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a b s t r a c t

Gymnodimines are lipophilic toxins produced by the marine dinoflagellates Karenia selliformis and
Alexandrium ostenfeldii. Currently four gymnodimine analogues are known and characterized. Here we
describe a novel gymnodimine and a range of gymnodimine related compounds found in an A. ostenfeldii
isolate from the northern Baltic Sea. Gymnodimine D (1) was extracted and purified from clonal cultures,
and characterized by liquid chromatographyetandemmass spectrometry (LCeMS/MS), nuclear magnetic
resonance (NMR) spectroscopy, and liquid chromatographyehigh resolution mass spectrometry (LC
eHRMS) experiments. The structure of 1 is related to known gymnodimines (2e5) with a six-membered
cyclic imine ring and several other fragments typical of gymnodimines. However, the carbon chain in the
gymnodimine macrocyclic ring differs from the known gymnodimines in having two tetrahydrofuran
rings in the macrocyclic ring.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Gymnodimines (GYMs) (Fig. 1) are cyclic imines produced by
two species of marine planktonic dinoflagellates, Karenia selliformis
and Alexandrium ostenfeldii. Gymnodimine A (2) was found first in
New Zealand oysters in 1994 (Seki et al., 1995; Stewart et al., 1997),
and since then, it has been detected in several other locations
around the world, and supposedly produced by K. selliformis. The
hydroxylated analogues, gymnodimine B (3) and C (4), have also
been isolated from K. selliformis (Miles et al., 2000, 2003). These
gymnodimines can be present in filter-feeding shellfish throughout
the year, and have been detected in large quantities in coastal
waters of New Zealand (Stirling, 2001) and Tunisia (Bir�e et al., 2002;
: þ358 2941 50437.

de can Fatj�o, 7-A. Parc Tec-
rcelona, Spain.
Ben Naila et al., 2012) after prolonged blooms of K. selliformis.
Recently, 12-methylgymnodimine (5) was isolated from A. osten-
feldii originating from estuaries at the U.S. East Coast, whichwas the
first report of gymnodimines in Alexandrium or any other dinofla-
gellate species besides K. selliformis (Van Wagoner et al., 2011).
Besides 12-methylgymnodimine isolated from an A. ostenfeldii
strain from the U.S. East Coast, gymnodimine A and 12-
methylgymnodimine have been found together with spirolides in
isolates from a recent bloom of A. ostenfeldii in the Netherlands
(Van de Waal et al., 2015). Moreover, novel fatty acid ester me-
tabolites of gymnodimine A (de la Iglesia et al., 2013) and several
unknown gymnodimine-like compounds (McCarron et al., 2014)
have been detected in shellfish by liquid chromatographyemass
spectrometry (LCeMS). Compared to other cyclic imines, such as
the structurally related pinnatoxins (Ar�aoz et al., 2011) and spi-
rolides (Guer�et and Brimble, 2010), knowledge on gymnodimines is
still limited. Gymnodimine A is a fast-acting toxin with high
intraperitoneal toxicity in mice (LD50 of 80e96 mg/kg) (Kharrat
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Fig. 1. The structures of gymnodimine D (1), gymnodimine A (2), gymnodimine B (3), gymnodimine C (4), and 12-methylgymnodimine (5).
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et al., 2008;Munday et al., 2004) and similar bioactivities have been
reported from other cyclic imines (Munday, 2008). Gymnodimine A
is of low oral toxicity to mice, and is regarded as low risk for
humans (Munday et al., 2004). Despite the high acute toxicity in
mouse bioassays, cyclic imines are not currently regulated in sea-
food (EFSA Panel, 2010); and this is probably related to the fact that
acute poisonings in humans could not be related directly to
contamination of seafood with cyclic imines and the fact that po-
tential effects from long-term exposure to subacute doses are not
yet fully investigated. Cyclic imines show acetylcholine receptor
binding activity with potential effects on the peripheral and central
nervous system, and may have potential for the treatment of
neurological disorders such as Alzheimer's disease (Molg�o et al.,
2014).

A wide variety of cyclic imines are known to be produced by
phylogenetically distant dinoflagellates (Molg�o et al., 2007). Pin-
natoxins were first detected in seafood before the dinoflagellate
Vulcanodinium rugosumwas shown to be the causative organism of
toxin production (Rhodes et al., 2010, 2011). Pinnatoxins EeH are
produced by dinoflagellates (Selwood et al., 2010, 2014), whereas
other known pinnatoxins and pteriatoxins (Takada et al., 2001) are
thought to be formed in shellfish via metabolism of pinnatoxin F
and G (Selwood et al., 2010). Recently portimine, a polycyclic ether
with a five-membered cyclic imine ring, was isolated from a V.
rugosum isolate (Selwood et al., 2013). Like pinnatoxins, spirolides
were also first detected in shellfish (Hu et al., 1995). The causative
organism of spirolide production was identified as A. ostenfeldii
isolated in Nova Scotia, Canada and Limfjord, Denmark (Cembella
et al., 2000). Spirolides A, C, and 13-desmethylspirolide C were
isolated from A. ostenfeldii cultures (Nova Scotia, Canada) and their
structures were determined (Hu et al., 2001). Subsequently, various
spirolide analogues have been isolated and structurally character-
ized from A. ostenfeldii (Aasen et al., 2005; MacKinnon et al., 2006a;
Roach et al., 2009; Ciminiello et al., 2010). Several unknown ana-
logues have also been described together with known spirolides
(Sleno et al., 2004; Almandoz et al., 2014; Tillmann et al., 2014;
Rundberget et al., 2011). Certain A. ostenfeldii isolates may pro-
duce both spirolides and gymnodimines (Van Wagoner et al., 2011;
Van de Waal et al., 2015). Due to their structural similarity, a
possible explanation may be a common biosynthetic pathway.
A. ostenfeldii populations from the Baltic Sea produce paralytic
shellfish poisoning (PSP) toxins, but spirolides have not yet been
reported in these isolates (Kremp et al., 2014). Here we report
detection of novel gymnodimines in an A. ostenfeldii isolate from a
Baltic Sea bloom site, and the identification and structural charac-
terization of gymnodimine D (1) from an A. ostenfeldii culture.
Though the molecular formula was the same as for gymnodimine B
and C, the mass spectrum of 1 was not fully consistent with gym-
nodimine B and C. Because the reference standards for gymnodi-
mines B and C were not commercially available, the isolation of 1
was necessary for proper structural characterization.

2. Materials and methods

2.1. Reagents

A certified reference standard of gymnodimine Awas purchased
from the National Research Council (Halifax, Canada) and 12-
methylgymnodimine was purchased from Biomol GmbH
(Hamburg, Germany). Fractions of unidentified A. ostenfeldii gym-
nodimines were obtained from clonal isolate AOVA-0930 estab-
lished as described (Tahvanainen et al., 2012) from material
collected at the north coast of Gotland, Sweden, Baltic Sea (gene
bank accession number of consensus ITS1-5.8S-ITS2, 28S sequences
and partial saxitoxin sequence: JX841276, JX841302, KC835398).
2.2. Cell culture

Exponentially growing cells of AOVA-0930 were inoculated at
an initial concentration of 500 cells/mL to thirty 250 mL tissue
culture flasks (Nunc) each containing 160 mL of f/2-Si growth
media (Guillard and Ryther, 1962) prepared from local 0.8 mm
filtered sea water (salinity 6). The batch cultures were grown at
16 �C with 14:10 h light:dark cycle (50 mmol photons m�2 s�1). Cell
concentrations were monitored by regular microscopic cell counts.
After 5 weeks, when cultures had reached stationary phase at cell
concentrations of approximately 30,000 cells/mL, the contents of
each culture flask (n ¼ 30) was filtered on a separate glass micro-
fiber filter (Whatman GF/C, Ø 47 mm), washed with Milli-Q water
(3 � 3 mL), and freeze-dried for 24 h prior to extraction (n ¼ 18).
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The rest of the cell samples were stored in a freezer (�20 �C).

