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ABSTRACT

This work assesses the large-scale applicability of the recently proposed nonlinear ensemble transform filter

(NETF) in data assimilation experiments with the NEMO ocean general circulation model. The new filter

constitutes a second-order exact approximation to fully nonlinear particle filtering. Thus, it relaxes the

Gaussian assumption contained in ensemble Kalman filters. The NETF applies an update step similar to the

local ensemble transform Kalman filter (LETKF), which allows for efficient and simple implementation.

Here, simulated observations are assimilated into a simplified ocean configuration that exhibits globally high-

dimensional dynamics with a chaotic mesoscale flow. The model climatology is used to initialize an ensemble

of 120members. The number of observations in each local filter update is of the same order resulting from the

use of a realistic oceanic observation scenario. Here, an importance sampling particle filter (PF) would re-

quire at least 106 members. Despite the relatively small ensemble size, the NETF remains stable and con-

verges to the truth. In this setup, the NETF achieves at least the performance of the LETKF. However, it

requires a longer spinup period because the algorithm only relies on the particle weights at the analysis time.

These findings show that the NETF can successfully deal with a large-scale assimilation problem in which the

local observation dimension is of the same order as the ensemble size. Thus, the second-order exact NETF

does not suffer from the PF’s curse of dimensionality, even in a deterministic system.

1. Introduction

Data assimilation (DA) refers to the combination of

predictions from numerical models with real-world ob-

servations. The resulting state estimates are of high

relevance, particularly in atmospheric or oceanic model-

ing (e.g., Bennett 2002). Its application in model initiali-

zation represents an essential contribution to forecast

quality. However, DA also allows one to consistently

reconstruct the system state over extended time periods,

and the resulting reanalyses are an extremely valuable

data source for climate studies and diagnostics (e.g.,

Bengtsson et al. 2007). Additionally, systematic model or

observation errors can be diagnosed from DA output

(e.g., Haimberger 2007).

In principle, the DA problem is entirely determined

by Bayes’s theorem (e.g., Wikle and Berliner 2007).

However, a major challenge in geophysical applications

(e.g., van Leeuwen 2010) consists of the high di-

mensionality of the involved state and observation

spaces, together with the lack of knowledge about the

involved probability density functions (pdfs). This work

focuses on sequential, ensemble-based square root filters

that iteratively improve the state estimate throughout

the assimilation window. They perform an ensemble pre-

diction during the forecast step and update the prior en-

semble with the current observations in the analysis

step. Compared to variational methods (e.g., 4DVAR;

Talagrand andCourtier 1987), which fit awhole trajectory,
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these filters are conceptually attractive and easy to im-

plement since no tangent linear and adjoint models are

required (Kalnay et al. 2007). Particle filters (PFs) offer a

direct Monte Carlo solution to Bayes’s theorem without a

parametric assumption on the forecast pdf (Doucet et al.

2001). However, the likelihood weights are computed in

a high-dimensional probability space in which the region

of significant probability density is extremely narrow.

Consequently, many ensemble members obtain in-

significant weight, which leads to filter divergence (Snyder

et al. 2008). This is known as the curse of dimensionality

(Silverman 1986).

The ensemble Kalman filter (EnKF; Evensen 1994;

Burgers et al. 1998) avoids this issue by assuming

Gaussian distributions, where the required mean and

covariance of the state are directly estimated from the

forecast ensemble. Over the past two decades, the EnKF

has evolved to a robust scheme that is applicable to large-

scale systems with small ensemble sizes, such as in nu-

merical weather prediction (e.g., Reich et al. 2011;

Miyoshi and Kunii 2012) or oceanography (e.g., Nerger

et al. 2007; Losa et al. 2012). Deterministic variants

such as the (local) ensemble transform Kalman filter

[(L)ETKF, Bishop et al. 2001; Hunt et al. 2007] avoid

sampling noise in the analysis step by applying a matrix

square root transform. However, the implicit Gaussian

assumption leads to a linear update mechanism and

renders the analysis suboptimal in nonlinear systems

(Lei and Bickel 2011). Consequently, there is broad re-

search activity toward enabling the applicability of non-

linear filters in high dimensions (e.g., van Leeuwen 2009).

A more recent development is the equivalent weights

PF (EWPF; van Leeuwen 2010). It explores proposal

densities to ensure that the particles lie in the important

region and exhibit small variability of the weights, which

allows for applicability to large-scale DA (van Leeuwen

and Ades 2013; Ades and van Leeuwen 2015). However,

the EWPF only works in models with stochastic model

errors and requires an adequate adaption of the forecast

step toproperly guide theparticles (Ades andvanLeeuwen

2013), which increases the implementation complexity.

While the EWPF aims at considering the full analysis

pdf, approximations to fully nonlinear filtering have

been suggested as well (van Leeuwen 2009). This work

builds upon Tödter and Ahrens (2015), who introduced

the nonlinear ensemble transform filter (NETF). It is

based on the nonlinear ensemble adjustment filter

(NLEAF; Lei and Bickel 2011), which updates each

member with perturbed observations. In contrast, the

NETF applies a matrix square root transform, similar

to the ETKF, to ensure that the analysis mean and co-

variance exactly match the Monte Carlo estimates of

the Bayesian expectations. To overcome the curse of

dimensionality inherent to most PFs, the effective di-

mensionality is reduced by localizing the analysis as

done in the LETKF. The NETF only acts in the analysis

step, which allows the use of deterministic models.

The empirical findings resulting from assimilation ex-

periments with ensemble sizes not larger than 100

(Tödter and Ahrens 2015) point out that it produces

reasonable and stable analyses, even in higher-dimensional

and chaotic systems with state dimensions up to 103. In

these experiments with simplified models, the NETF

outperforms the stochastic EnKF and the (L)ETKF in

the presence of nonlinearity. Additionally, it improves

upon the stochastic NLEAF in larger-dimensional

cases because of the deterministic update mecha-

nism. Thus, the NETF exhibits potential applicability

to large-scale DA.

Motivated by these results, this work assesses the

NETF’s performance in an advanced circulation system.

This system is characterized by more realistic and higher-

dimensional dynamics with a state dimension that is or-

ders of magnitudes larger than studied before. For that

purpose, we apply the Nucleus for European Modelling

of the Ocean (NEMO v3.3; Madec 2012), a state-of-the-

art ocean general circulation model (OGCM), within an

identical twin experiment that includes a realistic obser-

vation scenario and a challenging filter initialization.

The principal objective of this paper is to demonstrate

that the generic NETF is applicable to high-dimensional

DA, even though it only relies on the Bayesian weights

in the analysis step. In particular, no proposal densities,

as in the EWPF, or other modifications need to be used.

