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Abstract. When one combines satellite altimetry and a geoid model to
improve estimates of the ocean general circulation from hydrographic data
with a box inverse model, there arises a problem of different resolution and
representation of the data types involved. Here we show how this problem
can lead to an artificial leakage of the error estimates of short scale (high
degree) spherical harmonic functions into long wavelength (low wavenumber)
Fourier functions. A similar paradox effect can be seen in an idealized box
inverse model constrained by additional sea-surface topography data of low,
medium, and high resolution: When more information is added in the form
of additional smaller scales, the error of a transport estimate eventually
increases. Consequently, including the large geoid omission errors associated
with smaller scales in a box inverse model of the Southern Ocean increases
the posterior errors of transport estimates over those of a model that does not
include the geoid omission error. We do not claim that including or excluding
the geoid omission error is correct. Instead, we juxtapose two different ways
of estimating the geoid errors to demonstrate the effect that the omission
error might have on the long — supposedly well-known — scales. How (or if)
to properly account for the geoid omission error must be the topic of further
research. A proper treatment of the geoid model errors is demanded when
one evaluates the errors of absolute sea-surface topography data.
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the major tasks of physical oceanography. Some of
the efforts that are currently undertaken include var-
ious types of numerical ocean models in conjunction
with data assimilation techniques and inverse meth-
ods [Wunsch, 1978; Fu, 1986; Roemmich and McCal-
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lister, 1989; Rintoul, 1991; Macdonald, 1998b; Sloyan
and Rintoul, 2001b; Malanotte-Rizzoli, 1996; Fukumori,
1995; Stammer et al., 1997; Bell et al., 2000; Wenzel
et al., 2001]. The success of these models is critically
dependent on the amount and the type of observational
data. From the available data, sea-surface topography
measurements from satellite altimetry have the poten-
tial to provide the best coverage and resolution for all
ocean regions. Also, they reflect the three-dimensional
flow best when compared with other surface data [ Wun-
sch and Stammer, 1998].

TOPEX/Poseidon and ERS2 satellite altimetric mis-
sions presently provide extraordinarily accurate and
precise data. However, the use of this information
has largely been limited to studies of time-dependent
phenomena in the ocean [e.g., tides: Egbert, 1997; Le
Provost et al., 1998], which only require information on
the sea-surface height anomaly. To use satellite altime-
try data in the steady-state ocean problem or for esti-
mating the absolute circulation, one has to reference the
altimetric height to the marine geoid to determine the
dynamic sea-surface topography. Uncertainties associ-
ated with the marine geoid exceed those of the altime-
try by an order of magnitude, rendering the estimated
dynamic sea-surface topography very noisy.

At present there are numerous estimates of the ma-
rine geoid to which the satellite altimetry can be refer-
enced. Ganachaud et al. [1997], using a global “box”
inverse model, investigated factors that limit the use of
satellite altimetry in studies of the mean ocean circu-
lation. They conclude that our present knowledge of
the marine geoid (they used the JGM-3 geoid model)
is inadequate to significantly improve estimates of the
mean circulation. New dedicated satellite gravity mis-
sions will determine very accurate geoid models: Grav-
ity Recovery and Climate Experiment (GRACE) [Tap-
ley, 1997] and Gravity field and steady-state Ocean Cir-
culation Explorer (GOCE) [Battrick, 1999]. As a result
of these respective missions, a marine geoid will become
available that will be orders of magnitude more accu-
rate than the “state-of-the-art” EGM96 model [Earth
Gravitational Model 1996, Lemoine et al., 1997] (Fig-
ure 1). The highly improved geoid models will lead to
a wide range of new applications of sea-surface height
data to oceanographic problems.