2.3. Sample preparation

The filter papers (n ¼ 18) were extracted with methanol (4 mL).
The extracts were filtered with syringe filters (0.45 mm, Millex),
combined, and concentrated under nitrogen flow. The residue was
dissolved in eluent from LCeMS/MS Method A (AeB 1:1, v/v),
filtered with a centrifugal filter (PVDF 0.45 mm, Millipore), and the
volume was adjusted to 2.0 mL, of which 500 mL and 900 mL were
taken for the purification. This corresponds to approximately 22
and 40 million dinoflagellate cells. The sample was enriched with
an Agilent 1200 HPLC system (Santa Clara, USA) connected diode-
array detector and Bruker BPSU-36 peak sampling unit with stor-
age loop volume of 250 mL. Concentrated AOVA-0930 extract was
injected onto a Hypersil BDS C8 column (150 � 4.6 mm, 5 mm,
Thermo Scientific, USA). The injection volume was 100 mL, and the
injectionwas repeated five times for the preliminary NMR analyses
in deuterated water. Additional nine injections of 100 mL was pu-
rified with Agilent 1200 HPLC system connected to Agilent
G1364CR fraction collector for the NMR analyses of 1 in deuterated
pyridine. Purification used a linear gradient (1 mL/min) of 2 mM
ammonium formate and 50 mM formic acid in water (A) and
acetonitrile (B), with 70% A for 2 min, then to 10% over 15 min
followed by 2 min at 10% A, to 70% A over 0.1 min and then held at
10% A for 5.9 min. The fractions were collected on the basis of UV
detection at 215 nm. The sample purity and identity in the sepa-
rated fractions was confirmed with LCeMS/MS ([MþH]þ at m/z
524) producing fragments m/z 506 (100%), m/z 496 (17e20%), and
m/z 346 (37e46%) with the retention time shift within ±0.2 min.
The collected fractions containing the major analogue were pooled
(rt 8.50e9.75 min), concentrated with EZ-2 Plus evaporator (Gen-
evac Ltd, Ipswich, UK), and analyzed by means of LCeMS/MS,
LCeHRMS, and NMR.

2.4. LCeMS/MS method A

A Finnigan LXQ linear ion trap mass spectrometer with elec-
trospray ionization (ESI) source interfaced to a Finnigan Surveyor
Autosampler Plus Liquid Chromatograph (Thermo Scientific, San
Jose, USA) was used for LCeMS/MS analyses. The compounds were
separated on a Hypersil BDS C8 column (150 � 4.6 mm, 5 mm;
Thermo Scientific) at a flowrate of 1000 mL/min, and an injection
volume of 15 mL. Separation was performed with a mobile phase of
2 mM ammonium formate and 50 mM formic acid in water (A) and
acetonitrile (B) using a linear gradient from 70% A to 10% A as
described for the sample purification. The eluent flow was split
1:20 to the mass detector. Positive mode electrospray ionization
was applied with spray voltage 5 kV, capillary temperature 300 �C,
capillary voltage 30 V, sheath gas 30, auxiliary gas 15. A scan range
of m/z 50e900 was used for screening, and MS/MS at [MþH]þ m/z
524 for 1 and 508 for gymnodimine A.

2.5. LCeMS/MS method B

A triple quadrupole 3200 QTrap MS with a TurboV electrospray
ionization source (AB/Sciex, Foster City, CA) hyphenated to an
Agilent 1200 LC system (Agilent Tech., Santa Clara, CA) was used for
additional LCeMS/MS analyses. The compounds were separated on
an X-Bridge C8 column (2.1 mm � 50 mm, 3.5 mm;Waters Corp.) at
a flowrate of 500 mL/min, and an injection volume of 10 mL under
alkaline conditions according to previously reported conditions
(Gerssen et al., 2009; García-Altares et al., 2013). Briefly, mobile
phase A consisted of 6.7 mM of ammonium hydroxide in ultrapure
Milli-Q water. Mobile phase B consisted of 6.7 mM of ammonium
hydroxide in 90/10 (v/v) acetonitrile/Milli-Q water. The gradient
ran from 20 to 100% B over 8min, held at 100% B for 1min, returned
to the initial conditions over the next 0.5min, and finally held at the
starting conditions for equilibration until a total run cycle of 12min.
Positive polarity MS mode was applied with the following collision
and source parameters: 20 psi curtain gas, 5500 V ion spray voltage,
500 �C nebuliser gas temperature, 50 psi nebuliser and heater
gases, level 4 (arbitrary units) collision-activated dissociation gas
and 55 eV collision energy and 2600 V continuous electron multi-
plier. Enhanced product ion spectra (EPI) were acquired in the
range m/z 150e525, from the precursor ion m/z 524.3 for 1. The
spectra obtained for 1 were compared with those obtained from
the certified reference material of gymnodimine A at m/z 508.3.

2.6. LCeHRMS method C

Liquid chromatography was performed with a Waters Acquity
UPLC pump and autosampler on a Symmetry C18 column (3.5 mm,
100 � 2.1 mm; Waters, Milford, MA, USA) eluted with a linear
gradient (0.3 mL/min) of acetonitrile (A) and water (B), each con-
taining 0.1% formic acid. The gradient was from 15 to 65% A over
11 min, to 95% A at 11.5 min (1 min hold), followed by a return to
15% A at 13 min with a 3-min hold to equilibrate the column. A Q
Exactive mass spectrometer (Thermo Scientific, Bremen, Germany)
was used as detector, with spray voltage 3.5 kV, capillary temper-
ature 350 �C, probe heater 300 �C, S-lens RF level 50, with sheath
and auxiliary gas 35 and 10, respectively. The spectrometer was
operated in positive all-ion-fragmentation (AIF) mode (full scan:
scanned m/z 400e900, AGC target 5 � 106, resolution 70,000, and
max IT 200 ms; AIF scanned m/z 110e1500, AGC target 3 � 106,
resolution 35,000, max IT 200 ms, and normalized collision energy
30).

2.7. NMR analyses

For NMR analyses in deuterated water, the pooled sample after
EZ-2 Plus evaporation (Genevac Ltd, Ipswich, UK) was concentrated
to 500 mL under nitrogen flow. Deuterium oxide (D2O) was added
(100 mL), and the sample volume of 600 mL was adjusted into the
NMR 5 mm tube. The sample in deuterated water was further
concentrated into the volume of 30 mL for the NMR analyses with a
1.7 mmmicrocoil probe. The second NMRmicroprobe sample from
the purification of AOVA-0930 (9 � 100 mL injections) was evapo-
rated to dryness with EZ-2 Plus evaporator (Genevac Ltd, Ipswich,
UK) and dissolved in deuterated pyridine. The final volume of the
microprobe NMR sample (30 mL) was adjusted in a total recovery
vial (12 � 32 mm, glass, screw neck, p/n 6000000750cv, Waters,
Milford, MA, U.S.A.) before transfer to the microprobe sample tube
(part no. Z106463, Bruker Biospin, Rheinstetten, Germany). The
deuteratedwater sample in a 5mmNMR tubewasmeasuredwith a
Bruker Avance III HD 850 MHz NMR spectrometer equipped with a
5 mm TCI (1H, 13C, 15N) cryoprobe, and both microprobe samples
were recorded with a Bruker Avance III 500 MHz NMR spectrom-
eter equipped with a 1.7 mm TXI (1H, 13C, 31P) microcoil probe. The
measurement temperature was 290 K. Proton chemical shift
referencing in deuterated water samples was performed against
external 4,4-dimethyl-4-silapentane-1-sulfonic acid, and in
deuterated pyridine samples using the residual solvent peaks.
Carbon chemical shift referencing was performed with X calibra-
tion (Harris et al., 2008). The chemical shifts in the Table 1 were
obtained with 500 MHz NMR spectrometer in deuterated pyridine.
The comparison of the data obtained in deuterated water is pre-
sented in the supporting information. The concentrated fraction in
a 5 mm NMR tube contained 2% formic acid, 0.2% ammonium
formate and a trace amount of glycerol, but no other significant



Table 1
NMR Spectroscopic Data for 1 (500 MHz, pyridine-d5).

