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Abstract The West African monsoon rainfall is essential for regional food production, and decadal
predictions are necessary for policy makers and farmers. However, predictions with global climate models
reveal precipitation biases. This study addresses the hypotheses that global prediction biases can be reduced
by dynamical downscaling with a multimodel ensemble of three regional climate models (RCMs), a RCM
coupled to a global ocean model and a RCM applying more realistic soil initialization and boundary
conditions, i.e., aerosols, sea surface temperatures (SSTs), vegetation, and land cover. Numerous RCM
predictions have been performed with REMO, COSMO-CLM (CCLM), and Weather Research and Forecasting
(WRF) in various versions and for different decades. Global predictions reveal typical positive and negative
biases over the Guinea Coast and the Sahel, respectively, related to a southward shifted Intertropical
Convergence Zone (ITCZ) and a positive tropical Atlantic SST bias. These rainfall biases are reduced by some
regional predictions in the Sahel but aggravated by all RCMs over the Guinea Coast, resulting from the inherited
SST bias, increased westerlies and evaporation over the tropical Atlantic and shifted African easterly waves. The
coupled regional predictions simulate high-resolution atmosphere-ocean interactions strongly improving the
SST bias, the ITCZ shift and the Guinea Coast and Central Sahel precipitation biases. Some added values in
rainfall bias are found for more realistic SST and land cover boundary conditions over the Guinea Coast and
improved vegetation in the Central Sahel. Thus, the ability of RCMs and improved boundary conditions to
reduce rainfall biases for climate impact research depends on the considered West African region.

1. Introduction

A rather new climate research field with emerging scientific interest in recent years deals with decadal cli-
mate predictions [Murphy et al., 2010]. They focus on 10–30 year predictions ranging between seasonal fore-
casts and climate change projections at the centennial time scale and are particularly required for medium
term decision making of planners and policy makers [Meehl et al., 2009]. Decadal prediction skill is generated
from predictability in both boundary conditions, mainly greenhouse gas (GHG) and aerosol concentrations
[van Oldenborgh et al., 2012;Mehta et al., 2013], and initial conditions, especially the three-dimensional ocean
[Matei et al., 2012; Hazeleger et al., 2013], sea ice, and land surface characteristics [Bellucci et al., 2015]. Large
influence at the multidecadal time scale has even been reported for atmospheric initial conditions [Paxian
et al., 2014]. Recent studies have detected some decadal predictive skill in sea surface temperatures (SSTs)
of the North Atlantic, Indian, and tropical Pacific Oceans [Keenlyside et al., 2008; Kim et al., 2012], and first mul-
timodel climate predictions for the forthcoming decade are available [Smith et al., 2013].

This study analyzes decadal predictions of the West African monsoon (WAM) rainfall that determines food and
water security and economic development in sub-Saharan West Africa [Benson and Clay, 1998]. To predict the
interannual to decadal WAM rainfall variability the initial and boundary conditions of relevant ocean basins
need to be known [Rodriguez-Fonseca et al., 2011; Rowell, 2013]: The equatorial East Atlantic SSTs reveal strong
impacts on the Guinea Coast rainfall but less influence on the Sahel precipitation since the 1970s [Diatta and
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Fink, 2014] due to counteracting effects of the Atlantic and Pacific Oceans [Losada et al., 2012]. Instead, Sahel
rainfall is linked to the Atlantic Multidecadal Oscillation and to Indian Ocean and Eastern Mediterranean SSTs
[Diatta and Fink, 2014]. Multiyear predictability has been found for the tropical Atlantic atmosphere
[Dunstone et al., 2011]. However, the initialized coupled global general circulation models (GCMs) of the
CoupledModel Intercomparison Project phase 5 reveal different decadal predictive skills for Sahel rainfall (mea-
sured by anomaly correlation coefficients and root-mean-square errors) due to varying ocean initializations, SST
variabilities, and SST rainfall teleconnections [Gaetani and Mohino, 2013; Martin and Thorncroft, 2014].

The systematic bias of decadal predictions of WAM rainfall is another crucial factor, impeding their use in real
decision processes. Even if some biases can be corrected by statistical postprocessing [Kharin et al., 2012], the
understanding of their causes may improve decadal prediction systems [Hawkins et al., 2014]. Indeed, a com-
mon problem of many state-of-the-art coupled GCMs over West Africa is overestimatedWAM rainfall over the
Gulf of Guinea and underestimated Sahel precipitation, reflecting a southward shift of the WAM, and the
Intertropical Convergence Zone (ITCZ) [Martin et al., 2014; Richter et al., 2014]. This displacement of rainfall
patterns has been related to positive SST biases in the tropical East and South-East Atlantic Ocean [Janicot
et al., 1998; Losada et al., 2010] which are probably caused by weaker equatorial easterlies in boreal spring
deepening the South-East Atlantic thermocline and inhibiting the Benguela cold tongue upwelling [Richter
et al., 2014]. The reduced easterlies are linked to an ITCZ southward shift [Tozuka et al., 2011] or a weaker sub-
tropical anticyclone reducing along-shore winds over South-West Africa and the northward Benguela current
[Richter et al., 2012]. Further explanations involve fewer stratocumulus clouds [Hu et al., 2010] or a coarse hor-
izontal ocean resolution (>1°) [Grodsky et al., 2012].

Tomeet the needs of climate impact studies in West Africa high-resolution regional climatemodels (RCMs) resol-
ving small-scale atmospheric processes and land surface interactions are applied [Paeth et al., 2011]. RCM experi-
ments are able to improve the rainfall climatology of global driving data, e.g., over the Mediterranean area
[Paxian et al., 2015] and Africa [Sylla et al., 2010]. The (ENSEMBLES) Ensembles-based Predictions of Climate
Changes and Their Impactsmultimodel RCM ensemble forced by reanalysis data reveals strongly differing annual
rainfall biases between various RCMs in West Africa, often smaller but partly larger than global driving data. The
RCM ensemble mean clearly reduces the bias of global reanalyses [Paeth et al., 2011]. The recent CORDEX
(Coordinated Regional Climate Downscaling Experiment) multimodel RCM ensemble shows similar results for
the July, August, and September season [Nikulin et al., 2012] and further captures the spatial distribution and
annual cycle of the Gulf of Guinea and Sahel rainfall [Gbobaniyi et al., 2014]. Improved spatial patterns of West
African rainfall have also been found for RCMs forced by AMIP (AtmosphericModel Intercomparison Project)-type
GCM data [Druyan et al., 2010]. Further added values are provided by high-resolution atmosphere-ocean climate
models which are fully coupled at the regional scale and capture fine-scale air-sea interactions, e.g., over the
North Atlantic and Europe [Sein et al., 2015] and during the Indian summer monsoon [Ratnam et al., 2008].

Additional improvements of simulated WAM rainfall bias (and predictability) can be achieved by optimizing
the planetary boundary layer, microphysics, or cumulus schemes [Klein et al., 2015] and by implementing
more realistic nonoceanic initial or boundary conditions which are predictable over a decade in GCMs and
RCMs: Besides anthropogenic GHG emissions, the radiative forcing by aerosols, e.g., frommineral dust or bio-
mass burning, impacts on temperature, rainfall, and the large-scale monsoon circulation in West Africa [Paeth
and Feichter, 2006; Solmon et al., 2012]. Large effects on the West African monsoon circulation and rainfall
have also been stated for man-made land cover changes like deforestation or desertification via small-scale
land-atmosphere interactions [Abiodun et al., 2008; Paeth et al., 2009]. The use of a land surface parameteriza-
tion with explicit vegetation representation [Xue et al., 2004] and a coupled dynamic vegetation model with
fine-scale vegetation-atmosphere feedbacks [Alo and Wang, 2010] has improved simulated WAM develop-
ment and rainfall. Due to their long-term memory, small-scale soil moisture initial and boundary conditions
affect WAM rainfall predictability in a hot spot region for land-atmosphere coupling and soil-precipitation
feedbacks [Douville et al., 2007; Moufouma-Okia and Rowell, 2010].