Furthermore, a comparison with the LETKF reveals as-

pects that influence the filter’s performance. This allows

us to gain more insight into its behavior and to enable

future improvements.

The remainder of this paper is organized as follows.

Section 2 contains a brief review of ensemble square

root filters and establishes the formal analogy of NETF

and ETKF. In section 3, the configuration of the ocean

model and its circulation characteristics are presented.

Section 4 specifies the observation scenario and filter

setup. The results of the assimilation experiments are

shown and discussed in section 5. Finally, section 6

draws the principal conclusions and outlines potential

continuative research paths.

2. Ensemble square root filtering

In the following work, we exclusively concentrate on

the analysis step and, therefore, neglect any time indices.

We consider a dynamical systemM, and the state vector

x of size d contains the prognostic model variables.

We assume that an ensemble of m independent and
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identically distributed prior states fxifgi51,...,m is available.

Usually, it arises from a preceding forecast step and can

be regarded as the best representation of the forecast pdf,

p(x) (i.e., before assimilating the new observation). The

ensemble vectors are stored in the columns of the d3m

matrix Xf . Subtracting the prior ensemble mean, xf , from

each column yields the ensemble perturbation matrix X0
f .

The observation, represented by the vector y of size k,

contains all measurements available at that time. The

observation operator H(x) maps any model state into

observation space. We define the k3m matrix Yf that

contains the mapped ensemble vectors [i.e., yif 5H(xif )].

The observational uncertainty is represented by the

likelihood pdf, p(y j x), which may be of arbitrary form

in the NETF. In this work, we restrict the likelihood to

a Gaussian distribution with covariance R fi.e.,
N [y;H(x), R]g.
As the prior pdf is usually unknown, approximate

solutions have been developed, thus leading to a large

variety of filters and smoothers. Second-order exact fil-

ters aim at an analysis ensemble such that its mean, xa,

and covariance, Pa 5 [1/(m2 1)]X0
aX

0T
a , exactly match

some specified values. Both the ETKF and NETF can

be described by the same square root filtering frame-

work (Nerger et al. 2012). The analysis ensemble,

Xa 5Xa 1X0
a, incorporates the observation by updating

the prior mean and perturbations as follows:

x
a
5 x

f
1X0

fw , (1)

X0
a 5X0

fTL . (2)

The mean analysis increment is a linear combination of

the prior perturbations, and it is determined by a weight

vector w, while the m3m matrix T, typically a matrix

square root, transforms X0
f into analysis perturbations,

X0
a. The optional random m3m matrix L constitutes a

rotation in the ensemble subspace. The weight vector

and transformmatrix depend on the prior ensemble and

observational properties. Their specific forms in the

ETKF and NETF are presented next.

a. Linear filtering and the ETKF

The Kalman filter (KF; Kalman 1960) assumes that

the prior as well as the likelihood pdf are Gaussian.

Then, according to Bayes’s theorem, the analysis pdf

remains Gaussian, and its mean and covariance can be

computed analytically from the prior moments. En-

semble Kalman filters extract the prior moments from

an ensemble integration. This partly accounts for the

nonlinear nature of the model (Anderson 2012). Sto-

chastic EnKFs (Burgers et al. 1998; Houtekamer and

Mitchell 1998) introduce additional sampling errors

(Whitaker and Hamill 2002). In contrast, deterministic

EnKFs (Tippett et al. 2003) transform the prior ensemble

such that its first two moments exactly match the theoret-

ical KF values. The ETKF (Bishop et al. 2001) is deter-

mined by the update applied with Eqs. (1) and (2) if the

weight vector and transform matrix are chosen as follows:

wETKF 5
1

m2 1
(TETKF)(TETKF)TY0T

f R
21(y2 y

f
) , (3)

TETKF 5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 1

p
[(m2 1)I

k
1Y0T

f R
21Y0

f ]
21/2 . (4)

Following Wang et al. (2004), the unique symmetric

square root should be chosen to compute the transform

matrix in Eq. (4).

b. Nonlinear filtering and the NETF

The Gaussian assumption in the EnKFs leads to a

robust solution, but the resulting filters are suboptimal

in nonlinear systems. In contrast, PFs (Doucet et al.

2001) offer a nonparametric solution of the assimilation

problem. The basic importance sampling PF (Gordon

et al. 1993) interprets the prior ensemble as a mixture

of delta distributions that approximate the prior pdf

[i.e., p(x)’ 1/m�id(x2 xif ) for an equally weighted en-

semble]. Using this particle representation, Bayes’s

theorem states that the analysis pdf is approximated as

p(x j y)’ �
m

i51

wid(x2 xif ), where wi 5
p(y j xif )

�
m

j51

p(y j xjf )
.

(5)

Theanalysisweightswi contain all the information extracted

from the observation. For Gaussian observation errors,

wi }N [y;H(xif ),R]} exp

�
2
1

2
(y2 yif )

TR21(y2 yif )

�
.

(6)

While the EWPF (van Leeuwen 2010) attempts to

sample the full analysis pdf, the NETF (Tödter and

Ahrens 2015) represents a generic, yet approximative

solution to nonlinear filtering. It applies a deterministic

update mechanism in analogy to the ETKF such that

the first two moments of the analysis ensemble exactly

match the unbiased PF estimates of the Bayesian mean

and covariance. The analysis mean and perturbations

of the NETF are computed with Eqs. (1) and (2) by

using the Bayesian weights defined in Eq. (5) and the

following transform matrix:

wNETF 5 (w1, . . . ,wm)T , (7)

TNETF 5
ffiffiffiffiffi
m

p
[W2wNETF(wNETF)T]1/2 . (8)
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Here, the matrixW[diag(wNETF) is the diagonalm3m

matrix formed by the weights. As in the ETKF, the

unique symmetric square root is used in Eq. (8). For

stability reasons, the random rotation with L [see Eq.