Position dC, type dH (mult; J in Hz) HMBC (C)a

1 175.2, C
2 130.2, C
3 148.5, CH 6.96 (quint.; 1.6) 1, 2, 4, 26
4 81.1, CH 5.95 (m) 2, 3, 5, 6, 25
5 125.7, C
6 137.4, C
7 44.2, CH 3.09 (m) 5, 6
8 30.9, CH2 1.43 (m) (Ha) 6

1.82 (m) (Hb) 6, 7, 9, 10, 23
9 72.5, CH 3.96 (m) 7, 10, 11
10 84.3, CH 4.02 (m) 8, 9, 12, 13
11 28.4, CH2 1.85 (m) (Ha) 12, 13, 14

1.99 (m) (Hb) 9, 12, 13
12 25.9, CH2 1.85 (m) 11
13 80.3, CH 4.27 (td; 10.5, 2.9) 10, 14
14 78.7, CH 4.09 (m) 12, 16
15 34.5, CH2 1.22 (m) (Ha) 13, 14, 16, 28

1.91 (m) (Hb) 13, 16, 17, 28
16 36.0, CH 2.30 (sept.; 7.0) 14, 15, 18, 28
17 84.5, CH 4.09 (m) 14, 16, 18, 19, 28, 29
18 129.7, C
19 127.8, CH 5.98 (t; 5.9) 17, 21, 29
20 21.8, CH2 2.14 (m) (Ha) 19, 22

3.00 (t; 11.6) (Hb) 19
21 32.1, CH2 2.38 (m) (Ha)

2.64 (m) (Hb) 22
22 172.8, C
23 43.5, C
24 33.6, CH2 1.33 (m) (Ha) 5, 7, 22, 23, 25, 30

1.64 (m) (Hb) 5, 22, 23, 30
25 19.8, CH2 1.53 (m) (Ha)

1.93 (m) (Hb)
26 10.7, CH3 1.96 (t; 1.6) 1, 2, 3, 4
27 17.9, CH3 2.06 (s) 5, 6, 7
28 16.7, CH3 0.86 (d; 7.1) 15, 16, 17
29 15.4, CH3 1.56 (s) 17, 18, 19
30 26.9, CH2 1.44 (m) (Ha) 7, 22, 23

1.52 (m) (Hb) 23, 24, 31, 32
31 20.3, CH2 1.44 (m) 32
32 50.1, CH2 3.51 (m) (Ha)

3.73 (m) (Hb)

a HMBC correlations are stated from protons to the indicated carbons.
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impurities. The sample in deuterated pyridine contained approxi-
mately 0.5% formic acid and ammonium formate but no other
significant impurities. Apart from EASY-ROESY (Thiele et al., 2009),
the NMR experiments were acquired using Bruker's Topspin stan-
dard pulse sequences. JHH couplings from clearly resolved multi-
plets have been determined with PERCH spectral simulation
software (PERCH Solutions Ltd., version 2013.1). The yield of 1 was
calculated with an external standard of methylphosphonic acid in
H2O/D2O using the PULCON method (Wider and Dreier, 2006)
implemented in the ERETIC2 quantification of the Bruker Topspin
software.
Fig. 2. LCeMS/MS (method A) total ion chromatogram of product ion scan of [MþH]þ

at m/z 524 of A. ostenfeldii strain AOVA-0930.
3. Results and discussion

A. ostenfeldii is a microalga, which is known to produce several
different phycotoxins (Kremp et al., 2014). The reasons for such
diversity and the observed variation of toxin profiles among iso-
lates is not clear though a relationship between toxin composition,
phylogenetic position and habitat type has been indicated. The
geographic origin also affects the toxin profile (Salgado et al., 2015).
The production of PSP toxins is predetermined and dependent on
the presence of specific saxitoxin gene motifs (Suikkanen et al.,
2013). The genetic basis for cyclic imine production is presently
not very well understood. Previously it was found that A. ostenfeldii
isolates from U.S East Coast estuaries and brackish coastal waters in
the Netherlands produce both PSP toxins and cyclic imines, spi-
rolides as well as various gymnodimines (VanWagoner et al., 2011;
Van de Waal et al., 2015). The respective isolates are phylogeneti-
cally closely related to A. ostenfeldii populations from the Baltic Sea
(Kremp et al., 2014), which motivated us to search for gymnodi-
mines in Baltic A. ostenfeldii cultures. A major (1) and minor gym-
nodimine B/C-like compound with [MþH]þ at m/z 524 were
detected by LCeMS/MS in A. ostenfeldii isolate AOVA-0930 from the
Baltic Sea (Fig. 2). The major compound was isolated and enriched
from cultured cells, purified, and structurally characterized using
LCeMS/MS, LCeHRMS, and NMR studies.

Accurate masses (Table 3) of 1 and the minor gymnodimine
were consistent with the molecular formula for gymnodimine B/C,
C32H45O5N (with 11 rings or double bond equivalents), previously
isolated from K. selliformis (Miles et al., 2000, 2003). However, the
mass spectrometric fragmentation patterns differed from those
expected for gymnodimine B/C based on reports from literature
(Ben Naila et al., 2012). Several product ions, such as m/z 496, 346,
and 316 (Fig. 3), which did not match with the product ions ex-
pected for gymnodimine B/C, were detected in the product ion
spectrum of 1. Only very small product ions typical for gymnodi-
mine B and C at m/z 488 and 202 were observed in the LCeMS/MS
spectrum of 1.

The structure of 1 (Fig. 1) was resolved by NMR spectroscopy
and mass spectrometry. It is closely related to the known gymno-
dimines (2e5), and contains many structural features present in
2e5, such as six-membered cyclic imine, butenolide, and tetrahy-
drofuran ring structures. The structure of 1 differs from gymnodi-
mine A only between C-7 and C-14 of 1 (Fig. 1).
3.1. NMR analyses

The structure of 1 was determined by NMR experiments with
500 MHz and 850 MHz NMR spectrometers. The 500 MHz NMR
spectroscopic data from deuterated pyridine sample is summarized
in Tables 1 and 2. The through-bond connectivities of protons



Table 2
Protoneproton COSY and TOCSY correlations and spatial NOESY connections for 1 (500 MHz, pyridine-d5).