Our study investigates theWAM rainfall biases from global predictions of the new German decadal prediction
system [Pohlmann et al., 2013] in three West African regions and several hindcast decades. Following recent
research work, we address the threemain hypotheses that global prediction biases can be improved by dyna-
mical downscaling with (1) a multimodel ensemble of high-resolution RCMs, (2) a RCM coupled to a global
ocean model, and (3) a RCM accounting for more realistic boundary conditions like aerosols, SSTs, vegetation,
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and land cover as well as optimized soil initialization. To test these hypotheses on the beneficial impacts of a
high atmospheric resolution, small-scale atmosphere-ocean interactions, and improved atmospheric, ocea-
nic, or terrestrial processes numerous ensembles of regional decadal predictions have been performed with
three RCMs in various versions nested into the global predictions. WAM rainfall biases of global and regional
predictions are compared with each other, and for prominent bias reductions or increases possible physical
process-based explanations are investigated. The following section describes the experimental design of glo-
bal and regional predictions, the observational data, and the data processing used in this study. The resulting
WAM rainfall biases are presented in section 3. Section 4 summarizes and discusses the results and in
section 5 the main conclusions are drawn.

2. Data and Methods

In order to investigate WAM rainfall biases in decadal climate predictions initialized coupled GCM experi-
ments have been used and different types of RCM simulations have been performed: (1) a multimodel
ensemble of three RCMs nested into the global GCM predictions, (2) two RCM ensembles coupled to the glo-
bal ocean model of the coupled GCM, and (3) several RCM ensembles accounting for more realistic boundary
conditions and improved soil initialization.

2.1. Global Decadal Predictions

The global decadal predictions have been taken from the new version of the Max-Planck Institute for
Meteorology Earth System Model Low Resolution (MPI-ESM LR). It is based on the coupled GCM
ECHAM6/MPI-OM at T63 (~1.9°) and GR15 (~1.5°) horizontal resolution with 47 and 40 vertical levels in the

Figure 1. Biases of simulatedWAM rainfall from ensemblemeans of MPI-ESM, different regional predictions and themultimodel RCM ensemble of CCLM,WRF, and REMO-
W (RCM-MM) compared to WMMA observations for (a–c) three West African regions and (e) the area-weighted mean of all regions. The bars and error bars describe the
means and standard deviations over the JJAS seasons of four hindcast decades, respectively, and the dashed lines mark the corresponding biases of CRU observations
compared to WMMA. (d) The schematic map shows the model domain of regional predictions and defines the three West African regions under consideration.
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atmospheric and oceanic component, respectively [Jungclaus et al., 2013; Pohlmann et al., 2013; Stevens et al.,
2013]. A quasi-realistic MPI-ESM assimilation run has been nudged to ocean temperature and salinity anoma-
lies from the ORAS4 ocean reanalysis [Balmaseda et al., 2013] of the European Centre for Medium-Range
Weather Forecasts (ECMWF) and to surface pressure, temperature, vorticity, and divergence fields from
ERA40 [Uppala et al., 2005] and ERA-Interim atmospheric reanalyses [Dee et al., 2011] before and after
1990, respectively. From this assimilation run a 10 member ensemble of freely evolving decadal predictions
of 10 year length has been initialized in 1 January in every year from 1961 to 2014 with 1 day lagged initializa-
tion for each ensemble member, i.e., 10 MPI-ESM members for 54 hindcast decades [Pohlmann et al., 2013].

2.2. Regional Decadal Predictions

The dynamical downscaling of the global predictions has been carried out with a multimodel ensemble of
three RCMs: (1) the hydrostatic REMO [Jacob, 2001; Jacob et al., 2007] in version 2009 (REMO-W), (2) the non-
hydrostatic COSMO-CLM (CCLM) [Rockel et al., 2008] in version 4-21, i.e., the CORDEX-Africa configuration
[Panitz et al., 2014], and (3) the nonhydrostatic Weather Research and Forecasting (WRF) model [Skamarock
et al., 2008] in version 3-5-1. In addition, a further REMO version with improved parameterizations for tropical
climate simulations, including minimum cloud heights for precipitation formation and soil properties for rain-
forests, has been applied (REMO-H). These models have been frequently used in studies on the West African
climate and found to reproduce the WAM system reasonably well [Paeth et al., 2005, 2011; Flaounas et al.,
2011; Nikulin et al., 2012; Gbobaniyi et al., 2014; Kothe et al., 2014a; Panitz et al., 2014].

All RCMs cover themodel domain from 59.4°W to 59.4°E and 44°S to 44°N at 0.44° resolution. The 7–8 grid boxes
along the lateral boundaries have not been considered for further analyses to avoid artificial boundary effects
(cf. Figure 1). To prevent a cold start of the deep soil layers the RCM simulations have been initialized with soil
conditions from spin-up simulations forced by ERA40 or ERA-Interim reanalyses depending on the simulated
decade. Due to limited computing resources we have decided to downscale three instead of the full 10 MPI-
ESM ensemble members for each RCM version during four selected hindcast decades considered as crucial
episodes in the historical WAM evolution, i.e., 1966–1975, 1981–1990, 1991–2000, and 2001–2010 (Table 1). The
method to select 3 out of 10MPI-ESMmembers per decade is as follows: for each decadewe have chosen those
three global predictions with best, intermediate, andworst skill in correlations to observed SST variations in sev-
eral oceanic regions most relevant to the WAM rainfall (cf. H. Paeth et al., Decadal and multi-year predictability
of the West African monsoon and the role of dynamical downscaling, submitted to Journal of Climate, 2016).
Due to far higher computing costs, only the best and worst MPI-ESM members per decade have been down-
scaled with WRF. In all simulations GHG concentrations have been taken from historical observations before
2005 and from the RCP4.5 scenario (Representative Concentration Pathway) [Moss et al., 2010] after 2005.

Table 1. Number of Available Decadal Prediction Simulations of the Considered GCM and RCM Ensembles, Including
Those With Ocean Coupling and Improved Boundary Conditions and Soil Initialization, for Each Considered Hindcast
Decade a

Number of Simulations Per Hindcast Decade

Model (Version) 1966–1975 1981–1990 1991–2000 2001–2010

MPI-ESM 10 10 10 10
WRF 2 2 2 2
REMO-W 3 3 3 3
REMO-H 3 3 3 3
REMO-O1 3 3 3 3
REMO-O2 3 3 3 3
CCLM 3 3 3 3
CCLM-AOD - - - 3
CCLM-AOD/SST 3 - - 3
CCLM-SOIL - - - 3
CCLM-VEG - - - 3
CCLM-LUC 3 3 3 3
CCLM-LUV 3 3 - 3

aFor description of models and model versions see data and methods section.
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2.3. Coupled Regional Decadal Predictions

Two REMO-H ensembles have been realized for each selected decade which have been fully coupled to the
global MPI-OM ocean model component of MPI-ESM within the RCM domain described above [Sein et al.,
2015]. The two ensembles differ in the assimilation run from which the decadal predictions are initialized:
For the REMO-O1 ensemble, the ocean model spin-up has been carried out similarly to the MPI-ESM assim-
ilation run, i.e., MPI-OM has been nudged to ORAS4 ocean reanalyses but forced by ECHAM6 nudged to
ERA40/ ERA-Interim atmospheric reanalyses outside the RCM domain and fully coupled with REMO inside this
area. For the REMO-O2 ensemble, this spin-up technique has been simplified in directly forcing MPI-OM with
ERA40 reanalyses outside the RCM domain instead of using ECHAM6 nudged to atmospheric reanalyses [cf.
Sein et al., 2014]. The model shock when changing from ERA40 to ECHAM6 forcing in prediction mode has
been minimized in keeping the same REMO/MPI-OM setting within the RCM domain as during spin-up.