(2)] is mandatory in the NETF. Details on the theoret-

ical background of the NETF can be found in Tödter
and Ahrens (2015) and Tödter (2015).
The ETKF and NETF are described by update

equations of identical form. They only differ in the ex-

plicit equations of the weight vector and the transform

matrix, thus allowing simple implementation of the

NETF. Both filters perform the update in the ensemble

subspace, and their computational expenses are similar

for a given ensemble size.

c. Localization and inflation

In large-scale applications, most ensemble filters re-

quire modifications because the ensemble size is usually

much smaller than the system’s dimension (e.g.,Anderson

2012). Observation localization (OL; Hunt et al. 2007)

suppresses spurious correlations associated with dis-

tant locations and increases the rank of the analysis

covariance by partitioning the state vector into subsets,

the so-called local domains. Typically, a local domain

contains all state variables at each grid point or in each

vertical column (e.g., Houtekamer and Mitchell 1998;

Losa et al. 2012). Each local domain is updated in-

dependently using only a part of the global observation

vector. Typically, nearby observations are included by

choosing an appropriate localization radius. The

overlapping observation regions of different local do-

mains ensure that the covariances in the ensemble

covariance matrix are taken into account. Mathemati-

cally, the observation impact is reduced with distance

by multiplying R21 by an appropriate correlation

function through the use of a Schur product (Whitaker

and Hamill 2002; Kirchgessner et al. 2014). This term

appears in Eqs. (3)–(4) and (6) for the LETKF and

NETF, respectively. Therefore, OL can be directly

adopted for the NETF. It reduces the effective di-

mension of the observation space, where the Bayesian

weights are computed. This counteracts filter divergence in

higher dimensions. A detailed algorithm for the localized

NETF is given in Tödter and Ahrens (2015, their

section 4f).

Inflation is usually applied to counteract the tendency

of the ensemble to underestimate the uncertainty.

Multiplicative inflation adjusts the prior ensemble per-

turbations by X0
f /

ffiffiffi
g

p
X0
f . This increases the prior co-

variance by a factor of g, which is slightly larger than 1

(Anderson and Anderson 1999). The localization radius

and inflation factor constitute the main tuning factors

for most ensemble filters. They allow the EnKFs to

achieve results that are competitive to established vari-

ational schemes (e.g., Buehner et al. 2010; Fairbairn

et al. 2014), and they can be used similarly in the NETF.

3. Ocean model and its configuration

This section gives an overview of the ocean model

applied in our experiment. Additionally, we discuss

the characteristic circulation that emerges from our

model setup.

a. Model characterization

The NEMO model (Madec 2012, http://www.nemo-

ocean.eu) contains an OGCM that numerically solves

the primitive equations that determine the ocean’s dy-

namics and thermodynamics. Its prognostic variables

are temperature T, salinity S, zonal and meridional fluid

velocity (U, V), as well as sea surface height (SSH).

Processes that occur on a subgrid scale, such as turbu-

lence or convection, are parameterized. For example,

the diffusive fluxes are described by second-order clo-

sure schemes that use the gradients of the large-scale

fields together with associated eddy coefficients. The

NEMO model applies a leapfrog time stepping scheme

for all nondiffusive terms in conjunction with a Robert–

Asselin time filter. For the lateral diffusive and damping

parts of the equations, a forward scheme is used, while in

the vertical direction, an implicit scheme is required.

The spatial discretization applies second-order central

finite differences on a curvilinear Arakawa C-type grid.

Boundary conditions are required to determine the

fluxes of momentum, mass, and energy at the ocean in-

terfaces. At the bottom, usually all fluxes are assumed to

vanish. In contrast, the fluxes at the upper boundary are

derived from atmospheric forcing fields by using bulk

formulations or by applying analytical prescriptions.

The lateral boundary conditions depend on the specific

model setup.

b. Model configuration and setup

The aim of this work is to demonstrate the large-scale

applicability of the NETF in principle. Therefore, we

chose a simplified configuration of the NEMO model

with a wind-driven ocean in a closed basin. It idealizes

the ocean circulation that is representative for the

midlatitudes (e.g., the Gulf Stream in the North Atlan-

tic). This configuration is an established test bed in

oceanography (e.g., Carrier and Robinson 1962; Cosme

et al. 2010; Lévy et al. 2010; Yan et al. 2014). The forcing

induces a large-scale double-gyre circulation that is

complemented by mesoscale eddies.

The model is applied to a closed, rectangular basin in

the North Atlantic in an area ranging from 608 to 308W
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and from 248 to 448N. The horizontal grid employs a

distance of 0.258. This resolution corresponds to an

eddy-permitting setup. This discretization results in

nx 5 121 grid points in the zonal and ny 5 81 grid points

in the meridional direction. In the vertical, 11 layers are

defined with exponentially increasing thickness. The

bottom is assumed to be flat and located at a depth of

5054m. The leapfrog scheme is used with a time step of

15min and a smoothing parameter of 0.1 for theRobert–

Asselin time filter. External gravity waves are damped

explicitly in the horizontal momentum equations ac-

cording to Roullet and Madec (2000). The space varia-

tion of the lateral eddy coefficients is constrained to the

horizontal, while the vertical ones are fixed. Here, the

default values 1.2 3 1024m2 s21 for momentum and

1.2 3 1025m2 s21 for temperature are set. The param-

eterization of lateral mixing is realized by a biharmonic

diffusion operator with an eddy coefficient of 28 3
1010m4 s21 for bothmomentum and temperature. At the

bottom, linear friction with a drag coefficient of 4 3
1024m s21 is prescribed, while the lateral boundaries are

assumed to be frictionless.

The model is entirely forced by a prescribed zonal

wind stress tx, which varies with latitude f, but is con-

stant in time t and longitude l (Cosme et al. 2010):

t
x
(f, l, t)52

1

10
cos

�
2p

Df
(f2f

1
)

�
(N s22) . (9)

Here, f1 5 248 is the latitude at the southern boundary

and Df5 208 is the latitude range of the domain. The

forcing is symmetric with respect to f5 348 in the do-

main center, where the zonal wind directs to the east

between 298 and 398. In the northern and southern parts,

the wind blows to the west. No freshwater influx is

considered, and therefore, salinity does not vary and is

disregarded in all following considerations.

c. Model initialization and truth run

We create a reference trajectory for the identical twin

experiment, which is referred to as the truth, by initial-

izing the model with an ocean at rest. Salinity remains

constant at a prescribed value of 35.5 g kg21. Each ver-

tical ocean column is initialized by the same tempera-

ture profile that corresponds to stratification typically

observed in ocean climatologies (Chassignet and Gent

1991):

T(x, y, z, t5 0)525124:06(e2z/800m21) (8C) (z inm).

(10)

After initialization, the model is integrated forward for

75 years. One year is idealized to 360 days. The first

50 years are considered as the spinup phase toward

reaching the model climatology. Afterward, the dynamic

equilibrium of the model with respect to the applied

forcing is reached (Cosme et al. 2010). The actual DA

experiment is performed in year 75, while the years 51–74

allow us to estimate the model climatology.