Position dH COSY (H) TOCSY (H) NOESY (H)

3 6.96 4, 26 4, 25a, 27
4 5.95 3, 26 7 3, 26, 27
7 3.09 8ab 4, 9, 10, 13, 27 9, 21b, 24b, 25a, 27
8 1.43 (Ha) 7, 8b, 9

1.82 (Hb) 7, 8a, 9 10, 27
9 3.96 8ab, 10 7, 11b, 12, 13, 27 7, 19
10 4.02 9, 11a, 12, 7, 13 8b, 11b, 19
11 1.85 (Ha) 10, 11b 13 19

1.99 (Hb) 10, 11a, 9, 12, 13 10
12 1.85 13 9, 10, 11b 19
13 4.27 12, 14 9, 10, 11ab, 15a, 16, 28 10, 12, 14
14 4.09 13, 15ab 17 13, 15b, 17
15 1.22 (Ha) 14, 15b, 16 13, 17, 28 28

1.91 (Hb) 14, 15a, 16 17, 28 14, 16
16 2.30 14, 15ab, 28 13, 17 15b, 28, 29
17 4.09 16, 19, 29 14, 15ab, 20ab, 21ab, 28 14, 16, 29
19 5.98 17, 20ab, 29 21a, 21b, 32ab 9, 10, 12, 20b
20 2.14 (Ha) 19, 20b 21ab, 29 17, 32ab 29

3.00 (Hb) 19, 20a, 21b, 29, 17, 21a, 32ab 19, 29
21 2.38 (Ha) 20a, 21b 17, 19, 20b, 32ab, 29

2.64 (Hb) 20ab, 21a 17, 19, 29, 32ab 7, 19
24 1.33 (Ha) 24b, 25b 25a, 27, 30

1.64 (Hb) 24a, 25ab 27 7
25 1.53 (Ha) 24b, 27 24a 7

1.93 (Hb) 24ab 7, 25a, 27
26 1.96 3, 4 4
27 2.06 7, 25a 9, 10, 24ab, 25b, 30b 3, 4, 7, 8b
28 0.86 16 13, 15ab, 17 15a, 16, 29
29 1.56 17, 19, 20ab 21ab 16, 17, 20ab, 28
30 1.44 32b

1.52 24ab, 25b, 27, 32b 24b
31 1.44 32a, 32b 32a
32 3.51 (Ha) 32b 19, 20ab, 21ab 31

3.73 (Hb) 31, 32a 19, 20ab, 21ab, 30a

Table 3
Exact and Measured Accurate Masses (m/z) for [MþH]þ at m/z 524 and Its Product
Ions Obtained with LCeHRMS (Method C).

Formula Calculated Measured D (ppm)

C32H46NO5
þ 524.3371 524.3365 �1.0

C32H44NO4
þ 506.3265 506.3262 �0.5

C31H46NO4
þ 496.3421 496.3430 2.0

C32H42NO3
þ 488.3159 488.3149 �2.0

C31H46NO3
þ 480.3472 480.3466 �1.2

C31H44NO2
þ 462.3367 462.3357 �2.1

C27H40NO3
þ 426.3003 426.2997 �1.2

C27H38NO2
þ 408.2897 408.2886 �2.8

C24H36NO4
þ 402.2639 402.2629 �2.5

C21H32NO3
þ 346.2377 346.2377 0.0

C20H30NO2
þ 316.2271 316.2263 �2.5

C15H24Nþ 218.1903 218.1900 �1.5
C14H22Nþ 204.1747 204.1745 �1.1
C14H20Nþ 202.1590 202.1586 �2.4
C11H16Nþ 162.1277 162.1277 �0.5
C9H14Nþ 136.1121 136.1121 �0.5

Fig. 3. Product ion spectrum of 1 obtained by LCeMS/MS (method A), [MþH]þ at m/z
524 in the range m/z 150e530.
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within the chain were observed with the correlation spectroscopy
(COSY) and total correlation spectroscopy (TOCSY) experiments,
and spatial closeness was determined using NOESY (nuclear
Overhauser spectroscopy) or rotating-frame nuclear Overhauser
spectoroscopy EASYeROESY experiment (Thiele et al., 2009). Pro-
tonated and quaternary carbons were assigned indirectly with the
multiplicity-edited HSQC (heteronuclear single quantum correla-
tion) and HMBC (heteronuclear multiple bond correlation) exper-
iments, respectively. The preliminary studies were performed in
deuterated water with an 850 MHz NMR spectrometer equipped
with a 5 mm cryoprobe. The imine carbon (C-22, C]N) was not
detected due to signal broadening under acidic conditions and
deuterium exchange. In addition, an overlap of C-23 and C-32 was
observed in deuterated water. More gymnodimine D was isolated
and the NMR spectra were recorded in deuterated pyridine with a
500 MHz NMR spectrometer equipped with a microcoil probe.
Imine carbon could be detected and C-23 and C-32 were differen-
tiated in deuterated pyridine. In addition, more connectivities were
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seen because of higher sample concentration. The observed 1H and
13C ppm values were similar to the values measured for the cor-
responding functional groups of gymnodimine A (2) (Seki et al.,
1995) and 12-methylgymnodimine (5) (Van Wagoner et al., 2011).
The comparison of the chemical shifts for 1, 2, and 5 is presented in
the supporting information (Table S1).

Gymnodimine D (1) had only four methyl groups, rather than
the five in 2, and had an additional CH2 group (C-8) in the macro-
cyclic ring. Only one carbon double bond (C]C) was identified in
the macrocyclic ring, compared to two double bonds in other
gymnodimines. An exocyclic methylene (C]CH2) such as is present
in 3 and 4, was not present in 1.

HMBC correlations from H-4, H-7, H-24ab, and H-27 to C-5 in
ring B were observed. Additionally, connections to spirocyclic C-23
were detected from H-8b, H-24ab, and H-30a; and correlation of H-
30b to C-24 and H-24ab to C-30 in HMBC demonstrates that rings B
and C are connected. HMBC connections to imine carbon (C-22)
were detected from H-20a, H-21b, H-24ab and H-30a, when the
sample was analyzed in deuterated pyridine.

The HMBC correlations of H-3 and H-4 to carbons in the bute-
nolide ring (A) as well as the correlation of H-4 to the adjacent C-5,
C-6, and C-25 were detected. Moreover, the NOESY experiment
showed spatial proximity between H-4 and 27-methyl protons. In
addition to the two oxygens in the butenolide ring, LCeHRMS
indicated that 1 had three more oxygen atoms. Five eCHeOe
groups were detected in the NMR experiments in the same spin
system. Four eCHeOe carbon resonances with approximately the
same ppm values were attributable to two tetrahydrofuran rings
(C-10, C-13, C-14, and C-17). HMBC spectra showed the connec-
tivities fromH-10 to C-13 and H-17 to C-14 over the oxygen bridges.
Further proof of the tetrahydrofuran ring structures was obtained
with NOESY experiment (Fig. 4). The NOESY experiments revealed
that the H-14 and H-17 (ring E) as well as H-10 and H-13 (ring D)
were on the same side of their tetrahydrofuran rings, and that H-9
is spatially close to H-10. In addition, NOESY correlations between
H-14 and H-15b and between H-16 and H-17 were detected. The
low value of 3J13,14 (3.2 Hz) indicated a gauche conformation be-
tween these protons.

The NOESYexperiments showed that the methyl group (C-28) in
the tetrahydrofuran ring is on the opposite side of the ring
compared to gymnodimine A (Fig. 4). The NOESY correlation from
methyl protons (H-28) was seen only to H-15a, but not to H-14, H-
15b, or H-17. A strong NOESY correlation between H-28 and H-29
was also observed, which indicates that these methyls are in close
proximity in the structure.