The MPI-OM configuration differs from that of MPI-ESM and shows a high horizontal resolution within the
coupled REMO/MPI-OM domain spanning from 7–25 km near the West African coasts and equatorial
Atlantic to 60–65 km at 45°S. It comprises 40 vertical levels. Outside the RCM domain MPI-OM has been driven
by atmospheric forcing and reaches a maximum grid-box spacing of 130 km near South Australia [cf. Sein
et al., 2015, Figure 27d]. The interactions between global ocean with regionally high resolution and regional
atmosphere are expected to strongly improve the simulation of regional climate due to better resolved land-
sea contrasts and air-sea exchanges of energy, mass, and momentum [Sein et al., 2015].

2.4. Regional Decadal Predictions With Improved Boundary and Initial Conditions

Several CCLM ensembles with more realistic aerosol, SST, vegetation, and land cover boundary conditions as
well as improved soil initialization have been performed:

1. The standard CCLM aerosol optical depth (AOD) climatology from Tanré et al. [1984] which is constant in
time at a very low resolution of T10 (~11.25°) has been exchanged by the improved AOD climatology from
the AeroCom project [Kinne et al., 2006] offering monthly data for year 2000 conditions at 1° resolution
(CCLM-AOD).

2. Additionally, the simulated SSTs from the global MPI-ESM predictions have been replaced by the more
realistic SSTs from ERA40 or ERA-Interim reanalyses depending on the simulated decade (CCLM-AOD/
SST) in order to reduce simulated SST biases. The CCLM-AOD ensemble has been realized for the 2001–
2010 decade and the CCLM-AOD/SST ensemble for 1966–1975 and 2001–2010.

3. The CCLM-SOIL ensemble for the 2001–2010 decade has been initialized by optimized soil temperature
and moisture fields from an offline spin-up simulation of CCLM’s land surface module TERRA_ML
[Schrodin and Heise, 2002] during 1979–2000 forced by realistic atmospheric data from WATCH-WFDEI
[Weedon et al., 2014], a similar approach to the recent ECMWF land reanalysis [Balsamo et al., 2015].

4. The CCLM-VEG ensemble has been performed in 2001–2010. It has been coupled to the more sophisti-
cated soil-vegetation-atmosphere-transfer (SVAT) module VEG3D [Braun and Schädler, 2005] with explicit
vegetation layer replacing CCLM’s standard SVAT TERRA_ML in order to improve the simulated interac-
tions between soil, vegetation, and atmosphere [Breil, 2015].

5. The CCLM-LUC and CCLM-LUV ensembles have been forced by constant and yearly varying GLC2000 land
use maps [Bartholomé and Belward, 2005], respectively, substituting the standard constant ECOCLIMAP
data [Champeaux et al., 2005] during all four hindcast decades except for CCLM-LUV in 1991–2000.
The yearly land use changes have been generated by the advanced stochastic land use change model
(ASLUCM) (T. Engel, manuscript in preparation, 2015) applying statistics on population, agriculture, deser-
tification, and deforestation from the Food and Agriculture Organization (FAO) (unpublished data, 2015,
available from the FAO website, faostat3.fao.org) and street data from the OpenStreetMap contributors
(unpublished data, 2015, available from OpenStreetMap, www.openstreetmap.org).

2.5. Observational Data

For the validation of simulated WAM rainfall and SSTs and the assessment of biases in global and regional pre-
dictions, different global gridded observational data sets have been applied covering mostly all considered
hindcast decades. High-resolution long-term station-based terrestrial precipitation data have been derived from
C. J. Willmott and K. Matsuura (WMMA) (unpublished data, 2001, available from the University of Delaware,
http://climate.geog.udel.edu/~climate/html_pages/Global2011/Precip_revised_3.02/README.GlobalTsP2011.
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html) at 0.5° resolution during 1900–2010 for the analysis of land-only precipitation. Combined satellite and
gage data from the Global Precipitation Climatology Project (GPCP) at 2.5° since 1979 [Adler et al., 2003;
Huffman et al., 2009] and at 1° since 1996 [Huffman et al., 2001] have been used for the analysis of precipitation
over land and ocean as well as the ITCZ position. For SST validation, high-quality data of the operational ocean
reanalysis system ORAS4 of the ECMWF at 1° resolution during 1958–present have been applied [Balmaseda
et al., 2013].

2.6. Data Processing

The yearly WAM rainfall has been defined as accumulated precipitation during the June to September season
(JJAS). Land-only regional means have been analyzed for three regions of homogeneous rainfall variability in
sub-Saharan West Africa following Nicholson and Palao [1993]: the West Sahel (17.60°W–7.04°W, 10.12°N–
20.24°N), Central Sahel (7.04°W–30.36°E, 10.12°N–20.24°N), and Guinea Coast (13.64°W–10.12°E, 4.40°N–
10.12°N, cf. Figure 1). The intensity of theWAM rainfall in different regions strongly depends on the latitudinal
position of the ITCZ. Ramage [1995] have described various ITCZ definitions based on the surface trough,
wind convergence, or maximum cloudiness clearly diverging over West Africa. Being aware of this problem,
this study follows its identification as maximum rainy zone [Fink et al., 2010], i.e., the maximum of the zonal
mean monthly precipitation over all land and ocean grid boxes from 10°W to 10°E averaged over the JJAS
season of each year. Sahel rainfall is further linked to the position and strength of the midtropospheric
African easterly jet (AEJ) and the associated African easterly waves (AEWs). The AEJ axis is determined by
the zero contour line of the shear vorticity of the smoothed 700 hPa wind field that is located in a wind max-
ima region [Berry et al., 2007], and the AEW activity is defined by the 2–6 days bandpass filtered variance of
the 700 hPa meridional wind [cf. Fink and Reiner, 2003], again averaged over the JJAS season per year.
Accordingly, means of SSTs and other considered variables have been calculated for the JJAS period.

The biases of decadal predictions in regional mean WAM rainfall, ITCZ position, and SSTs are defined as the
differences between three-member ensemblemeans of MPI-ESM, different RCMs, or RCM versions and obser-
vations averaged over all years of a certain decade. This study focuses on the model bias of rainfall totals
neglecting extreme values because the latter may be controlled by clearly different physical processes than
totals which has already been supposed for the Mediterranean area [Paxian et al., 2015]. However, similar ana-
lyses of WAM rainfall extremes are planned for future studies. The multiyear and decadal predictability of the
prevailing multimodel RCM ensemble for WAM rainfall has been investigated in a parallel study (H. Paeth and
14 coauthors, manuscript in preparation, 2015).

3. Results

In this section theWAM rainfall biases of the global and the different regional decadal predictions are compared
with each other. In addition, the results of the coupled regional predictions are shown. Finally, the biases of the
regional predictions applying improved boundary conditions and soil initialization are described.