Before turning to the actual assimilation problem, it

is useful to gain an overview of the dynamical structure

of the wind-driven ocean. For this purpose, we refer to

the true initial state in year 75. Figure 1 shows the sur-

face fields. The large-scale double-gyre circulation, which

intensifies at the western boundary, is directly visible in

the SSH and T fields. In the west, the inhomogeneous

zonal wind forcing leads to boundary current (see

Fig. 1d). They support an eastward jet in the center, which

is located around f5 348 in Fig. 1c. However, the jet is

subject to dynamic instabilities. Consequently, chaotic

behavior can be observed that leads to a mesoscale

flow besides the large-scale double-gyre circulation. It

is characterized by eddies, which exhibit notable local

differences in velocity, temperature, and SSH, and they

may also influence the large-scale flow (Holland 1978).

This underlines the model’s high-dimensional dynam-

ics, which is important concerning the aim of our study.

More quantitatively, the dynamics of a system can be

regarded as high dimensional if a considerable number

of eigenvectors are necessary to explain most of its

variability. The black line in Fig. 2 shows the amount of

variability that can be explained for a model run over

4 years. This is derived from a multivariate singular

value decomposition (Lermusiaux and Robinson 1999)

of states that were sampled each second day. To explain

90% of the variability, about 200 eigenvectors are needed

while 500 eigenvectors can explain 99%. These numbers

are slightly smaller, but of the same order of magnitude as

was found for data from atmosphere or atmosphere–ocean

general circulation systems (Achatz and Branstator 1999;

Achatz and Opsteegh 2003).

4. Experimental setup

Having shown the model and its circulation charac-

teristics, the remaining task is to define an assimilation

problem by simulating observations. Furthermore, we

now describe and discuss the filter setup.

a. Observation scenario

Even though our experiment employs a simplified

ocean configuration with simulated observations, we

create a situation that resembles a typical ocean assimi-

lation problem. Cosme et al. (2010) and Yan et al. (2014)

applied the NEMO configuration described above to in-

vestigate different DA algorithms. We closely follow
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their setup and simulate two types of observations with

distinct spatial structures and densities.

First, Environmental Satellite (Envisat) SSH obser-

vations (e.g., Durrant et al. 2009) are simulated on the

flight tracks falling into our model domain during the

year 2009. This yields on average 150 measurements at

each analysis time. As the observation operator, a bi-

linear interpolation from the model grid to the obser-

vation grid is applied. The observation error, which

summarizes the measurement and representivity errors,

is modeled as uncorrelated Gaussian noise with a

standard deviation of 0.06m. Second, temperature

observations mimic the Argo network (Carval et al.

2013) on a horizontal 38 3 38 grid that is shifted at each

analysis time to reflect the nonstationarity of the pro-

filers. Vertically, all Argo levels located below the first

layer’s center are considered for each profile. The

standard deviation of the observation error variance is

0.38C, and the observation operator is given by trilinear

interpolation.

The observations are assimilated every second day

(i.e., 192 model time steps define one analysis cycle).

Since the truth run covers one idealized year, 180 anal-

ysis steps are performed in total. Figure 3 visualizes the

observation characteristics on day 8 (i.e., at the fourth

analysis step). Figure 3a is a horizontal snapshot that

shows both the Envisat locations and the Argo network

available at this time. The SSH observations along the

satellite tracks are indicated by their color. Figure 3b

gives an example of the temperature profiles along

the l52508 line and their location in the vertical

NEMO grid.

FIG. 1. Snapshots of the model fields at the beginning of year 75 at the (a) surface (SSH) or in the (b)–(d) first layer

(T, U, V), respectively. They visualize the double-gyre circulation with a central jet, meridional currents at the

western boundary, and mesoscale eddies.
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b. Technical implementation

For the assimilation experiments, the NEMO model

was coupled with the parallel DA framework (PDAF;

Nerger and Hiller 2013, available online at http://pdaf.

awi.de). In PDAF, numerous EnKF variants including

the LETKF are already implemented and used for dif-

ferent applications (e.g., Losa et al. 2012; Fournier et al.

2013). Because of the similarity of the LETKF and

NETF equations (see section 2), almost the same

implementation is used. Only minor changes were

needed to account for the different transform matrices

and weight vectors. At an analysis time, each ensemble

state vector xif (i5 1, . . . , m) is constructed from the

model fields (T, U, V, SSH) and mapped into observa-

tion space by interpolation (see section 4a), thus yielding

yif 5H(xif ). Localization is implemented as described in

Nerger et al. (2006) by performing a local analysis for

each vertical column. For each column, nearby mea-

surements (see section 4c) are selected to create the

local observation vector y and the local part of yif .

Then, a local analysis is computed as explained in sec-

tion 2. Finally, all local analyses are accumulated and

each analysis state vector xia is distributed into themodel

fields to initialize the next forecast phase.

Technically, NEMO has been extended to call PDAF

directly from the model code, and it has been compiled

into a single program that contains the full assimilation

system (Tödter 2015, see chapter 6.4.1). Therefore, all

parallel features that are already present in the PDAF

library are directly usable. In addition, the same model

or observation specific routines can be applied directly

to both filters and the twin experiments can be conve-

niently performed.

c. Filter setup

For our experiment, we apply the NETF algorithm

as presented in section 2 without any model-specific

modifications. A fixed multiplicative inflation as shown

in section 2c is applied.We found that a factor of g5 1:02

yields the best performance for the NETF (see section 5).

FIG. 3. Observation characteristics on day 8. (a) The horizontal domain is shown, together with the Argo profiler

locations (crisscrosses) and the synthetic SSH observations (colored) on theEnvisat tracks (thin lines). (b) The vertical

grid of 11 layers is visualized, and embedded are the artificial Argo temperature profiles (46 values each) along the

l52508 longitude line. At f5 448, the true temperature field is zero because of the lateral boundary conditions.

FIG. 2. Number of eigenvectors needed to explain a certain

percentage of the variability of the system, derived from a model

run over four years (sampled every other day). The black line refers

to the global state, while the gray line is based on the average

singular value spectrum of the state vector in each local region, as

defined by the localization radius of 2.58. The dashed lines mark the

90% and 99% thresholds.
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To localize the analysis, the nx 3 ny 5 9801 vertical

ocean columns are updated independently. A horizontal

localization radius of 2.58 is used in conjunction with a

fifth-order polynomial correlation function [Gaspari

and Cohn 1999, their Eq. (4.10)] to reduce the obser-

vational influence with distance. This radius, which

roughly corresponds to 250 km, arises from experiences

in prior LETKF experiments in this setting and is in

agreement with similar experiments and the statistical

properties of the system (Cosme et al. 2010; Yan et al.

2014). In tuning experiments, we found that this radius

also allows the NETF to achieve its best performance.

However, in other applications, the optimal radiusmight

differ for both filters. Table 1 provides some statistics

for the observation dimensions from a global and local

point of view. On average, at each analysis time, 3273

independent observations (mostly temperature data)

are assimilated. The average local observation di-

mension is nearly 100, but it may reach up to 200. Thus,

on average, the likelihood weights are evaluated in a

100-dimensional subspace.