The NOESY correlation between H-20ab to H-29 and the chem-
ical shift for C-29 (15.4 ppm) indicate an E configuration of the
double bond. A similar chemical shift was reported for the corre-
sponding methyl substituent in 12-methylgymnodimine (C-30,
Fig. 4. The NOESY correlations of protons in the tetrahydrofuran rings (D and E).
14.9 ppm; Van Wagoner et al., 2011). The NOESY experiment
showed also a spatial closeness of H-9, H-10, H-11a, and H-12 to H-
19, which suggests the folding of the gymnodimine macrocyclic
ring so that these protons are close to each other.

Five injections of 100 mL of concentrated AOVA-0930 extracts
yielded approximately 100 mg of 1. Additional isolation of 1 with
nine injections of the same AOVA-0930 extract was determined to
contain 6.7 mg/mL of 1 in the microprobe sample volume of 30 mL
indicating the yield of 200 mg.

3.2. LCeHRMS measurements

When themass fragmentation pattern of 1was studied, the high
resolution product ion spectrum of [MþH]þ at m/z 524 showed
signals consistent with the structure derived from the NMR ex-
periments (Table 3, Fig. 5). The most intense signal atm/z 506.3262
was caused by the loss of water ([M þ HeH2O]þ), while the other
signals were weaker. Several fragments can be explained by retro
DieseAlder opening of the spirocyclic imine ring structure. Frag-
ments typical for the cyclic imine moiety were clearly detected at
m/z 136.1121 and 162.1277. An intense signal from 1 was observed
at m/z 346.2377, matching with the formula of C21H32NO3

þ, and an
additional loss of CH2O produced a signal at m/z 316.2263. The loss
of butenolide ring moiety is characteristic for gymnodimine A,
clearly detected in the mass spectrum of gymnodimine A after the
loss of water at m/z 392. Weak fragments at m/z 426 and 408 were
seen in LCeMS/MS (Method B, Fig. S28) and atm/z 426.2997 andm/
z 408.2886 in the LCeHRMS spectra (Table 3) of 1 consistent with
the loss of butenolide followed by the loss of water, and it is likely
that the cleavage at the secondary alcohol group position (C-9) in 1
is favoured. In addition, fragments at m/z 496.3430 and 480.3466
result from the losses of carbon monoxide (CO) and carbon dioxide
(CO2), respectively. A fragment at m/z 402.2629 in the LCeHRMS
spectrum of 1 was consistent with a formula of C24H36NO4

þ, which
corresponds to the loss of C8H10O. This fragment is proposed to be
formed via other bond cleavages than the retro DielseAlder.

3.3. Biosynthesis

The biosynthesis of several marine toxins by dinoflagellates is
thought to occur via the formation of polyketides, but only limited
information is available on the biosynthesis of cyclic imines
(Kellmann et al., 2010; Van Wagoner et al., 2014). The biosynthesis
of spirolides is based on the polyketide biogenetic pathway
(MacKinnon et al., 2006b). It is also possible that these organisms
contain two separate but closely related cyclic imine synthases. The
homologation of one carbon in themacrocyclic ring of 1 differs from
the other gymnodimines. The identified polyether-type structure in
1 has not been previously described for cyclic imines. Interestingly,
a related structurewith two tetrahydrofurans has been found e.g. in
the iriomoteolidemacrolide isolated from themarine dinoflagellate
Amphidinium (Akakabe et al., 2014). Some bacterial polyethers, such
as monensin, have a polyether structure, which is suggested to be
formed through the cascade of cyclization reactions via epoxide ring
structures. A related bis-ether structure is also thought to be an
intermediate before the formation of bridged ketal structure in
pectenotoxins produced by dinoflagellates (Van Wagoner et al.,
2014). The ether ring-formation of two tetrahydrofuran rings in 1
occurs tentatively via 5-exo-tet reaction instead of 6-endo-tet ring-
formation, which is favoured in the formation of ladder polyether
toxins such as brevetoxins and yessotoxins (Vilotijevic and Jamison,
2010). A possible mechanism for formation of 1 is presented in
Fig. 6, which shows the ring closure of butenolide, formation of
spiroimine structure via DielseAlder cyclization, and cyclization of
tetrahydrofuran rings via epoxides.



Fig. 5. Proposed structures of product ions of 1 with their corresponding formulae and exact masses.

Fig. 6. Possible route for the formation of 1 via the epoxidation of a polyketide chain followed by the exocyclic ring formation of tetrahydrofuran structures.
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3.4. Other gymnodimine analogues

More than 30 related gymnodimine-like compounds were
detected when the highly concentrated, crude extract of AOVA-
0930 was analyzed by LCeHRMS (method C) in the full scan
mode and all-ion fragmentation (AIF) mode monitoring the frag-
ment ion at m/z 136.1121 (Table 4 and Figs. S30eS35). The com-
pounds were considered to be probable gymnodimine analogues if
their peaks gave [MþH]þ m/z 500e600 in full scan, the formulae
contained one nitrogen atom, and had 9.5e10.5 ring or double bond
equivalents (RDBE). The detected compounds contained one ni-
trogen atom, 31e35 carbons and 4e6 oxygens and varying
numbers of hydrogens. Four pairs of compounds differing with two
mass units (m/z 508/510, 524/526,m/z 540/542, and 582/584) were
observed, which could indicate the butenolide double bond varia-
tion of the analogues, which is typical for spirolides (Fig. S32) (Hu
et al., 2001). Moreover, six sodium adducts were detected with
the same retention time as measured for [MþH]þ. Most of these
compounds were only found at trace levels, too low to allow
isolation and identification. Only [MþH]þ atm/z 508.3425 (Table 4,
entry 30), 524.3368 (Table 4, entry 5), 524.3359 (1, Table 4, entry
23), and 582.3788 (Table 4, entry 15) were clearly detected with ion
trap instrument (LCeMS/MS, method A) from the diluted crude
Table 4
Putative Gymnodimines Detected by LCeHRMS (Method C) in an extract of
A. ostenfeldii strain AOVA-0930. Entry 23 with the retention time (rt) of 7.34 min
corresponds to 1.

Entry rt (min) m/z Formula D (ppm) RDBE Abundance (%)a

1 3.65 510.3217 C31H44O5Nþ 0.5 10.5 1.30
2 3.90 540.3324 C32H46O6Nþ 0.7 10.5 0.12
3 4.30 540.3323 C32H46O6Nþ 0.7 10.5 0.12
4 4.49 540.3323 C32H46O6Nþ 0.6 10.5 0.13
5 5.17 524.3368 C32H46O5Nþ �0.4 10.5 7.60
6 5.33 540.3325 C32H46O6Nþ 1.3 10.5 0.04
7 5.46 540.3325 C32H46O6Nþ 1.0 10.5 0.07
8 5.65 526.3535 C32H48O5Nþ 1.5 9.5 0.05
9 5.73 542.3481 C32H48O6Nþ 0.9 9.5 0.21
10 5.88 540.3325 C32H46O6Nþ 1.0 10.5 0.33
11 6.08 542.3482 C32H48O6Nþ 1.0 9.5 0.13
12 6.26 582.3794 C35H52O6Nþ 0.9 10.5 0.03
13 6.36 524.3378 C32H46O5Nþ 1.3 10.5 0.08
14 6.43 542.3481 C32H48O6Nþ 1.0 9.5 0.19

564.3301 C32H47O6NNaþ 0.9
15 6.45 582.3788 C35H52O6Nþ �0.2 10.5 5.50

604.3602 C35H51O6NNaþ �1.1
16 6.54 524.3376 C32H46O5Nþ 1.1 10.5 0.07
17 6.64 540.3324 C32H46O6Nþ 0.9 10.5 0.26
18 6.76 524.3376 C32H46O5Nþ 1.1 10.5 0.44
19 6.91 526.3536 C32H48O5Nþ 1.7 9.5 0.04
20 7.05 584.3951 C35H54O6Nþ 0.8 9.5 0.12
21 7.08 582.3797 C35H52O6Nþ 1.3 10.5 0.04