3.1. Global and Regional Decadal Predictions

For the three West African regions, Figure 1 shows the WAM rainfall biases of global and regional predictions
compared to land-only WMMA observations which are available for the four selected decades. The biases are
averaged over all hindcast decades, and the small error bars denote ratherminor variations across different dec-
ades, contrary to Reifen and Toumi [2009] which do not find such a quite consistent model performance over
time. WRF reveals a slightly larger interdecadal standard deviation due to its smaller ensemble size of twomem-
bers per decade. The observational uncertainty is represented by the corresponding biases of gridded Climatic
Research Unit (CRU) observations [Mitchell and Jones, 2005, updated] compared to WMMA which are rather
small in the Guinea Coast region (43mm, 5% of WMMA mean) and negligible in the Sahel (10–14mm, 2–4%).

On average, the global MPI-ESM predictions overestimate WMMA by 120mm (13%) in the Guinea Coast region
and underestimate observations by 83mm (26%) in the Central Sahel and 135mm (26%) in the West Sahel.
These GCM biases can be clearly reduced by dynamical downscaling with REMO-W (11mm, 3%) in the
Central Sahel and with CCLM (6mm, 1%) in the West Sahel. The latter is improved by WRF on average as well,
but a large interdecadal spread prevails. For other RCMs slightly larger biases are found. This is exceptionally
true for the Guinea Coast region where all RCMs strongly aggravate the positive MPI-ESM bias, especially
WRF and REMO-W reach average biases of 529–577mm (59–65%). Overall, the multimodel ensemble mean
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of the CCLM, WRF, and REMO-W standard versions reveals larger biases than the GCM in the Guinea Coast
(464mm, 52%) and Central Sahel regions (100mm, 32%) but a clear improvement in the West Sahel (83mm,
16%) with some interdecadal spread. The improved parameterizations of REMO-H are able to slightly reduce
the biases of the standard version REMO-W in the Guinea Coast and West Sahel regions, even reducing the
MPI-ESM bias to 69mm (13%) in the latter, but lead to some more underestimation in the Central Sahel.
These drier conditions are mainly caused by increased minimum cloud heights for rainfall formation. Further
sensitivity studies with WRF show improved biases in both Sahel regions due to optimized model configura-
tions in terms of cumulus parameterization as well as planetary boundary layer and microphysics schemes
(not shown). Finally, the area-weighted mean bias of the three regions is analyzed representing an overall
larger-scale assessment over the whole West Africa. A small negative MPI-ESM bias (53mm, 12%) faces larger
positive biases of all standard RCMs and their multimodel ensemble mean but is slightly reduced by REMO-H
with improved parameterizations (46mm, 10%).

Figure 2. Observed WAM rainfall totals from (a) GPCP at 1° horizontal resolution during the JJAS season of the 2001–2010
decade and corresponding biases of simulated WAM rainfall from (b) ensemble means of MPI-ESM and (c–f) different
regional predictions (interpolated to the 1° GPCP grid).
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Thus, the first hypothesis that dynamical downscaling is able to reduce the WAM rainfall biases of global dec-
adal predictions can be partly confirmed for different RCMs in the West (CCLM, REMO-H) and Central Sahel
(REMO-W) but must be clearly rejected for all RCMs in the Guinea Coast region. For the whole West Africa,
only REMO-H is able to slightly reduce the rather small MPI-ESM bias. The multimodel ensemble mean can
improve the GCM in the West Sahel. However, it cannot outperform the results of all RCMs but is defeated
by at least one of them in every region and is therefore not considered in the following analyses.

In order to understand the WAM rainfall biases of different global and regional predictions and West African
regions, especially the Guinea Coast, a closer look is taken at the observed and simulated spatial precipitation pat-
terns within the considered RCM domain (Figure 2). For the analysis of WAM rainfall over land and ocean GPCP
observations are applied during all decades except for 1966–1975. Due to improved data availability, especially of
satellite observations, the following analyses are shown for the 2001–2010 decade. However, similar results are
found as well for other decades (not shown). The GPCP observations show the typical spatial WAM rainfall pat-
tern: the ITCZ lies over the tropical Atlantic and West Africa at around 8–10°N and yields precipitation maxima of
1700mmand 1300mmnear thewestern Guinean and Cameroonmountains, respectively, separated by the drier
Dahomey Gap [Chatelain et al., 1996]. The global MPI-ESM predictions overestimate observations by up to
1300mm over the Gulf of Guinea and 500mm over the Guinea Coast and underestimate GPCP by up to
400mm over the West and Central Sahel, probably indicating a southward shift of the simulated ITCZ. The
RCMs produce even larger positive biases over the Gulf of Guinea, the tropical Atlantic, and the Guinea Coast
reaching maxima of 3000–3500mm for CCLM and REMO-W and 2000mm for WRF over the eastern Gulf of
Guinea. In the Sahel less underestimations than MPI-ESM and even overestimations of observations (for CCLM
and WRF) can be found. Thus, the ITCZ seems to be shifted southward and increased in intensity. Again,
REMO-H produces drier conditions than REMO-W, especially over land, which becomes apparent in smaller over-
estimations along the Guinea Coast and larger underestimations in the Sahel. Thus, dynamical downscaling is not
able to clearly improve the overall MPI-ESM bias over the whole West Africa, but regional bias reduction is found
dependent on the considered region and model and consistent over all decades, e.g., in the Sahel (cf. Figure 1).
Consequently, two questions can be raised: What causes the WAM rainfall biases in global decadal predictions
and why are they intensified over the Guinea Coast and partly reduced over the Sahel in regional predictions?

In order to find some possible physical explanations for the second question on the reasons for the stated
increases and reductions of GCM rainfall biases in RCMs an exemplary comparison of different atmospheric
variables impacting the WAM rainfall between global MPI-ESM and regional REMO-W and CCLM predictions
is done, again for the 2001–2010 decade (Figure 3): Over the tropical North Atlantic positive and negative
MPI-ESM rainfall biases northeast and southwest of the region 8–10°N/55–30°W, respectively, denote a north-
eastward shift of the ITCZ defined as maximum rainy zone (cf. Figure 2) probably linked to higher spring rain-
fall over the Gulf of Guinea [Siongco et al., 2015]. Larger RCM biases describe a stronger ITCZ shift whichmight
be related to differing convection parameterization schemes influencing the ITCZ position despite identical
SST forcing [Möbis and Stevens, 2012] and trigger a stronger northward shift of the Hadley cell including the
Azores high. Smaller land-sea thermal contrasts due to lower Sahel temperatures in RCMs (not shown) might
further weaken the Azores high [Miyasaka and Nakamura, 2005]. Thus, Figure 3 reveals decreased sea level
pressures south of the latter in both RCMs compared to MPI-ESM, further west for REMO than for CCLM prob-
ably due to a more western AEJ position (see below), causing stronger westerlies over the tropical North
Atlantic similar to the West African westerly jet [Pu and Cook, 2010]. The evaporation and latent heat fluxes
over this area and the Gulf of Guinea are intensified compared to MPI-ESM despite the same SST forcing
due to increased advection of warm Caribbean air masses by stronger westerlies, especially for REMO-Wwith
more direct westerly flow, and probably differing parameterizations of small-scale turbulent air-sea exchange
fluxes. Thus, higher liquid water content is generated and transported by the stronger westerlies toward the
Guinea Coast producing increased rainfall amounts, larger for REMO-W than for CCLM due to the higher eva-
poration. In addition, CCLM reveals stronger southerlies over the Gulf of Guinea related to higher pressures
over the South Atlantic and generating more Guinea Coast rainfall and less over the Congo Basin.