The filter is initialized from model climatology. To

allow an investigation of its influence on the filter per-

formance, we prepared both a long- and short-term cli-

matology by extracting a model state from the truth run

every other month within the years 51–74 and 65–74,

respectively. Table 2 summarizes the basic statistics of

these climatologies. They exhibit a similar deviation

from the true initial state, but the long-term climatol-

ogy has significantly more spread, particularly in the

temperature field. The ensemble of 120 members is con-

structed from the corresponding climatology via second-

order exact sampling (Pham 2001). This guarantees that

the ensemble contains the dominant error directions, but it

could only explain at best 80% of the system’s variability

(see Fig. 2). Additionally, following Table 2, we increased

its spread by 25% to ensure that the truth lies within the

ensemble range. The initial members contain mesoscale

features, however, their mean only reflects the large-scale

double-gyre circulation and the central jet, as visualized in

Fig. 4 for the long-term climatology.

d. Complexity of the assimilation problem

The twin experiment employs a state-of-the-art,

complex circulation system, as used in ocean or atmo-

spheric modeling, including advanced physical param-

eterizations. The global state vector consists of all

prognostic variables of NEMO except salinity [i.e.,

T, U, V (three-dimensional fields), and SSH (two-

dimensional)]. Therefore, the global state dimension

is 33 (1213 813 11)1 1213 815 333 234’ 3:33 105.

On the global scale, the system exhibits high-dimensional

dynamics, as reflected by the black line in Fig. 2 and

discussed in section 3c. The dynamics are characterized

by the chaotic mesoscale flow. Each local region, as de-

fined by the localization radius, contains nearly 300 water

columns with about 13 104 state variables. The gray line

in Fig. 2 shows the average amount of eigenvectors

needed to explain the system’s variance in a local region.

It is smaller than for the global case, but the difference is

not very pronounced. Thus, because of the eddies, the

dynamics also exhibit considerably high variability on

the local scale.

The number of SSH and T observations at each

analysis step is about 3300, which is one order of mag-

nitude larger than the ensemble size of 120. Yet, the

average local observation space dimension is of the

same order as the ensemble size. This is a typical situa-

tion in large-scale ocean problems (e.g., Yan et al. 2014).

For the NETF as a particle-based technique, it repre-

sents a major challenge. Ordinary PFs (with or without

resampling) would require at least 106 (1011) members to

assimilate 100 (200) independent observations (Snyder

et al. 2008). However, in atmospheric DA applications,

the local observation dimensionmay strongly exceed the

ensemble size (e.g., Buehner et al. 2010). This remains a

limitation of our study.

Finally, the initial ensemble chosen here does not

contain information about the actual mesoscale flow.

TABLE 1. Statistics on the observations and on localization. All

values are temporal averages over the 180 analysis steps. The total

number of local domains is 9801 (all vertical columns) and this

table refers to the localization radius of 2.58.

Statistics Only SSH Only T Combined

Global observation

dimension

145 3128 3273

Max local observation

dimension

16 184 199

Avg local observation

dimension

7 90 94

No. of local domains with

observations

6262 9654 9742

No. of local domains

without observations

3539 147 59

TABLE 2. Basic properties of the climatological samples that are

used to generate the initial ensemble (see section 4c). The statis-

tical measures, defined in section 5b, are evaluated for each model

variable. The RMSE is computed for the climatological mean state

with respect to the true initial state in year 75.

Statistics Climatology T (8C) SSH (m) U (m s21) V (m s21)

RMSE Years 65–74 0.3336 0.0775 0.0641 0.0546

Years 51–74 0.2931 0.0810 0.0627 0.0544

Spread Years 65–74 0.1151 0.0662 0.0527 0.0524

Years 51–74 0.2056 0.0772 0.0583 0.0571
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Hence, we not only assess the capability of the NETF

to track the truth, but also to converge to it at first.

In summary, our experiment considers a full three-

dimensional ocean including its thermodynamics, together

with a realistic observation scenario and a climatological

initialization. For comparison, Ades and van Leeuwen

(2015) initialized the EWPF around the truth in a highly

nonlinear single-layer primitive equation system with a

state dimension of 6 3 104 using only 24 particles. We

conclude that the experiment conducted here is suited to

assess the NETF’s general applicability for nonlinear, high-

dimensional DA.

5. Results and discussion

This section presents and discusses the results of the

experiment described above. For comparative reasons,

we also integrated the initial ensemble throughout the

time window but without assimilating any observations.

This free ensemble serves as a reference to show the

impact of the observations on the model evolution.

a. Qualitative evaluation

For now, we apply the long-term climatology to create

the initial ensemble, as presented in section 4. Thus, the

free ensemble can only deliver climatological information

of the system during the forecast phase (i.e., the large-

scale double-gyre circulation created by the wind forc-

ing). However, it is not able to resolve the mesoscale

patterns, which are of a chaotic nature and average out

over the free ensemble. This is supported by snapshots of

the SSH fields on day 260 in Fig. 5. In principle, the mean

of the free ensemble, Fig. 5b, has not changed compared

to the initial time, as revealed by a comparison with

Fig. 4a. In contrast, the NETF analysis at that time,

Fig. 5c, yields an estimate that closely resembles the true

SSH field including the mesoscale features, as shown in

Fig. 5a. The field difference, plotted in Fig. 5d, shows only

small deviations of atmost 10%.Theymainly concern the

magnitude of the mesoscale perturbations in the dy-

namically very active region in the domain center, which

is highlighted by the box in Fig. 5d. These qualitative

findings are similarly observed for all other variables as

well, including the unobserved velocity fields. These re-

sults demonstrate that the NETF successfully assimilates

the observations in this high-dimensional problem.

b. Quantitative evaluation

1) EVALUATION MEASURES

The main evaluation criterion used for filter per-

formance is the root-mean-square error (RMSE) of

the ensemble mean at each analysis time level

j 2 f0, 1, 2, . . . , 180g. It is based on the spatial average

of the squared deviations, and it is computed sepa-

rately for each model variable according to

RMSE
j
(X)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
gp

(X
j
2X

j,true
)2

dim(X)

vuut
. (11)

Here,X stands for each of the four different model fields

(T, U, V, SSH) and Xj 5 1/m�m

i51X
i
j represents the en-

semble mean field. The term dim(X) is the dimension of

the field (i.e., 107 811 for T,U, and V and 9801 for SSH),

and�gp indicates summation over all model grid points.