604.3615 C35H51O6NNaþ 1.0 10.5
22 7.21 540.3325 C32H46O6Nþ 0.9 10.5 0.13
23 7.34 524.3359 C32H46O5Nþ �2.1 10.5 100.00
24 7.34 582.3782 C35H52O6Nþ �1.3 10.5 0.10

604.3622 C35H51O6NNaþ 2.1
25 7.71 526.3534 C32H48O5Nþ 1.3 9.5 0.31
26 7.86 526.3543 C32H48O5Nþ 3.0 9.5 0.05
27 7.89 540.3324 C32H46O6Nþ 0.8 10.5 0.18
28 8.13 524.3378 C32H46O5Nþ 1.4 10.5 0.09
29 8.29 508.3428 C32H46O4Nþ 1.4 10.5 0.05
30 8.55 508.3425 C32H46O4Nþ 0.7 10.5 8.90
31 8.92 510.3586 C32H48O4Nþ 1.7 9.5 0.13
32 9.13 510.3588 C32H48O4Nþ 2.0 9.5 0.02
33 9.38 542.3482 C32H48O6Nþ 1.0 9.5 1.70

564.3300 C32H47O6NNaþ 0.8
34 9.89 526.3536 C32H48O5Nþ 1.7 9.5 0.16

548.3353 C32H47O5NNaþ 1.2

a Relative abundances were estimated from the areas of the [MþH]þ (and
[M�Hþ Na]þ, where appropriate) peaks for the analogues relative to the peak for 1.
extract. 12-Methylgymnodimine ([MþH]þ atm/z 522) was not seen
in the full scan screening of the AOVA-0930 extract. A gymnodi-
mine A -like compound ([MþH]þ at m/z 508) was found with the
same molecular formula as gymnodimine A, but the LCeMS/MS
retention time and mass spectrum did not match with those of
gymnodimine A.

4. Conclusions

In summary, the investigated Baltic Sea strain AOVA-0930 of A.
ostenfeldii produces a combination of saxitoxins and gymnodimines.
A new type of gymnodimine (1) was isolated from culture and
characterized with LCeMS/MS, LCeHRMS, and NMR experiments.
The novel structure containing two tetrahydrofuran rings in the
macrocyclic ring has not been previously described for gymnodi-
mines. Approximately 5 pg/cell of 1 was obtained from both purifi-
cations. The strainproduces also saxitoxin and gonyautoxins 2 and 3.
The total PSP toxin production of the strain has beenmeasured to be
1.4e6.4 pg/cell under similar conditions, and the percentage of
saxitoxin is about 50% of the PSP toxins (Suikkanen et al., 2013;
Kremp et al., 2016). The diversity of gymnodimines revealed in this
study indicates that further work is required in order to compre-
hensively identify and monitor these toxins in marine samples, and
to evaluate their toxicity and environmental impacts.

Acknowledgments

This study was funded by the Academy of Finland (projects
251609, 128833, 251564, and 259357). The research leading to
these results has received funding from the European Seventh
Framework Programme (FP7/2007e2013) under the ECsafeSEA-
FOOD project (grant agreement no 311820). IRTA also acknowl-
edges funding from the Spanish National Institute for Agricultural
Research (INIA), through the project RTA 2013-00096-00-00.

Perttu Permi, Hideo Iwai, and Tuomas Niemi-Aro (Institute of
Biotechnology, University of Helsinki, Finland) are thanked for the
opportunity to use 850 MHz NMR instrument. The authors thank
funding from Biocenter Finland for the NMR core facility at the
Institute of Biotechnology.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.toxicon.2016.01.064.

Transparency document

Transparency document related to this article can be found
online at http://dx.doi.org/10.1016/j.toxicon.2016.01.064

References

Aasen, J., MacKinnon, S.L., LeBlanc, P., Walter, J.A., Hovgaard, P., Aune, T.,
Quilliam, M.A., 2005. Detection and identification of spirolides in Norwegian
shellfish and plankton. Chem. Res. Toxicol. 18, 509e515.

Akakabe, M., Kumagai, K., Tsuda, M., Konishi, Y., Tominaga, A., Tsuda, M., Fukushi, E.,
Kawabata, J., 2014. Iriomoteolide-13a, a cytotoxic 22-membered macrolide from
a marine dinoflagellate Amphidinium species. Tetrahedron 70, 2962e2965.

Almandoz, G.O., Montoya, N.G., Hernando, M.P., Benavides, H.R., Carignan, M.O.,
Ferrario, M.E., 2014. Toxic strains of the Alexandrium ostenfeldii complex in
southern South America (Beagle Channel, Argentina). Harmful Algae 37,
100e109.

Ar�aoz, R., Servent, D., Molg�o, J., Iorga, B.I., Fruchart-Gaillard, C., Benoit, E., Gu, Z.,
Stivala, C., Zakarian, A., 2011. Pinnatoxins: an emergent family of marine phy-
cotoxins targeting nicotinic acetylcholine receptors with high affinity. Toxins
Ion Transf. 43e47.

Ben Naila, I., Hamza, A., Gdoura, R., Diog�ene, J., de la Iglesia, P., 2012. Prevalence and
persistence of gymnodimines in clams from the Gulf of Gabes (Tunisia) studied
by mouse bioassay and LC-MS/MS. Harmful Algae 18, 56e64.

http://dx.doi.org/10.1016/j.toxicon.2016.01.064
http://dx.doi.org/10.1016/j.toxicon.2016.01.064
http://dx.doi.org/10.1016/j.toxicon.2016.01.064
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref1
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref1
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref1
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref1
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref2
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref2
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref2
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref2
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref3
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref3
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref3
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref3
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref3
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref4
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref4
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref4
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref4
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref4
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref4
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref4
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref5
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref5
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref5
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref5
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref5


K. Harju et al. / Toxicon 112 (2016) 68e7676
Bir�e, R., Krys, S., Fr�emy, J.M., Dragacci, S., Stirling, D., Kharrat, R., 2002. First evidence
on occurrence of gymnodimine in clams from Tunisia. J. Nat. Toxins 11,
269e275.

Cembella, A.D., Lewis, N.I., Quilliam, M.A., 2000. The marine dinoflagellate Alexan-
drium ostenfeldii (Dinophyceae) as the causative organism of spirolide shellfish
toxins. Phycologia 39, 67e74.

Ciminiello, P., Dell'Aversano, C., Iacovo, E.D., Fattorusso, E., Forino, M., Grauso, L.,
Tartaglione, L., Guerrini, F., Pezzolesi, L., Pistocchi, R., 2010. Characterization of
27-hydroxy-13-desmethyl spirolide C and 27-oxo-13,19-didesmethyl spirolide
C. Further insights into the complex Adriatic Alexandrium ostenfeldii toxin
profile. Toxicon 56, 1327e1333.

de la Iglesia, P., McCarron, P., Diog�ene, J., Quilliam, M.A., 2013. Discovery of gym-
nodimine fatty acid ester metabolites in shellfish using liquid chromatography/
mass spectrometry. Rapid Commun. Mass Spectrom. 27, 643e653.

EFSA Panel on Contaminants in the Food Chain (CONTAM), 2010. Scientific opinion
on marine biotoxins in shellfish e cyclic imines (spirolides, gymnodimines,
pinnatoxins and pteriatoxins) [39 pp.] EFSA J. 8 (6), 1628. http://dx.doi.org/
10.2903/j.efsa.2010.1628. Available online: www.efsa.europa.eu.