Concerning Sahel rainfall biases, the activity of the AEJ and AEWs is analyzed over a slightly smaller area than
the RCM domain [Fink and Reiner, 2003], but only AEWs are shown in Figure 3 due to rather similar results. Yet
differences are found between RCMs probably due to various impacts of land surface conditions: CCLM
reveals increased and decreased latent heat fluxes over the Sahel and the Guinea Coast as well as increased
and decreased temperatures over Egypt and the Sahel, respectively (not shown), causing a northward shift of
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Figure 3. Different atmospheric variables influencing the simulated WAM rainfall from (left) ensemble means of MPI-ESM at T63 horizontal resolution (~1.9°) aver-
aged over the JJAS season of the 2001–2010 decade and (middle) corresponding differences and difference vectors (RCM – GCM) from REMO-W and (right) CCLM
regional predictions (interpolated to the T63 MPI-ESM grid): sea level pressure (map) with 10m wind vectors (arrows) (first row), latent heat flux (second row), liquid
water content (third row), and African Easterly Wave activity (fourth row).
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temperature and moisture gradients and thus of the AEJ and AEWs compared to MPI-ESM [cf. Cook, 1999].
REMO-W shows similar but weaker patterns and increased latent heat fluxes in the West Sahel slightly inten-
sifying the AEJ and AEWs and inducing a westward shift. Thus, CCLM clearly overestimates Central Sahel rain-
fall due to the AEW northward shift, and REMO-W reveals larger rainfall than MPI-ESM probably because a
slightly smaller AEW activity is compensated by slightly larger liquid water contents. REMO-W overestimates
West Sahel rainfall because of westward shifted AEWs and stronger Atlantic westerlies. The AEW northward
shift in CCLM is balanced in this region, but increased westerlies produce more rainfall than MPI-ESM.
Intensified AEW activity might even impact Guinea Coast rainfall in REMO-W. Thus, some physical explana-
tions for stated rainfall bias increases or reductions of RCMs can be identified, but clear attributions to single
physical processes are often rather difficult because rainfall is generated by a chain of various processes and
affected by numerous interactions between them.

Furthermore, we aim to find some possible physical explanation for the first question about the general
causes of theWAM rainfall biases in global decadal predictions which are supposed to be related to a possible
southward displacement of the simulated ITCZ. Such southward shifts of both monsoon and ITCZ over West
Africa have been linked to positive SST biases over the tropical East and South-East Atlantic [Janicot et al.,
1998; Losada et al., 2010]. Therefore, Figure 4 provides an insight into observed and simulated SST patterns
within the selected RCM domain during the 2001–2010 decade. The ORAS4 reanalyses show the typical zonal
SST distribution around Africa superimposed by cold and warm ocean currents propagating toward the
equator and the poles near the west and east continental coasts, respectively, with maxima of 29–32°C in
the tropical Atlantic and Red Sea and minima of 14–16°C in the South-East Atlantic. In fact, the global MPI-
ESM predictions reveal a strong positive SST bias of up to 5–7°C following the course of the Benguela ocean
current in the tropical East and South-East Atlantic which probably reduces the sea level pressure gradient

Figure 4. (a) Observed SST means from ORAS4 at 1° horizontal resolution during the JJAS season of the 2001–2010 decade
and (b) corresponding biases of simulated SSTs from ensemble means of MPI-ESM and (c–d) different regional predictions
coupled to the MPI-OM ocean model (interpolated to the 1° ORAS4 grid).
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between Saharan heat low and equator (cf. Figure 3), diminishes the WAM circulation and displaces it farther
south [Losada et al., 2010]. Yet this possible driver of the described WAM rainfall biases in MPI-ESM might be
superimposed by further impact factors, e.g., land surface conditions or large-scale circulation, and the stated
African rainfall biases and the shifted ITCZ may feed back onto the Atlantic SST bias in this coupled
atmosphere-ocean GCM [Tozuka et al., 2011; Richter et al., 2012] impeding to disentangle cause and effect.
The positive SST bias of MPI-ESM is passed on to all uncoupled RCMs which modify the corresponding
WAM rainfall biases due to altered regional-scale processes in the Guinea Coast and Sahel regions as
described before (cf. Figure 3).

3.2. Coupled Regional Decadal Predictions

In order to improve the tropical East and South-East Atlantic SST and, hence, the WAM rainfall biases of the
global predictions, regional predictions with REMO-H fully coupled to the global MPI-OM oceanmodel within
the selected RCM domain have been performed. Figure 4 (bottom) reveals that the Atlantic SST biases of
coupled regional predictions are strongly reduced to 2–3°C maximally. The coupled version REMO-O2 with
simplified spin-up procedure reaches similar or even slightly larger improvements than the REMO-O1 version
with more sophisticated spin-up.

A possible physical explanation for this improved SST bias is found when comparing simulated sea level pres-
sures and 925 hPa wind vectors during the MAM (March, April, and May) season of the 2001–2010 decade
from global, uncoupled, and coupled regional predictions (Figure 5): MPI-ESM successfully simulates the
South Atlantic high-pressure system and corresponding south-east trade winds. However, weak southerlies
along the South-West African coast inhibit local upwelling of cold water, and equatorial westerlies accompa-
nied by eastward surface ocean currents (opposed to observations) carry warm water toward the Gulf of

Figure 5. Simulated sea level pressure (map) and 925 hPa wind vector (arrows) means from (a) ensemble means of MPI-
ESM at T63 horizontal resolution (~1.9°) averaged over the MAM season of the 2001–2010 decade and (b) corresponding
differences and difference vectors (RCM – GCM) from different regional predictions in standard version and (c–d) coupled
to the MPI-OM ocean model (interpolated to the T63 MPI-ESM grid).
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Guinea and further southward [cf. Grodsky
et al., 2012; Richter et al., 2012, 2014]. The
uncoupled REMO-H regional prediction
increases along-shore southerlies over
Namibia and easterlies over West and Central
Africa probably due to improved representa-
tion of regional topography but changes over
the ocean are suppressed by the driving MPI-
OM oceanic boundary condition which is pre-
scribed every 6 h. The coupled regional predic-
tions reveal similar wind patterns over land, a
South Atlantic high-pressure system of larger
magnitude expanding further northward
(shifting as well the near-equatorial wind con-
vergence zone) and strongly intensified easter-
lies and westward surface ocean currents over
the whole tropical Atlantic. These changes
appear slightly stronger in REMO-O2 than in
REMO-O1. Thus, the combination of high
atmosphere and ocean model resolutions
and their interaction via fine-scale air-sea

exchanges enhance the cold water upwelling of the Benguela current and limit the southward expansion
of the warm Angola current, altogether reducing the Atlantic SST bias [cf. Grodsky et al., 2012].

Furthermore, the bias of the latitudinal ITCZ position over West Africa from global and regional predictions
compared to GPCP observations during the 2001–2010 decade is shown (Figure 6). The aim is to analyze
the assumption of a systematic ITCZ southward shift in the GCM and all uncoupled RCMs and to assess pos-
sible improvements in the coupled RCM. In fact, MPI-ESM reveals a clear ITCZ position bias of�5°N denoting
a strong southward shift of the observed position at 9.5°N over the northern Guinea Coast region to 4.5°N
over the northern Gulf of Guinea which agrees well with the WAM rainfall bias pattern. The regional predic-
tions show slightly stronger southward shifts of up to�6°N (REMO-H) except for WRF which reduces the MPI-
ESM bias to �3.5°N because its rainfall bias maxima over the Gulf of Guinea are located further north than
those of all other models (see Figure 2). Thus, the stated rainfall bias reductions and increases of RCMs com-
pared to MPI-ESM may arise from the interaction of different processes: the ITCZ southward shift related to
the inherited SST bias fromMPI-ESM and the rainfall bias modifications due to altered regional-scale mechan-
isms as shown for REMO-W and CCLM (see Figure 3). Both versions of coupled regional predictions are able to

Figure 6. Biases of simulated latitudinal ITCZ position from
ensemble means of MPI-ESM and different regional predictions
in standard version and coupled to the MPI-OM ocean model
compared to GPCP observations during the JJAS season of the
2001–2010 decade.