Given that we will have an accurate marine geoid
in the near future, it is appropriate to again address
some of the issues raised by previous studies [e.g., Wun-
sch and Gaposchkin, 1980; Ganachaud et al., 1997]. In
these studies the authors find that an inaccurate marine
geoid model inhibits satellite altimetry data from im-
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Figure 1. Spherical harmonic error variance per degree
of the geoid models EGM96, GRACE, and GOCE, in
comparison with Kaula’s law (model signal variance)
[after Balmino et al., 1998].

proving the estimate of the ocean circulation. LeGrand
[2001] and Schriter et al. [2001] investigate the influence
of additional sea-surface topography information with
higher resolution on the determination of the steady-
state ocean circulation. These authors find that with al-
timeter data and an accurate geoid model derived from
the gravity data of GRACE and GOCE the errors of
estimated integrated volume and heat transports can
be reduced by up to 50%.

In this paper we will discuss the more general prob-
lem of combining satellite altimetry, the marine geoid,
and an ocean model into an estimate of the ocean cir-
culation. The information from these three sources all
have different resolutions and representations, thus the
scales that the three signals and their errors describe
and omit are different. In order to compare satellite
altimetry and the marine geoid with the sea-surface to-
pography estimated by an ocean model in the context
of inverse methods, it will be necessary to match their
scales by applying a suitable filter.

Geoid models are generally given as an expansion
into spherical harmonic functions; therefore a filter with
a boxcar or Dirichlet kernel appears simplest and most
effective. Compared to the amplitudes of the geoid un-
dulations of the order of 100 m relative to a reference
ellipsoid, the errors due to truncation of a geoid model
at a certain degree are small. Modeled Geoid errors, on
the other hand, are small for low degrees (large scales)



Box Inverse Models, Altimetry and the Geoid

and orders of magnitude larger on high degrees (small
scales). Therefore the truncation at a low degree ne-
glects large error contributions which, however, is jus-
tified because the neglected error is orthogonal to the
geoid model.

In an oceanography context, it is more natural to
think in terms of wavelengths than in spherical har-
monic functions. On oceanography domains, which do
not cover the entire globe, the formerly neglected geoid
error no longer is orthogonal to the resolved signal. Be-
cause of its relative magnitude, this omitted error can
have significant contributions to the resolved long wave-
lengths. Therefore the spherical harmonic boxcar filter
is not optimal for domains that do not cover the en-
tire globe, but finding a filter that performs adequately
on all three sources of information appears to be diffi-
cult. Consequently, the use of sea-surface height data
in inverse models or data assimilation is not straight-
forward because both the description of the signals and
the errors have a substantial influence on the solution
obtained from these methods.

Unfortunately, accurate geoid data are not currently
available. This makes it difficult to study the impact
of suboptimal filtering on estimates of the circulation
itself. Instead, the influence of the filtering can be as-
sessed using the predicted error covariance of the new
gravity missions — GRACE and GOCE. Again, these
errors are very small on long scales, so that the possible
impact of large errors on short scales becomes apparent.
This paper will demonstrate the impact of two different
filtering methods of sea-surface topography information
in a box inverse model of the Southern Ocean.

In Section 2 we briefly discuss the components of
sea-surface topography data and model errors. In this
context we need the term “omission” error to describe
the unresolved part of the signal. The problem stem-
ming from different resolutions and representations is
also raised. Section 3 illustrates this problem with the
help of a simplified version of a box inverse model in
an artificial scenario. Section 4 shows two extremes of
the impact of sea-surface topography data on the esti-
mates of a realistic box inverse model when one does
or does not take into account the omission error of the
geoid model. The sea-surface topography data is gen-
erated by the model itself to avoid possible problems
stemming from inconsistencies of hydrography, model,
and satellite data. We use two different filtering meth-
ods to combine data and model. We do not claim that
either of these methods is correct. The results of the
two filtering methods, which differ greatly, are juxta-
posed to demonstrate the effect that the geoid omission
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error might have on the long — supposedly well-known —
scales. The reader should keep in mind that it is not our
intention to find the “correct” filter method. (Such a
filter could be a compromise between the two extremes
described in this paper.) How (or if) to properly ac-
count for the geoid omission error must be the topic
of further research. The conclusion and summary are
given in Section 5.

2. Sea-Surface Topography Data

We confine the a priori error discussion in this section
to errors of the sea-surface topography data, as this is
the topic of this paper. The errors of other types of data
or other model variables depend on the specific model
and data type and are not considered here.