García-Altares, M., Diog�ene, J., de la Iglesia, P., 2013. The implementation of liquid
chromatography tandem mass spectrometry for the official control of lipophilic
toxins in seafood: single-laboratory validation under four chromatographic
conditions. J. Chromatogr. A 1275, 48e60.

Gerssen, A., Mulder, P.P.J., McElhinney, M.A., de Boer, J., 2009. Liquid
chromatography-tandem mass spectrometry method for the detection of ma-
rine lipophilic toxins under alkaline conditions. J. Chromatogr. A 1216,
1421e1430.

Gu�eret, S.M., Brimble, M.A., 2010. Spiroimine shellfish poisoning (SSP) and the
spirolide family of shellfish toxins: isolation, structure, biological activity and
synthesis. Nat. Prod. Rep. 27, 1350e1366.

Guillard, R.R.L., Ryther, J.H., 1962. Studies of marine planktonic diatoms. I. Cyclotella
nana (Hustedt) and Detonula confervacea (Cleve). Can. J. Microbiol. 8, 229e239.

Harris, R.K., Becker, E.D., Cabral De Menezes, S.M., Granger, P., Hoffman, R.E.,
Zilm, K.W., 2008. Further conventions for NMR shielding and chemical shifts:
(IUPAC recommendations 2008). Pure Appl. Chem. 80, 59e84.

Hu, T., Curtis, J.M., Oshima, Y., Quilliam, M.A., Walter, J.A., Watson-Wright, W.M.,
Wright, J.L.C., 1995. Spirolides B and D, two novel macrocycles isolated from the
digestive glands of shellfish. J. Chem. Soc. Chem. Commun. 2159e2161.

Hu, T., Burton, I.W., Cembella, A.D., Curtis, J.M., Quilliam, M.A., Walter, J.A.,
Wright, J.L.C., 2001. Characterization of spirolides A, C, and 13-desmethyl C, new
marine toxins isolated from toxic plankton and contaminated shellfish. J. Nat.
Prod. 64, 308e312.

Kellmann, R., Stüken, A., Orr, R.J.S., Svendsen, H.M., Jakobsen, K.S., 2010. Biosyn-
thesis and molecular genetics of polyketides in marine dinoflagellates. Mar.
Drugs 8, 1011e1048.

Kharrat, R., Servent, D., Girard, E., Ouanounou, G., Amar, M., Marrouchi, R., Benoit, E.,
Molg�o, J., 2008. The marine phycotoxin gymnodimine targets muscular and
neuronal nicotinic acetylcholine receptor subtypes with high affinity.
J. Neurochem. 107, 952e963.

Kremp, A., Tahvanainen, P., Litaker, W., Krock, B., Suikkanen, S., Leaw, C.P., Tomas, C.,
2014. Phylogenetic relationships, morphological variation, and toxin patterns in
the Alexandrium ostenfeldii (Dinophyceae) complex: implications for species
boundaries and identities. J. Phycol. 50, 81e100.

Kremp, A., Oja, J., LeTortorec, A.H., Hakanen, P., Tahvanainen, P., Tuimala, J.,
Suikkanen, S., 2016. Diverse seed banks favour adaptation of microalgal pop-
ulations to future climate conditions. Environ. Microbiol. http://dx.doi.org/
10.1111/1462-2920.13070.

MacKinnon, S.L., Walter, J.A., Quilliam, M.A., Cembella, A.D., LeBlanc, P., Burton, I.W.,
Hardstaff, W.R., Lewis, N.I., 2006a. Spirolides isolated from Danish strains of the
toxigenic dinoflagellate Alexandrium ostenfeldii. J. Nat. Prod. 69, 983e987.

MacKinnon, S.L., Cembella, A.D., Burton, I.W., Lewis, N., LeBlanc, P., Walter, J.A.,
2006b. Biosynthesis of 13-desmethyl spirolide C by the dinoflagellate Alexan-
drium ostenfeldii. J. Org. Chem. 71, 8724e8731.

McCarron, P., Wright, E., Quilliam, M.A., 2014. Liquid chromatography/mass spec-
trometry of domoic acid and lipophilic shellfish toxins with selected reaction
monitoring and optional confirmation by library searching of product ion
spectra. J. AOAC Int. 97, 316e324.

Miles, C.O., Wilkins, A.L., Stirling, D.J., MacKenzie, A.L., 2000. New analogue of
gymnodimine from a Gymnodinium species. J. Agric. Food Chem. 48, 1373e1376.

Miles, C.O., Wilkins, A.L., Stirling, D.J., MacKenzie, A.L., 2003. Gymnodimine C, an
isomer of gymnodimine B, from Karenia selliformis. J. Agric. Food Chem. 51,
4838e4840.

Molg�o, J., Girard, E., Benoit, E., 2007. Cyclic imines: an insight into this emerging
group of bioactive marine toxins. In: Botana, L.M. (Ed.), Phycotoxins: Chemistry
and Biochemistry. Blackwell Publishing, Ames, Iowa, pp. 319e335.
Molg�o, J., Ar�aoz, R., Iorga, B.I., Benoit, E., Zakarian, A., 2014. Cyclic imine neurotoxins
acting on muscarinic and nicotinic acetylcholine receptors. In: Rossini, G.P.
(Ed.), Toxins and Biologically Active Compounds from Microalgae. CRC Press,
pp. 116e146.

Munday, R., Towers, N.R., MacKenzie, L., Beuzenberg, V., Holland, P.T., Miles, C.O.,
2004. Acute toxicity of gymnodimine to mice. Toxicon 44, 173e178.

Munday, R., 2008. Toxicology of cyclic imines: gymnodimine, spirolides, pinna-
toxins, pteriatoxins, prorocentrolide, spiro-prorocentrimine, and symbioimines.
In: Botana, L.M. (Ed.), Seafood and Freshwater Toxins: Pharmacology, Physi-
ology, and Detection, second ed. CRC Press, pp. 581e594.

Rhodes, L., Smith, K., Selwood, A., McNabb, P., van Ginkel, R., Holland, P., Munday, R.,
2010. Production of pinnatoxins by a peridinoid dinoflagellate isolated from
Northland, New Zealand. Harmful Algae 9, 384e389.

Rhodes, L., Smith, K., Selwood, A., McNabb, P., Munday, R., Suda, S., Molenaar, S.,
Hallegraeff, G., 2011. Dinoflagellate Vulcanodinium rugosum identified as the
causative organism of pinnatoxins in Australia, New Zealand and Japan. Phy-
cologia 50, 624e628.

Roach, J.S., LeBlanc, P., Lewis, N.I., Munday, R., Quilliam, M.A., MacKinnon, S.L., 2009.
Characterization of a dispiroketal spirolide subclass from Alexandrium osten-
feldii. J. Nat. Prod. 72, 1237e1240.

Rundberget, T., Aasen, J.A.B., Selwood, A.I., Miles, C.O., 2011. Pinnatoxins and spi-
rolides in Norwegian blue mussels and seawater. Toxicon 58, 700e711.

Salgado, P., Riob�o, P., Rodríguez, F., Franco, J.M., Bravo, I., 2015. Differences in the
toxin profiles of Alexandrium ostenfeldii (Dinophyceae) strains isolated from
different geographic origins: evidence of paralytic toxin, spirolide, and gym-
nodimine. Toxicon 103, 85e98.

Seki, T., Satake, M., MacKenzie, L., Kaspar, H.F., Yasumoto, T., 1995. Gymnodimine, a
new marine toxin of unprecedented structure isolated from New Zealand
oysters and the dinoflagellate, Gymnodinium sp. Tetrahedron Lett. 36,
7093e7096.