Figure 7. Biases of simulated WAM rainfall from ensemble means of different regional predictions coupled to the MPI-OM
ocean model compared to GPCP observations (interpolated to the 1° GPCP grid) during the JJAS season of the 2001–2010
decade.
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reduce the ITCZ position bias to almost zero and successfully reproduce the observed position over the
northern Guinea Coast probably due to the strongly improved Atlantic SST bias.

Subsequently, the simulated spatial patterns of WAM rainfall biases from coupled regional predictions com-
pared to GPCP observations are analyzed during the 2001–2010 decade (Figure 7). Both coupled versions
reveal rather similar results: strongly reduced positive biases of up to 400mm (or even negative biases) over
the tropical Atlantic, the Gulf of Guinea, and the Guinea Coast and less intensive negative biases in both Sahel
regions compared to uncoupled REMO-H and MPI-ESM predictions. However, more widespread positive
biases of up to 400mm can be found in the West Sahel. The strong north-south gradient in WAM rainfall
biases of REMO-H and MPI-ESM predictions is replaced by a slight east-west gradient, reflecting no latitudinal
ITCZ shift. Similar results to all previous analyses presented for the 2001–2010 decade can be stated as well
for other decades (not shown).

Figure 8 presents the final look at the three considered West African regions over all available hindcast dec-
ades similar to Figure 1 and confirms that both versions of coupled regional predictions strongly reduce the
large WAM rainfall biases of REMO-H and MPI-ESM in the Guinea Coast region to 23–57mm (3–6%). Slight

Figure 8. Biases of simulatedWAM rainfall from ensemblemeans of MPI-ESM and different regional predictions in standard
version, coupled to the MPI-OM ocean model and applying improved boundary conditions (aerosols, SSTs, vegetation, and
land cover) and soil initialization compared to (a–c) WMMA observations for three West African regions and (d) the area-
weighted mean of all regions. The bars describe the means over the JJAS seasons of all available hindcast decades
(cf. Table 1), and the error bars show the corresponding standard deviations only if all four decades are available.
The dashed lines mark the corresponding biases of CRU observations compared to WMMA.
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improvements can further be stated in the Central Sahel (25–27mm, 8–9%) but not in the West Sahel (161–
164mm, 31%). REMO-O1 performs slightly better than REMO-O2 in the Guinea Coast region. Overall, the area-
weighted regional mean for the whole West Africa reveals a clear reduction of the already small MPI-ESM bias
to almost zero (1–3mm, 0–1%). The small error bars denote rather little variations between different decades
and show a slightly larger variability only for the Guinea Coast where higher rainfall sums prevail. Thus, the
second hypothesis that regional decadal predictions coupled to a global ocean model are able to improve
WAM rainfall biases can be clearly verified in the Guinea Coast and Central Sahel regions and even for the
whole West Africa.

3.3. Regional Decadal Predictions With Improved Boundary and Initial Conditions

Finally, theWAM rainfall biases of the RCMpredictionswith improved boundary conditions and soil initialization
compared to WMMA observations are investigated for the three West African regions (Figure 8). In contrast to
Figure 1, the biases are averaged over all available hindcast decades (cf. Table 1), and the error bars are only
given if four decades are existent. CCLM-LUC reveals small error bars signifying rather minor variations across
all four decades with slightly larger deviations in the West Sahel. Similarly low variability between the available
two and three decades is found as well for CCLM-AOD/SST and CCLM-LUV, respectively (not shown).

The improved AOD climatology of CCLM-AOD slightly reduces the CCLM bias in the Central Sahel but dete-
riorates the result in the Guinea Coast region. The more realistic ERA-Interim SSTs (CCLM-AOD/SST) strongly
diminish the SST bias of global predictions (not shown) and the CCLM rainfall bias in the Guinea Coast region
(similar to coupled regional predictions) but cause an underestimation of observed precipitation (179mm,
20%). In the West Sahel dynamical downscaling with combined AOD and SST improvements reduces the glo-
bal prediction bias to almost zero (8mm, 2%), though not further improving the CCLM result. However, the
use of SSTs from reanalysis data is restricted to present-day conditions. Therefore, sensitivity studies with sta-
tistical bias correction have been performed which apply decadal-mean monthly correction factors between
MPI-ESM and ERA-Interim SSTs to simulated values, preserve the simulated variability, and allow the applica-
tion to future predictions without reanalysis data. The corresponding results are similar to those of the CCLM-
AOD/SST ensemble and therefore not shown.

The improved soil initialization of CCLM-SOIL reveals a slightly reduced WAM bias in the Central Sahel but
slightly larger ones in the other regions. Another sensitivity study of CCLM-SOIL has been performed in which
additionally satellite-based Climate Change Initiative (CCI) retrievals of surface soil moisture [Dorigo et al., 2014]
have been assimilated into TERRA_ML within the year 2000 applying an ensemble transform Kalman filter [Hunt
et al., 2007]. However, no clear improvement has been achieved (not shown). The implementation of the more
sophisticated SVAT module VEG3D (CCLM-VEG) clearly reduces the CCLM bias in the Central Sahel (67mm,
21%), even improving the smaller MPI-ESM bias, but aggravates the result in the Guinea Coast and West
Sahel regions. Instead, the application of constant GLC2000 land use maps (CCLM-LUC) reveals a clearly smaller
bias in the Guinea Coast region (238mm, 27%) and a larger one in the West Sahel. More realistic yearly varying
land use maps (CCLM-LUV) show hardly any clear impact on theWAM rainfall bias in any region. Altogether, the
area-weighted regional mean representing an overall bias assessment for the whole West Africa reveals that all
improved boundary and initial conditions are able to slightly reduce the CCLM bias, most obviously the more
realistic SSTs (73mm, 16%). However, none of them can improve the already low MPI-ESM bias.

Thus, the third hypothesis that more realistic boundary conditions and soil initialization are able to reduce
WAM rainfall biases of regional predictions can be partly confirmed for some obvious added values of differ-
ent model improvements over the Guinea Coast (SSTs again strongly, land cover) and Central Sahel (vegeta-
tion) but must be rather rejected for the West Sahel. Even if the WAM biases are rather constant across
different hindcast decades further simulations need to be performed to verify the stated improvements for
CCLM-AOD/SST and CCLM-VEG. The bias reduction strongly depends on the considered boundary or initial
condition and region because different model improvements affect various physical processes influencing
different West African regions. However, the overall assessment for the whole West Africa reveals slight bias
reductions for all model improvements, especially for more realistic SSTs.

In addition, we aim to find possible physical explanations for the three stated added values of different model
improvements: The improved Guinea Coast rainfall bias of more realistic ERA-Interim SSTs is linked to reduced
SST and ITCZ position biases (not shown) as for coupled regional predictions. Yet the underestimation might be
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related to deficiencies of reanalysis data, missing atmosphere-ocean feedbacks of uncoupled CCLM, or a gen-
erally drier Guinea Coast in CCLM than in REMO due to differing parameterizations. The reduced Central
Sahel bias of the improved SVATmodule VEG3D can be explained bymore realistic higher surface temperatures
and a southward shift of the Saharan low-pressure system, the AEJ and AEWs. Thus, associated mesoscale con-
vective systems reveal shorter tracks through the Central Sahel producing less rainfall amounts [Breil, 2015].

