On the state dependency of the equilibrium IPICS2016 — T08: Biogeochemical Cycles climate sensitivity during the last 5 million years

P Köhler¹, B de Boer^{2,3}, AS von der Heydt², LB Stap², RSW van de Wal²

1: Alfred Wegener Institute (AWI), Bremerhaven; 2: Utrecht University; 3: University of Leeds. Scatter Plots of $\Delta T_g - \Delta R_{[CO_2,LI]}$ palaeodata-based evidence on the state dependency of S by using $ilde{\mathsf{CO}}_2$ proxy data together 3-D ice-sheet-model-based reconstruction of land ice albedo over the last 5 million years (Myr) cores (n=394), 3 3 0 -2 radiative forcing of CO_2 and of the land-ice albedo (LI) is combined, we find a state dependency in the calculated specific equilibrium climate sensitivity $S_{[CO_2,LI]}$ for most of the Pleistocene (last -4 -2 0 2 -4 -2 0 $\Delta R_{[CO_2]} \, (\text{W m}^{\text{--}2})$ $\Delta R_{[CO_2,LI]}$ (W m⁻²) С d $\chi^2/n = 11.2$ Hönisch (n=52) (¥) ⁶L∇ -4 $\Delta T_g (K)$ -4 -2 0 2 -4 -2 0 2 important for similar palaeodata-based approaches to calculate climate sensitivity. If we develop for S an equation as a function of $\Delta R_{[CO_2,LI]}$ we find $S_{[CO_2,LI]}$ in interglacials to be 2–2.7 \times larger than during glacial maxima, potentially indicating that equilibrium warming for CO $_2$ doubling might be $\Delta R_{[CO_2]}$ (W m⁻²) $\Delta R_{[CO_2,LI]}$ (W m⁻²) е $v^2/n = 36.6$ in the upper range of results compiled in the IPCC AR4. (¥) ⁶L∇ -4 $\Delta T_g (K)$ **Data Compilation** Annual mean zonal averaged EBM $\alpha_{P} = 0.30$ -4 -2 0 2 -6 -4 -2 0 2 $\Delta R_{[CO_2]}$ (W m⁻²) $\Delta R_{[CO_2,LI]}$ (W m⁻²) g α_S: 0.10 0.55 0.75 0.20 ∆R_[003] (W m⁻²) € 0 3 Land Ice Albedo $\Delta R_{[LI]}$ $= f(\delta^{18}O_{LR04}, 3D LI model)$ Pleistocene а -500 -450 -400 -350 -300 -250 -200 -150 -100 80 40 20 -20 -40 -60 -80 Latitude (^oN) -4 -2 0 2 I_{TOA} (W m⁻²) $\frac{100}{4}$ $\Delta R_{[CO_2,LI]}$ (W m⁻²) $\Delta R_{[CO_2]}$ (W m⁻²) Which approach to quantify a function for S is correct? b 80 40 20 -20 -40 -60 -80 Latitude (^oN) b 3.0 fraction land ice m² 2.0 $\Delta T_g(K)$ ั≥ ₹. С 80 60 40 20 0 -20 -40 -60 S_[CO2,LI] (-atitude (°N) 1.0 $\Delta R_{[LI]}$ 0.5 (W m⁻²) Calculate state dependent S_[CO2,LI] -7 -6 -5 -4 -3 -2 -1 0 1 2 3 $\Delta R_{[CO_2,LI]} \, (\text{W m}^{\text{-2}})$ 2.5 2.0 1.0 0.5 0.0 $\Delta R_{[CO_2,LI]}$ (W m⁻²) 1.5 Time (Myr BP) Global Temperature $\Delta T_g = \Delta T_{NH}/f_{pa}$ Quantify a state dependent S_[CO2,LI] Time (Myr BP) vdHeydt2014: warm part of ice cores 2.5 cold part of ice cores M2015: ice cores Time (Myr BP) $\Delta R_{[CO_2,LI]}$ (W m⁻²) Conservative estimate of $S_{[CO_2,LI]}$ using PDFs density (-) This study (based on Köhler et al., 2015) ice cores (0-0.8 Myr) Hönisch-lab (0-2.1 Myr) -6 $\Delta R_{[CO_2,LI]}$ (W m⁻²)

 $S_{[CO_2,LI]}$ (K W⁻¹ m²)

3.0 2.5 2.0 Time (Myr BP) Köhler P, de Boer B, von der Heydt AS, Stap LS, van de Wal RSW. On the state dependency of equilibrium climate sensitivity during the last 5 million years, Climate of the Past, 2015, 11, 1801-1823
Köhler P, Stap LS, de Boer B, von der Heydt AS, van de Wal RSW. Technical Note: Calculating state dependent equilibrium climate sensitivity from palaeodata, Climate of the Past, submitted