Selwood, A.I., Miles, C.O., Wilkins, A.L., van Ginkel, R., Munday, R., Rise, F.,
McNabb, P., 2010. Isolation, structural determination and acute toxicity of
pinnatoxins E, F and G. J. Agric. Food Chem. 58, 6532e6542.

Selwood, A.I., Wilkins, A.L., Munday, R., Shi, F., Rhodes, L.L., Holland, P.T., 2013.
Portimine: a bioactive metabolite from the benthic dinoflagellate Vulcan-
odinium rugosum. Tetrahedron Lett. 54, 4705e4707.

Selwood, A.I., Wilkins, A.L., Munday, R., Gu, H., Smith, K.F., Rhodes, L.L., Rise, F., 2014.
Pinnatoxin H: a new pinnatoxin analog from a South China Sea Vulcanodinium
rugosum isolate. Tetrahedron Lett. 55, 5508e5510.

Sleno, L., Chalmers, M.J., Volmer, D.A., 2004. Structural study of spirolide marine
toxins by mass spectrometry. Part II. Mass spectrometric characterization of
unknown spirolides and related compounds in a cultured phytoplankton
extract. Anal. Bioanal. Chem. 378, 977e986.

Stewart, M., Blunt, J.W., Munro, M.H.G., Robinson, W.T., Hannah, D.J., 1997. The
absolute stereochemistry of the New Zealand shellfish toxin gymnodimine.
Tetrahedron Lett. 38, 4889e4890.

Stirling, D.J., 2001. Survey of historical New Zealand shellfish samples for accu-
mulation of gymnodimine. N. Z. J. Mar. Freshw. Res. 35, 851e857.

Suikkanen, S., Kremp, A., Hautala, H., Krock, B., 2013. Paralytic shellfish toxins or
spirolides? The role of environmental and genetic factors in toxin production of
the Alexandrium ostenfeldii complex. Harmful Algae 26, 52e59.

Tahvanainen, P., Alpermann, T.J., Figueroa, R.I., John, U., Hakanen, P., Nagai, S.,
Blomster, J., Kremp, A., 2012. Patterns of post-glacial genetic differentiation in
marginal populations of a marine microalga. PLoS One 7, e53602.

Takada, N., Umemura, N., Suenaga, K., Uemura, D., 2001. Structural determination of
pteriatoxins A, B and C, extremely potent toxins from the bivalve Pteria penguin.
Tetrahedron Lett. 42, 3495e3497.

Thiele, C.M., Petzold, K., Schleucher, J., 2009. EASY ROESY: reliable cross-peak
integration in adiabatic symmetrized ROESY. Chem. Eur. J. 15, 585e588.

Tillmann, U., Kremp, A., Tahvanainen, P., Krock, B., 2014. Characterization of spi-
rolide producing Alexandrium ostenfeldii (Dinophyceae) from the western
Arctic. Harmful Algae 39, 259e270.

Van de Waal, D.B., Tillmann, U., Martens, H., Krock, B., van Scheppingen, Y., John, U.,
2015. Characterization of multiple isolates from an Alexandrium ostenfeldii
bloom in The Netherlands. Harmful Algae 49, 94e104.

Van Wagoner, R.M., Misner, I., Tomas, C.R., Wright, J.L.C., 2011. Occurrence of 12-
methylgymnodimine in a spirolide-producing dinoflagellate Alexandrium
peruvianum and the biogenetic implications. Tetrahedron Lett. 52, 4243e4246.

Van Wagoner, R.M., Satake, M., Wright, J.L.C., 2014. Polyketide biosynthesis in di-
noflagellates: what makes it different? Nat. Prod. Rep. 31, 1101e1137.

Vilotijevic, I., Jamison, T.F., 2010. Synthesis of marine polycyclic polyethers via endo-
selective epoxide-opening cascades. Mar. Drugs 8, 763e809.

Wider, G., Dreier, L., 2006. Measuring protein concentrations by NMR Spectroscopy.
J. Am. Chem. Soc. 128, 2571e2576.

http://refhub.elsevier.com/S0041-0101(16)30015-0/sref6
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref6
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref6
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref6
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref6
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref6
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref7
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref7
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref7
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref7
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref8
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref8
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref8
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref8
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref8
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref8
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref9
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref9
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref9
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref9
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref9
http://dx.doi.org/10.2903/j.efsa.2010.1628
http://dx.doi.org/10.2903/j.efsa.2010.1628
http://www.efsa.europa.eu
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref11
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref11
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref11
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref11
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref11
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref11
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref12
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref12
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref12
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref12
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref12
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref13
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref13
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref13
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref13
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref13
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref14
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref14
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref14
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref15
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref15
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref15
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref15
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref16
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref16
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref16
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref16
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref17
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref17
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref17
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref17
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref17
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref18
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref18
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref18
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref18
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref19
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref19
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref19
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref19
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref19
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref19
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref20
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref20
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref20
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref20
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref20
http://dx.doi.org/10.1111/1462-2920.13070
http://dx.doi.org/10.1111/1462-2920.13070
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref22
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref22
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref22
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref22
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref23
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref23
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref23
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref23
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref24
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref24
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref24
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref24
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref24
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref25
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref25
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref25
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref26
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref26
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref26
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref26
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref27
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref27
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref27
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref27
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref27
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref28
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref28
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref28
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref28
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref28
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref28
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref28
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref29
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref29
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref29
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref30
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref30
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref30
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref30
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref30
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref31
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref31
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref31
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref31
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref32
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref32
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref32
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref32
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref32
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref33
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref33
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref33
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref33
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref34
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref34
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref34
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref35
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref35
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref35
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref35
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref35
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref35
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref36
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref36
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref36
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref36
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref36
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref37
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref37
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref37
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref37
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref38
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref38
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref38
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref38
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref39
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref39
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref39
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref39
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref40
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref40
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref40
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref40
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref40
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref41
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref41
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref41
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref41
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref42
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref42
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref42
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref43
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref43
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref43
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref43
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref44
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref44
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref44
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref45
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref45
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref45
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref45
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref46
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref46
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref46
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref47
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref47
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref47
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref47
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref48
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref48
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref48
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref48
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref49
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref49
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref49
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref49
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref50
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref50
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref50
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref51
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref51
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref51
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref52
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref52
http://refhub.elsevier.com/S0041-0101(16)30015-0/sref52

	Identification of gymnodimine D and presence of gymnodimine variants in the dinoflagellate Alexandrium ostenfeldii from the ...
	1. Introduction
	2. Materials and methods
	2.1. Reagents
	2.2. Cell culture
	2.3. Sample preparation
	2.4. LC–MS/MS method A
	2.5. LC–MS/MS method B
	2.6. LC–HRMS method C
	2.7. NMR analyses

	3. Results and discussion
	3.1. NMR analyses
	3.2. LC–HRMS measurements
	3.3. Biosynthesis
	3.4. Other gymnodimine analogues

	4. Conclusions
	Acknowledgments
	Appendix A. Supplementary data
	Transparency document
	References