For the discussion we borrow a terminology from
geodesy. There the term “commission” error describes
the part of the earth gravity field that is resolved by
a specific geoid model. Likewise the “omission” error
refers to the unresolved, unmodeled part of the gravity
field. We extend the use of these terms to models of the
ocean circulation. The geodetic commission and omis-
sion errors are defined in a purely spectral way since
the geoid models are usually formulated in spherical
harmonic functions. By contrast, models of the ocean
circulation are generally not formulated in a spectral
representation, let alone in spherical harmonics. We
will use the term “omission error of the oceanographic
model” to describe the errors introduced by approx-
imating the differential equations of the model on a
computational grid with a finite resolution. In the same
manner a gridded data set of sea-surface height has an
omission error due to the finite resolution of the grid.
In general, the omission error is the signal that has not
been modeled.

2.1. Data and Model Errors

The sea-surface topography of an oceanographic
model can be calculated from the general principle of
geostrophy [Pedlosky, 1987]. Due to the simplifications
of the momentum equations that lead to geostrophy,
the sea-surface height contains errors that could be es-
timated in principle. For practical reasons we neglect
these errors here. We only keep in mind that there is
an omission error of the oceanographic model because
of the finite resolution of the model grid. The maximum
resolution of the model grid can vary in space with the
local grid step size.

The absolute sea-surface topography ¢* determined
from satellite measurements is the difference between
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the sea-surface height h relative to a reference ellipsoid
and the geoid height IV over the same reference ellipsoid:
(* = h—N. If h and N are uncorrelated, the error
covariance of (* is the sum of the error covariances of h
and N:

Ce=Cn + Ch. (1)

This equation describes the valid assumption that N
and h stem from different sources of data, which are in-
dependent (altimetry and geoid model). However, equa-
tion (1) is only valid for the commission errors of N and
h. Because the omission errors technically consist of the
unmodelled signals, which do not have to be indepen-
dent, one cannot assume that the errors due to omitting
these signals obey (1).

The sea-surface height h relative to a reference ellip-
soid is measured by satellite altimetry. The commission
error of h consists of actual measurement errors and, if h
represents an estimate of the mean, deviations from the
mean. The omission error due to interpolation between
satellite ground tracks should also be accounted for as
in, for example, the mean sea-surface CLS_SHOM98.2
by Hernandez and Schaeffer [2000]. There the spatial
distribution of the estimated errors exhibits a “tracki-
ness” with small values along the ground tracks of the
TOPEX /Poseidon satellite and larger values in between
satellite tracks. Along the ground tracks the omission
error can probably be neglected since the along track
resolution is very high. However, for a gridded data set
of h, the longest scale of the omission error is deter-
mined by the grid step size.

The geoid height N is generally calculated from
a geoid height model. Such a model is defined on
the entire globe and therefore naturally represented in
terms of fully normalized spherical harmonic functions
}/lm (9a >‘)

e’} 1
NOXN=RY " gimYim(0,)) (2)

=2 m=—1

where [ is the degree of the spherical harmonic, m the
order, and v, the corresponding spherical harmonic
coefficient. The mean radius of the earth is R, the co-
latitude is 6, and longitude is A\. The spherical harmonic
functions are defined as

Hm(97>\) _ \/(21 + ]-) LWL): _le(COSQ) 6im/\

dr I+ m)!

with the associated Legendre functions Pj,,. The geoid
height error covariance between two points (6, A) and
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Figure 2. Schematic plot of signal variance per degree
using Kaula’s law and a synthetical error spectrum.
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with the coefficient error covariance (0yim,0ypms). In
practice, series (2) is truncated at a maximum degree
L. This is justified as ¥, drops with approximately
1/1? according to Kaula’s rule [Kaula, 1966], so that
the neglected y;,,, are orders of magnitude smaller than
the yi,, for small I (Figure 2). However, the geoid com-
mission errors 0y, do not follow this asymptotic be-
haviour. Instead the error is smallest for small [ and
increases rapidly with increasing [. The maximum de-
gree L is conventionally chosen as the point where the
modeled signal-to-noise ratio, that is, y;,, versus dyim,
becomes one. This point is usually referred to as the
resolution of the gravity field solution. By a rule of
thumb, this resolution is half-wavelength, that is 7R/ L.
Kaula’s signal variance model assumes the role of an er-
ror variance for [ > L, since no better information on
the y;,, is available. This part of the spectrum consti-
tutes the omission error of the geoid model.