As an overall measure, the RMSE may not capture all

performance details, but a low RMSE represents a

necessary condition for a successful analysis. Ensemble

FIG. 4. Ensemblemean state at the initial time for (a) SSH and (b)U (first layer). Themesoscale patterns average out

over the initial ensemble. For comparison, the true initial fields are shown in Fig. 1 (with identical color legend).
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filters allow one to calculate an estimated RMSE by the

field-averaged ensemble spread:

SPREAD
j
(X)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
gp

�
1

m2 1
�
m

i51

(Xi
j 2X

j
)2
�

dim(X)

vuuut
. (12)

This measure can be computed independently from the

truth. In a well-calibrated DA system, it should be of

similar magnitude as the RMSE, since then the en-

semble distribution will allow for reliable diagnostics

of the filter uncertainty (e.g., Palmer et al. 2005;

Hopson 2014).

The RMSE enables a general judgment of the analysis

quality. However, it only evaluates the ensemble mean

and neglects higher-order moments. To assess the

quality of the ensemble distribution as well, we also

apply the probabilistic continuous ranked probability

score (CRPS, e.g., Gneiting et al. 2007; Tödter and

Ahrens 2012) for the comparison with the LETKF. The

CRPS accounts for the distribution of probability mass

around the truth for any state vector component x.

Specifically, let f j(x) be the empirical ensemble pdf. The

CRPS quantifies the difference between the cumulative

density functions (cdfs) of the ensemble and the veri-

fying truth (a Heaviside step function, Q) in probability

space by using a quadratic norm:

CRPS(x
j
)5

ð‘
2‘

[Fj(x)2Q(x2 x
true,j

)]2 dx . (13)

The empirical ensemble cdf, Fj(x)5
Ð
f j(x) dx5

1/m�m

i51Q(x2 xij), is a piece-wise constant function,

FIG. 5. Results for SSH at day 260. Shown are the fields of (a) truth, (b) free ensemble mean, and (c) NETF

ensemble mean. (d) The field is the difference between the NETF analysis and the truth. Note that in (d), the color

scale is enlarged by a factor of 10, as otherwise both fields can be barely distinguished. The box marks the region of

relatively more pronounced deviations.

418 MONTHLY WEATHER REV IEW VOLUME 144



which allows for the computation of Eq. (13) according

to the algorithm suggested by Hersbach (2000). Similar

to the RMSE, we evaluate the CRPS at each grid point

and then average over the whole field.

2) ERROR REDUCTION

Figure 6 shows the temporal evolution of the analysis

RMSE for each control variable, together with the av-

erage ensemble spread. The evaluation measures repre-

sent the average over the whole field (two-dimensional

for SSH, three-dimensional for T, U, and V). The cor-

responding results for the free ensemble are also in-

cluded.As expected, the free ensemble does not improve

upon the initial time. Its error and spread remain of

similar magnitude, and their high variability reflects

the chaotic nature of the model evolution. The RMSEs

of the NETF indicate that it performs successfully, as

its analyses only exhibit small errors. This reflects the

insight that the NETF is able to resolve the mesoscale

patterns of the true flow. For all variables, the initial

error is reduced nearly monotonically until convergence

is reached. This spinup phase is explained by the fact

that the initial ensemble does not contain information

about the mesoscale circulation (Yang et al. 2012), and

this will be discussed in more detail in section 5c. After

the spinup, the errors remain approximately constant,

which shows that the filter ensemble is in a quasi-

stationary balance constrained by the observations.

The comparison with the free ensemble demonstrates

the error reduction in absolute terms. In addition, the

FIG. 6. Temporal evolution of the evaluationmeasures for the NETF (solid lines) and free ensemble (dashed lines)

for all state variables: (a) SSH, (b) T, (c) U, and (d) V. The RMSE is drawn in black and the spread in gray. Both

measures refer to the average over the full spatial field, including all vertical layers for T, U, and V. The legend in

(b) is valid for all panels.
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small variability of the filter errors compared to the free

ensemble shows that the NETF tracks the truth con-

tinuously. These considerations are further confirmed

by the ensemble spread, which shows that the inflation

factor is well tuned. After the spinup phase, the spread is

nearly constant and typically slightly larger than the

RMSE. Therefore, the ensemble distributions are con-

sistent with the truth in a statistical sense.

Next, for a better assessment of the performance, the

RMSEs are normalized by their values at the initial time

(day 0) at which the NETF and free ensemble are

equivalent. Figure 7 shows the temporal evolution of

these relative errors. The strongest error reduction is

observed for the temperature T. This is easily explained

by the fact that at least the upper temperature field is

constrained by the majority of the observations. A mini-

mal relative error of about 7.5% can be achieved. SSH,

also an observed variable, achieves the second-best

minimal relative error, with about 10% beyond the

spinup. Even though the velocity fields are not observed,

they can also be estimated with fairly high accuracy,

andminimal relative errors of about 15%are found.Here

U exhibits slightly smaller errors, presumably because it

is, at least close to the surface, constrained by the fixed

zonal wind forcing. Figure 8 provides a more detailed

evaluation of the overall performance by displaying the

error evolution in all vertical layers for the three-

dimensional variables (T, U, and V). It shows that not

only the densely observed surface layer but also the

subsurface layers are improved by the filter. As is typical

in ocean data assimilation, the spinup time increases with

depth because the deeper ocean layers are less con-

strained by observations and exhibit a slower variability

(Zhang and Rosati 2010).

3) COMPARISON TO THE LETKF

As demonstrated, the NETF produces consistent and

reasonable analyses, which proves the main objective of

this work. To further assess its performance, we also

applied the LETKF using the same initial ensemble and

setup. We found that an inflation factor of g5 1:01 re-

sults in the best performance for the LETKF. Figure 9

compares the relative errors of both filters in terms of

the relative RMSE (black and gray lines) and CRPS

(red and orange lines) for all four variables. The LETKF

requires only slightly more than 100 days to reach con-

vergence, while the NETF spinup phase takes about

200 days. This difference will be discussed in section 5c.

However, from day 200 on, the NETF and LETKF

perform almost identical in terms of the RMSE. In

principle, the same holds for the CRPS. The spinup time

indicated by the CRPS is slightly longer than that for

the RMSE. This behavior is independent of the filter.

The reason is that the RMSE only measures the

FIG. 7. The lines represent the relative error (RMSE normalized

by its initial value) of the NETF analysis for SSH (blue), T (black),

U (red), and V (orange).

FIG. 8. Temporal evolution of the relative RMSE (in%) in each vertical layer for (a) T, (b)U, and (c) V. The legend bar in (c) is valid for

all panels.
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convergence of the ensemble mean, while the CRPS

takes the whole ensemble distribution into account.

After the spinup, the CRPS and RMSE achieve a

similar relative value for each variable. This confirms

that the ensemble distribution, which quantifies the

filter uncertainty, is consistent with the error of the

ensemble mean.

