW

corresponds to the ’warm-water-path’ case of Rintoul’s study (1991). The formation rate

of bottom water with a neutral density of γ ≥ 28.2 in the model domain amounts to

10.4 Sv. The upper-level circulation corresponds to that from literature. Similarly the

circulation of the Weddell Gyre is in good agreement over the full depth of the Weddell

Sea to that from literature. Bottom water formed in the Weddell Sea is transported to

the east and to the north where it is modified by the lower CDW of the ACC.
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The southward transport of 0.9 Sv bottom water (28.2 ≤ γ < 28.27) at 30◦S is in dis-

agreement with literature. The main reason is that in this region the northern components

of the reference velocities fitted to the gradient of the SSH data are too small to yield a

northward transport at the bottom. Another important reason is the resolution of the

mesh near the bottom at 30◦S. It is somewhat coarser than in the Weddell Sea and there

can be also some influence from open boundary effects. There are possibilities for mesh

refinement but they are always limited by the large memory requirements of adjoint mod-

els. Parallelizing the model code can help here in the future.

The sources F T and F S of the advection-diffusion equation were introduced to parameter-

ize subscale processes which are not resolved by the mesh and by the diffusion coefficients

Kv and Kh. Constant diffusion coefficients on the whole mesh created by tetrahedra with

a large range of volumes are describing the processes on the elements only roughly. In the

further development of the model diffusion coefficients which are varying spatially could

be suitable.
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Appendix

The Basis Functions

Equations (32) in paragraph 3.1 introduced the piecewise linear (local) basis functions

ϕi(x, y, z) = aix+ biy + ciz + di. (39)

Four basis functions ϕi are defined on each tetrahedron. Let i, j = 1, 2, 3, 4 denote the

corner points of the tetrahedron. Then each function ϕi is equal to 1 at the corner i = j,

zero at all other corners and linear inbetween. The coefficients ai, bi, ci and di are easily

calculated from the coordinates xj of the corner points j. For instance the first basis

function ϕj=1(x, y, z) of the tetrahedron τm reads

ϕ1(x, y, z) =
α(x− x3) + β(y − y3) + γ(z − z3)

6 · Vτm

(40)

where

α = (y4 − y3)(z2 − z3) + (y3 − y2)(z4 − z3)

β = (x2 − x3)(z4 − z3) + (x4 − x3)(z3 − z2)

γ = (x2 − x3)(y3 − y4) + (x4 − x3)(y2 − y3).

The volume of the tetrahedron is

Vτm =
1

6
·

∣∣∣∣∣∣∣∣∣∣∣∣

x1 − x2 y1 − y2 z1 − z2

x1 − x3 y1 − y3 z1 − z3

x1 − x4 y1 − y4 z1 − z4

∣∣∣∣∣∣∣∣∣∣∣∣
. (41)
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Vogeler, A. and J. Schröter, 1999: Fitting a regional ocean model with adjustable open

boundaries to TOPEX/POSEIDON data. J. Geophys. Res., 104(C9),20789-20799.

Wahr, J., M. Molenaar and F. Bryan, 1998: Time Variability of the Earth’s Gravity

Field: Hydrological and Oceanic Effects and Their Possible Detection Using GRACE. J.

Geophys. Res., 103(B12),30205-30299.

Walters, R.A. and F.E. Werner, 1989: A comparison of two finite element models of tidal

hydrodynamics using a North Sea data set. Adv. Water Resources, 12,184-193.

Webb, D.J. et al., 1991: Using an eddy resolving model to study the Southern Ocean.

EOS, 72,15 pages.

Wunsch, C., 1996: The Ocean Circulation Inverse Problem. Cambridge University Press.

Wunsch, C., D.B. Haidvogel and M. Iskandarani, 1997: Dynamics of the long-period tides.

Prog. Oceanog., 40(1-4),81-108.

40
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Figure captions

Figure 1: Tetrahedra are the basic elements used in this work.

Figure 2: The mesh: Bottom topography and open boundaries.

Figure 3: SSH data in m.

Figure 4: Water masses along the Greenwich meridian.

Figure 5: Water masses along 20◦W.

Figure 6: Water masses along 40◦W.

Figure 7: Water masses along 30◦S.

Figure 8: Reference velocities (uref , vref) in the South Atlantic with South America at

the north-west corner, the Antarctic Peninsula at the south-west corner, Antarctica at the

south-east corner and South Africa at the north-east corner.

Figure 9: The Weddell Gyre in 100 m with the Antarctic Peninsula at the South-West

and Antarctica at the South-East.

Figure 10: The Weddell Gyre in 1112 m.

Figure 11: The Weddell Gyre in 3962 m.

Figure 12: The Weddell Gyre in 4675 m.

Figure 13: Horizontal flow field in 3962 m of the South Atlantic.

Figure 14: Transports in Sv of surface water (SF, γ < 26.5), intermediate water (IW,

26.5 ≤ γ < 27.6), deep water (DW, 27.6 ≤ γ < 28.2) and bottom water (BW, γ ≥ 28.2)

across the open boundaries of the model domain at 30◦S, 74◦S, 20◦E and 70◦W; negative

sign denotes transports to the west or to the south.

Figure 15: Comparison of the heat transports from different studies across 30◦S in the
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South Atlantic.

Figure 16: Vertical velocities w in ·10−7ms−1 in 100 m of the South Atlantic.

Figure 17: Sources F T and F S along 20◦W. The zero-contour line is dotted.
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