Possible explanations for the improved Guinea Coast bias of constant GLC2000 land use maps replacing
ECOCLIMAP data are found when comparing different atmospheric variables from CCLM-LUC and CCLM during
the 2001–2010 decade (Figure 9): Reduced plant cover, evaporation (not shown), and latent heat fluxes over the
Congo Basin in CCLM-LUC lead to increased temperatures and lower sea level pressure. Thus, intensified wes-
terlies over the eastern Gulf of Guinea produce rainfall mainly downstream northeast of the Congo Basin. The
ascending air masses over the low-pressure area probably intensify the Congo Basin Walker circulation [Cook
and Vizy, 2015] with compensatory subsidence and increased high pressure over the Gulf of Guinea.
Moreover, higher temperatures over the Sahara and increased plant cover, evaporation (not shown), and latent
heat fluxes over the Guinea Coast and Sahel intensify West African temperature and moisture gradients and
probably also the AEJ [cf. Cook, 1999]. The increased mass outflow in the AEJ exit region might generate
extended high pressure over the East Atlantic leading to stronger easterlies over the tropical Atlantic. Thus,
intensified subsidence with stronger easterlies and westerlies over the Gulf of Guinea diminishes Guinea
Coast rainfall. Similar CCLM-LUC results have also been found for other decades (not shown).

Figure 9. Differences and difference vectors of various simulated atmospheric variables influencing the Guinea
Coast rainfall from ensemble means of CCLM-LUC predictions applying improved land cover boundary condi-
tions at 0.44° horizontal resolution averaged over the JJAS season of the 2001–2010 decade compared to CCLM
predictions in standard version: (a) latent heat flux, (b) 2 m temperature, (c) sea level pressure (map) with 10 m
wind vectors (arrows), and (d) precipitation.
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Finally, we aim to answer the question if the bias reductions and increases of RCMs and improved boundary and
initial conditions presented for decadal means vary for shorter subperiods or different lead times. Figure 10
shows lead-time dependent WAM rainfall biases for all possible subperiods of a decade averaged over all avail-
able decades and exemplarily for some prominent bias modifications of this study. MPI-ESM reveals rather small
bias variations over different subperiod lengths and lead times in all regions. Largest differences are found for
1 year subperiods over various lead times due to higher variability compared to longer subperiods. RCMs show
similar results over the Guinea Coast but slightly larger variations over different lead times even for longer sub-
periods in the Sahel probably due to larger interannual variability, e.g., of AEWs, on the regional scale. REMO-O2
reveals a small but clear tendency for positive biases at small lead times and larger negative biases at higher
lead times over the Guinea Coast possibly related to the long-term memory of the coupled ocean but less var-
iation in the Sahel (not shown). Small variability over different subperiods and lead times is stated for CCLM-LUC
over the Guinea Coast. Larger lead-time dependent differences are found for CCLM-VEG, e.g., increased Central
Sahel biases for smaller lead times, because only one decade is available revealing higher variability than
averages over several decades. For more robust results further decadal simulations need to be performed.
Overall, the biases do not clearly increase with higher lead times as probably expected for decadal simulations
freely evolving from an initialized starting point. The bias variations over different subperiod lengths and lead
times are generally rather small, and stated bias reductions and increases of RCMs and improved boundary
and initial conditions are mostly also valid for shorter subperiods and various lead times.

Figure 10. (a–c) Lead-time dependent biases of simulated WAM rainfall from ensemble means of MPI-ESM and (a–f) different regional predictions in standard ver-
sion, (d) coupled to the MPI-OM ocean model, and (e–f) applying improved land cover and vegetation boundary conditions compared to WMMA observations for
selected West African regions and averaged over the JJAS seasons of all available hindcast decades (cf. Table 1). The x axis (y axis) denotes the first (last) year of all
possible subperiods within a decade considered for bias calculation.
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4. Summary and Discussion

This study has analyzed theWAM rainfall biases in decadal climate predictions and addressed the three hypoth-
eses that GCM prediction biases can be improved by dynamical downscaling with (1) a multimodel ensemble of
high-resolution RCMs, (2) a RCM coupled to a global oceanmodel, and (3) a RCM applyingmore realistic bound-
ary conditions (aerosols, SSTs, vegetation, and land cover) and soil initialization. To test these hypotheses global
MPI-ESM predictions have been applied and numerous three-member ensembles of regional predictions with
REMO, CCLM, and WRF nested into MPI-ESM have been performed for several hindcast decades.

The global MPI-ESM predictions reveal positive WAM rainfall biases over the Gulf of Guinea and the Guinea Coast
and negative ones over the West and Central Sahel resulting in a small negative bias over the whole West Africa.
This pattern is induced by an ITCZ southward shift from the northern Guinea Coast (GPCP) to the northern Gulf of
Guinea and probably related to a positive SST bias in the tropical East and Southeast Atlantic. These rainfall, ITCZ,
and SST biases are common deficiencies of many state-of-the-art coupled GCMs over West Africa [Martin et al.,
2014; Richter et al., 2014] and their relationships have already been described [Janicot et al., 1998; Losada et al.,
2010]. The large SST bias of MPI-ESM seems to be induced by lacking small-scale air-sea interactions due to coarse
atmosphere and ocean resolutions causing weaker southerlies along the Namibian coast and even eastward
winds and surface ocean currents over the tropical Atlantic [cf. Grodsky et al., 2012; Richter et al., 2012, 2014].

Concerning the first hypothesis, the impact of dynamical downscaling depends on the considered region and
model: Some regional predictions can reduce WAM rainfall biases of MPI-ESM in the West (CCLM, REMO-H) and
Central Sahel (REMO-W), but others yield slightly larger biases. Over the tropical Atlantic, Gulf of Guinea, and
Guinea Coast all RCMs aggravate the positive GCM bias. The rainfall bias increases or reductions in RCMs cannot
be clearly linked to single physical processes but rather to the interactions between various mechanisms: First,
similar ITCZ southward shifts to MPI-ESM, smaller for WRF but slightly stronger for all others, are probably
related to the Atlantic SST bias inherited from the GCM. Second, differing parameterizations for small-scale con-
vection and turbulent air-sea exchange fluxesmight cause stronger westerlies and evaporation over the tropical
North Atlantic [cf. Pu and Cook, 2010;Möbis and Stevens, 2012]. Third, differing land surface conditions probably
influence the position and strength of the AEJ and AEWs [cf. Cook, 1999]. For the whole West Africa, the already
small GCM bias can be further reduced by REMO-H but is enlarged by all other RCMs. The smaller wet biases of
REMO-H over the Guinea Coast and West Sahel due to increased minimum cloud heights for rainfall formation
show that improved parameterizations can reduce biases [cf. Klein et al., 2015]. Overall, the multimodel RCM
ensemble mean impairs MPI-ESM over the Guinea Coast and Central Sahel and improves the GCM in the
West Sahel but is not able to outperform all individual RCMs in any region. Recent multimodel RCM ensemble
studies have found reduced WAM rainfall biases of ensemble means compared to driving global reanalyses but
strongly differing biases of single RCMs [Paeth et al., 2011; Nikulin et al., 2012]. They have stated less positive or
even negative biases over the tropical Atlantic, Gulf of Guinea, and Guinea Coast in driving reanalyses and AMIP-
type GCMs passed on to the RCMs REMO, CCLM and WRF with partly increased or decreased regional biases
[Druyan et al., 2010; Paeth et al., 2011; Nikulin et al., 2012; Gbobaniyi et al., 2014].