To assess the statistical significance of the similarity of

the results, we repeated the assimilation experiment

10 times with different random numbers for the gener-

ation of the initial ensemble and the observations (see

section 4) as well as for the random rotations [see Eq.

(2)]. The truth (see section 3c) was kept fixed to ensure

a reproducible reference trajectory of balanced model

states. The thick lines in Fig. 10 show the relative

RMSEs averaged over all model variables and all

repetitive runs. After the spinup phase, they are very

similar for the NETF (in black) and LETKF (in gray),

respectively. This confirms that, on average, the NETF

achieves the performance of the LETKF after the

spinup. The minimal and maximal scores of the LETKF

are close to the mean, which underlines the high robust-

ness of the LETKF. The scores of theNETF exhibitmore

variability in the repetition runs, particularly during its

spinup phase. For the CRPS, the corresponding results

are very similar as in Fig. 10 (not shown).

c. Initial ensemble and spinup phase

The results have confirmed that the NETF yields a

reasonable analysis with low errors, but it requires a

longer spinup time than the LETKF. During this period,

the results are also more sensitive to random variations.

FIG. 9. Comparison of the NETF and LETKF in terms of the RMSE (black/gray) and CRPS (red/orange). Fol-

lowing the definition in section 5b, each line represents the field-averaged relativeRMSE andCRPS, respectively, for

all prognostic variables: (a) SSH, (b) T, (c) U, and (d) V. The legend in (b) is valid for all panels.
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In general, the spinup phase of an ensemble filter is re-

lated to its initialization (Kalnay and Yang 2010).

Hence, the NETF is more sensitive to the specification

of the initial ensemble than the LETKF. This property

might also be valid for nonlinear filtering in general, and

this section provides a more detailed exploration of

this issue.

1) SENSITIVITY TO THE INITIAL ENSEMBLE

As demonstrated in section 5b, the long-term clima-

tology (spanning years 51–74) results in a successful

NETF run. Initially, we had used the short-term cli-

matology (spanning years 64–74, see also section 4c),

for which the LETKF works as well. In contrast, the

NETF diverges in this case independently of the tuning

parameters. The ensemble spread decreases, but there

is no error reduction (Fig. 11). These earlier failures

emphasize that the consistent specification of the initial

ensemble is a key criterion for the NETF to avoid filter

divergence. It should appropriately span the largest

sources of variability (Zhang et al. 2004). This claim is

supported by the statistical properties of the model

climatologies, which are shown in Table 2. The de-

viations from the true initial state, as measured by the

RMSE, are of similar magnitude for both climatol-

ogies. However, the spread in T is very small for the

short-term climatology (i.e., only about one-third of

the RMSE). Hence, the initial ensemble does not

properly cover the truth. For the other variables in

Table 2, the situation is less problematic, but the

weights are computed in the observation space, which

is mainly spanned by temperature measurements.

Therefore, in the beginning, most ensemble members

receive insignificant relative weights, and this leads to

filter divergence. In contrast, the long-term climatol-

ogy exhibits more consistent statistics. Even though the

spread is still too small, its deviation from the RMSE is

less pronounced.

2) SPINUP TIME AND INFLATION

The initial ensemble based on the long-term clima-

tology enables the NETF to work successfully in our

experiment, but the relatively long spinup time

represents a practical restriction for future NETF ap-

plications. A first hint toward understanding this be-

havior can be found by revisiting Fig. 6. During the

spinup phase, the spread decreases faster than the

RMSE for all variables, particularly for U, V, and SSH.

EnKF-like methods do not sufficiently account for the

observations if the ensemble spread is too small. This

can increase the spinup time or even lead to filter di-

vergence (e.g., Evensen 2009; Yang et al. 2012). Usually,

it is counteracted by inflation procedures. Therefore,

one might consider that a larger inflation factor might

reduce the spinup time of the NETF. However, after the

spinup phase, it would be detrimental to the filter and

cause the RMSE to increase again. To explore this

FIG. 11. Filter divergence with an inconsistent initial ensemble.

Here, the initial NETF ensemble was constructed from the short-

term climatology (years 65–74). Shown are the relative RMSEs for

all variables, as in Fig. 7.

FIG. 10. Results from multiple runs of the experiment with dif-

ferent random realizations of the initial ensemble, random rota-

tions, and observations for the NETF (in black) and LETKF

(in gray). All lines show the temporal evolution of the relative

RMSE (as in Figs. 9 and 7), averaged over all variables

(T, U, V, SSH). The thick line refers to the mean score of the

10 runs, while the thin solid (dashed) line refers to the minimal

(maximal) average relative RMSE.
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question, we tested a linearly decreasing inflation factor

(1.11–1.02) during the initial phase of the assimilation

experiment. Empirically, we found that applying this

tuning during the first 100 days results in a much better

agreement between theRMSEand spread over the entire

assimilation window, as shown in Fig. 12. However, the

spinup time is not shortened much by this modified in-

flation procedure and the RMSE remains almost as be-

fore. This indicates that the NETF’s slower convergence

is not simply a matter of inflation tuning, even though

a more objective adaptive inflation technique (e.g.,

Anderson 2009) might still improve the results.

3) EXPLANATION

The NETF’s higher sensitivity toward the initial en-

semble in comparison with the LETKF can be explained

by a key difference in their update mechanisms that was

not explored in Tödter and Ahrens (2015). In EnKFs,

the mean increment is proportional to the mean in-

novation (i.e., d5 y2 yf ) (Hodyss 2012), as visible in

Eq. (3). The analysis covariance in the LETKF is de-

termined by the transform matrix in Eq. (4). It only

depends on the prior ensemble covariance and the ob-

servation error covariance matrix R, but not on the ac-

tual observation y (see Posselt et al. 2014). Therefore,

the EnKFs are stable if the initial ensemble exhibits

sufficient spread and the observation error is specified

consistently. In contrast, according to Eqs. (7) and (8),

both the NETF’s analysis mean and covariance are de-

termined directly by the likelihood weights [Eq. (5)].

For Gaussian observation errors, the weights, as given

by Eq. (6), decay exponentially with the innovations,

di 5 y2 yif . Thus, the relative contribution of members

with a large distance to the observation is less pro-

nounced in the NETF compared to the EnKFs. If many

weights are insignificant, the analysis mean and co-

variance are effectively estimated by few members

only, which degrades their quality. This property be-

comes particularly apparent for an ensemble initialized

from a model climatology that is characterized by large

innovations di. In this case, the ensemble might col-

lapse (see above), but at least the marginal contribu-

tion of most members results in the longer spinup

period. This property also explains the increased sen-

sitivity toward random variations in the observations

(see section 5b).