The second hypothesis that regional predictions coupled to a global ocean model can reduce WAM rainfall
biases is clearly confirmed. The Atlantic SST bias is strongly reduced in coupled regional predictions due to
fine-scale air-sea interactions at high atmosphere and ocean resolutions [Sein et al., 2015]. They improve defi-
cient GCM winds and surface ocean currents, intensify the cold water upwelling of the Benguela current, and
reduce the southward expansion of the warm Angola current [cf. Grodsky et al., 2012; Richter et al., 2012,
2014]. Thus, the simulated ITCZ is not shifted southward but captures the observed position over the northern
Guinea Coast. The large WAM rainfall biases of REMO-H and MPI-ESM over the tropical Atlantic, Gulf of Guinea,
and Guinea Coast are reduced. Some improvements can also be identified in the Central Sahel but not in the
West Sahel. For the whole West Africa, the small MPI-ESM bias can be clearly diminished to almost zero.
Coupled regional model studies have found similar added values in simulating regional climate and ocean fea-
tures, e.g., SST, wind, or rainfall, compared to uncoupled RCMs over different ocean basins [Ratnam et al., 2008;
Sein et al., 2015]. H. Paeth and 14 coauthors (manuscript in preparation, 2015) have analyzed the decadal pre-
dictability of the prevailingmultimodel RCM ensemble for WAM rainfall and found some enhanced correlations
of coupled regional predictions to observations in all regions, mainly the Guinea Coast and West Sahel.
However, they have stated an incoherent pattern over all decades despite reduced rainfall and SST biases
and improved correlations to observed Atlantic SSTs.
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Concerning the third hypothesis, the impacts of more realistic boundary conditions and soil initialization in
regional predictions on WAM rainfall biases depend on the considered region and model improvement: Over
the Guinea Coast, the statistical bias correction of MPI-ESM SSTs with more realistic reanalyses strongly reduces
the WAM rainfall bias due to an improved ITCZ position (similar to coupled regional predictions) but underes-
timates observations. The constant GLC2000 land use map also shows an improved Guinea Coast bias
compared to ECOCLIMAP data because altered land surface conditions probably intensify the AEJ activity
and the Congo Basin Walker circulation [Cook and Vizy, 2015] shifting Guinea Coast rainfall to the tropical
Atlantic and Congo Basin. However, the more realistic yearly varying land use map generated by ASLUCM does
not reveal any clear impact on WAM bias in any region but rather some added values in predictability (H. Paeth
and 14 coauthors, manuscript in preparation, 2015). In the Central Sahel, the more sophisticated SVAT module
VEG3D with explicit vegetation layer reveals some clear bias reduction compared to TERRA_ML, even diminish-
ing the smaller MPI-ESM bias, due to improved soil-vegetation-atmosphere interactions inducing higher surface
temperatures and a southward shift of the Saharan heat low, the AEJ, and AEWs [Breil, 2015]. In the West Sahel,
the almost zero bias of CCLM can be reached by a combination of AeroCom AODs and ERA-Interim SSTs but not
further reduced by any model improvement. The higher-resolved AOD climatology from AeroCom [Kinne et al.,
2006] does not considerably reduce the WAM rainfall bias in any region compared with that from Tanré et al.
[1984] which overrates AODs over North Africa and underrates summer AODs over Central Africa [Kothe
et al., 2014b]. Both methods of optimizing soil initialization with a TERRA_ML spin-up run, i.e., forcing with
realistic atmospheric data and assimilation of satellite-based soil moistures, cannot clearly improve the bias
of the already well performing reanalysis driven soil spin-up run in any region. They rather reveal some
enhancements in predictability (H. Paeth and 14 coauthors, manuscript in preparation, 2015). For the whole
West Africa, the CCLM bias is slightly reduced by all improved boundary and initial conditions, mainly by more
realistic SSTs. Even if the WAM biases are rather constant across various decades, subperiods of decades and
lead times further decadal simulations are still needed to robustly confirm the stated bias reductions due to
different model improvements. These results partly confirm partly controvert the clear improvements of simu-
lated WAM rainfall bias (and predictability) due to more realistic atmospheric, oceanic, or terrestrial initial or
boundary conditions found in several research studies [e.g., Paeth and Hense, 2004; Xue et al., 2004; Paeth and
Feichter, 2006; Douville et al., 2007; Abiodun et al., 2008]. In addition, improved aerosol and vegetation boundary
conditions can reduce temperature biases over West Africa (not shown).

5. Conclusions

In summary, the hypotheses of this study are evaluated separately per region: Over the Guinea Coast, the
WAM rainfall bias of global predictions is aggravated by dynamical downscaling, but model improvements
(ocean coupling, more realistic SSTs, or land cover) lead to bias reduction. In the Sahel, the GCM bias is
improved by regional predictions with different RCMs for each region and further reduced by ocean coupling
and improved vegetation in the Central Sahel. For West Africa, regional predictions with REMO-H and ocean
coupling diminish the small MPI-ESM bias to nearly zero. Yet even if the biases are consistent across decades,
some stated results still need to be confirmed by further simulations.

From these findings two major conclusions can be drawn: First, the regional predictions coupled to a global
ocean model successfully reduce the tropical Atlantic SST bias inherited from global predictions, reflecting a
prominent problem of many state-of-the-art GCMs [Richter et al., 2014], and improve both ITCZ position and
WAM rainfall biases. This result is promising for decadal climate impact research on food andwater security or
hazard management in West Africa. Second, the impacts of RCMs, ocean coupling, and improved boundary
or initial conditions strongly depend on the considered region because various model parameterizations or
improvements affect different physical processes influencing various regions. Dynamical downscaling or
model improvements do not contribute to bias reduction in every region, but only where high resolution
or additional complexity improve the related physical processes instead of adding useless noise. Model
parameterizations or improvements calibrated for a certain region might even cause aggravation in another
region. In this study, some rather robust factors for bias reduction of WAM rainfall have been identified which
might enable to set up the optimal combination of influencing factors yielding the smallest bias for a certain
region. Assuming stationarity of biases this selection might be transferred to decadal predictions for the near
future, and the corresponding interdecadal variation of biases might serve as a measure of uncertainty for
future predictions. However, further sensitivity studies need to be performed to be able to support policy
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makers in selecting the best model combination for climate impact research in a particular West African
region. Our study is a first step into this direction.

Some aspects of this study are still subject to uncertainties or motivate further research: A major uncertainty is
the relatively small sample size of ensemble members and hindcast decades which could not be increased due
to limited computer resources and numerous model versions. However, the WAM rainfall biases are rather con-
sistent over different decades (see Figures 1 and 8) and ensemblemembers (not shown). Another uncertainty is
the use of only one global prediction system. Even if the Atlantic SST bias is a common problem of many GCMs
[Richter et al., 2014] a multimodel approach might also be interesting for global predictions to consider the
spread of rainfall biases due to various model configurations, parameterizations, or resolutions [Martin et al.,
2014]. To compare the impacts of ocean coupling and improved boundary conditions in different RCMs further
sensitivity studies are planned for CCLM with coupled ocean and for REMO and WRF with more realistic AOD
climatology and constant as well as yearly varying land cover maps. We are also preparing RCM experiments
with yearly changing AOD boundary conditions. Further investigations are currently dedicated to surface tem-
perature and rainfall extremes in West Africa and Atlantic tropical cyclones probably revealing similar improve-
ments due to dynamical downscaling, ocean coupling, and more realistic boundary and initial conditions.
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