To verify this hypothesis, the average effective en-

semble size (Doucet et al. 2001) is computed by

[�i(w
i)2]21 for the experiment in section 5b. It equals

m if all members have equal weight and is smaller oth-

erwise. Thus, it serves as a descriptive measure of the

variance of the weights (Stordal et al. 2011). As shown in

Fig. 13, the effective ensemble size is only about 20

during the first analysis steps and increases to over

100 later on. These numbers support the theoretical

expectation stated above that most NETF members

contribute only a little information in the beginning.

FIG. 12. Spread–skill relation in the experiment with inflation

tuning. Shown is the average (over all variables, i.e., T, U, V, SSH)

of the relative RMSE (black), together with the average relative

spread (gray). The latter has been normalized by the RMSE at

initial time. The full lines result from a run with variable inflation

during the first 100 days (see section 5c). The dashed lines refer to

the standard setup with fixed inflation, which yields under-

dispersive ensembles in the spinup phase.

FIG. 13. Temporal evolution of the effective ensemble size for

the NETF, using the default setup as described in section 4. The

maximum of m5 120 can be achieved only if all weights are equal

(wi [ 1/m"i).
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6. Conclusions and outlook

This work explores the large-scale applicability of the

recently proposed NETF (Tödter and Ahrens 2015),

which is a model-independent filter that creates a new

analysis ensemble whose mean and covariance exactly

match the Monte Carlo estimates of the corresponding

Bayesian expectations. Thereby, it avoids biases that

arise because of the Gaussian assumption inherent in

EnKFs. The NETF performs an ensemble trans-

formation like the LETKF, but with a distinct transform

matrix and weight vector. It is supplemented by a

moment-preserving random rotation. In contrast to

most PFs, this transformation increases the stability of

the NETF in larger-dimensional settings if the analysis is

localized. Compared to Tödter and Ahrens (2015), this

paper applies the new filter to a more realistic assimi-

lation problem in an OGCM with high-dimensional

dynamics and about 3.3 3 105 state variables. The as-

similation of temperature profiles and satellite sea

surface heights mimics realistic ocean observation net-

works. The system is characterized by its wind-driven

large-scale dynamics, a double-gyre circulation as occurs

in the North Atlantic, and mesoscale eddies that express

its chaotic nature.

The NETF remains stable in this setting and shows a

reasonable performance. It converges to the truth and

keeps track of it, including the mesoscale features.

Therefore, the NETF is applicable to this nonlinear,

high-dimensional problem even though it only relies on

the Bayesian weights. Thus, it is able to overcome to

curse of dimensionality with a computationally feasible

ensemble size. Furthermore, its implementation in re-

alistic circulation systems requires only little additional

effort if an LETKF system is available. To the knowl-

edge of the authors, so far, a similar successful large-

scale application could only be achieved with the more

complex EWPF, which additionally relies on stochastic

models. The circulation system considered here exhibits

globally high-dimensional dynamics. A limitation of this

study is that the local observation space, where the

analysis is computed, exhibits a dimension of the same

order of magnitude as the ensemble size. The observa-

tion scenario constructed here is realistic and dense

for ocean applications, and already very challenging

for a PF-based technique. However, in meteorological

applications, the observation density can become

considerably higher.

The experiments demonstrate that the NETF reduces

the analysis errors to between 7.5% and 15% for the

different variables, compared to the initial time. Thus,

it generates reasonable analysis increments based on

the local likelihood weights. The ensembles are

statistically consistent, which shows that the observa-

tions are used efficiently. After the spinup period, it can

at least match the performance of the LETKF, as de-

termined by both the RMSE and CRPS. However, it is

unknown whether more improvement over the LETKF

is actually possible in this setup. Because of its nonlinear

design, the NETF may offer potential benefits, but this

has to be elaborated upon in additional nonlinear, large-

scale applications.

The results further emphasize that the NETF is sen-

sitive to its initialization, which becomes particularly

relevant in higher dimensions. An inconsistent initial

ensemble (e.g., one with too little spread) results in

many members with insignificant weights in the first

analysis steps and might cause filter collapse. Further-

more, this issue increases the spinup phase in compari-

son to the LETKF, particularly if the initial ensemble

only contains little information about the true flow. This

problem is likely of concern to the EWPF as well. In the

large-scale EWPF experiments published so far (van

Leeuwen and Ades 2013; Ades and van Leeuwen 2015),

the initial ensembles were generated by perturbing the

true initial state, which prevents a spinup phase. Nev-

ertheless, even with a climatological initialization, the

NETF is still able to reconstruct the truth. In future

applications, one should make sure to specify consistent

initial ensembles that contain as much knowledge about

the true flow as possible (e.g., from previous analyses).

As shown for EnKFs, this can strongly reduce the spinup

time (Yang et al. 2012). The most pragmatic solution

consists of simply using an EnKF for the spinup phase

and switching to the nonlinear filter afterward. Alter-

natively, more advanced adaptive inflation methods

(e.g., Anderson 2009; Miyoshi 2011) could be adopted

for the NETF or the spinup could be reduced by

smoothing the estimates with future observations

(Cosme et al. 2010). Such a nonlinear smoother based

on the NETF can be derived in analogy to the ensemble

transform Kalman smoother (Kalnay and Yang 2010;

Nerger et al. 2014) and will be presented in an

upcoming paper.

The successful application of the NETF in an OGCM

offers numerous possibilities for future research. First,

we anticipate that the experiences presented here will

stimulate further research to reduce the spinup time.

Second, in the experiment conducted here, the filter

performance was similar to the LETKF at least after the

spinup phase. Therefore, the NETF should be applied

to other large-scale systems to accentuate potential

benefits of the nonlinear approach. This could concern

setups where the chaotic dynamics are able to modify

the large-scale flow, since the latter is constrained by the

analytical wind forcing in our setup. Additionally, it
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would be important to assess whether the NETF is able

to deal with a local observation space whose dimension

is much higher than the ensemble size. Such a situation is

characteristic of atmospheric data assimilation, and it

might represent a limitation for the filter.

Finally, the NETF should be compared to the EWPF

to assess the relevance of higher-order moments in

nonlinear, large-scale DA. This necessarily requires

the employment of a stochastic model. The NETF can

be combined with a nudged forecast step as well

(Tödter 2015, chapter 4.9), which allows for a fair

comparison of the analysis algorithms in such a sce-

nario. For that purpose, the NETF algorithm does not

need to be modified, except that the prior weights re-

sulting from nudging have to be considered in Eq. (7).

In this context, it could also be investigated whether

the EWPF exhibits a similar sensitivity to the initial

ensemble.
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