In general the resolutions of the oceanographic
model, the sea-surface height h relative to the reference
ellipsoid, and the geoid height N are different. Also, the
resolution of the oceanographic model can vary in space,
for example, if the grid is determined by stations along
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a hydrographic section, or if it is any non-uniform grid.
The different resolutions of model and data values de-
termine the respective omission errors. Therefore, when
comparing model sea-surface topography with A — N it
is necessary to find a common resolution of model and
data values so that the signal and the commission errors
of the three components describe the same wavelengths.
This common resolution is determined by the smallest
resolution available, which is generally the geoid model
resolution.

2.2. Concept of Wavelength

On a torus, a rectangular plane, or a straight line
the concept of wavelength is clear. Each wavelength
can be associated with a harmonic function of these
domains, namely the trigonometric functions sine and
cosine. The shortest wavelength that can just be rep-
resented on a uniform grid on these domains is the
Nyquist wavelength.

The definition of wavelength is less clear when we
want to attribute wavelengths to the spherical harmonic
degree. As a rule of thumb one attaches 7R/l as half-
wavelength or spatial scale to any degree [. This is
due to the fact that an associated Legendre function of
degree [ and order m = 0 has [ zero crossings on the
interval 0 € [0; 7], although not equi-angularly spaced.
Attaching a wavelength to a degree [ is imprecise for two
reasons. First, for any degree [ we have a whole range
of orders (also known as azimuthal wavenumber) m =
0,...,l appearing as cos mA and sinmA in the spherical
harmonic functions. In the Fourier analogy one would
try to obtain a 1D Fourier spectrum by averaging a
2D Fourier spectrum in one direction. Secondly, any
associated Legendre function Py, can be represented as
a sum of trigonometric functions:

cos kO
P, 0)
im (cos Z lmk {sin ko

with vanishing aj,, for odd I — k [Sneeuw and Bun,
1996, and references therein]. Thus any associated Leg-
endre function of degree [ contains contributions from
all wavenumbers & < [. This will become even clearer
from the simpler case discussed in the following para-
graphs.

if m even

4
if m odd )

In this paper we consider only geoid models with ho-
mogeneous, isotropic errors. Away from polar areas,
that is a valid assumption for the satellite missions un-
der considerations. By making this assumption and by
applying the addition theorem of spherical harmonics,
the covariance function (3) is simplified to a series of

Legendre polynomials:

L
C() =Y piPilcostp), (5)

where 9 is the spherical distance between two points
(0,\) and (#’,X\') on the sphere. The coefficients p;
are the geoid degree variances, R? Zm,#(éylm, Yim,)-
This representation is invariant under rotations on and
over the sphere.

For a Legendre polynomial P;, which is an associated
Legendre function with azimuthal wavenumber m = 0,
equation (4) reduces to a series of cosines with maxi-
mum wavenumber ko, = [:

Pi(costp) = Zalk cos ki), (6)

k=0

again with vanishing a;; for odd [ — k. The absolute
values of aj;, decrease for increasing (I — k). Thus the
main contribution to a Legendre polynomial P;(cos )
would be aj; coslyp. Consequently a Legendre polyno-
mial of a certain degree strongly resembles a cosine with
wavenumber equal to that degree, which is the rationale
for the aforementioned rule of thumb.

Inserting (6) in the above covariance function (5), we
have:

Z DI Z ayy; cos kip

L
Zplalk cos ki (7)

=k

Mh HMh

cx, cos ki)

=~
Il
=]

with the coefficients

L
cr = Zplalk (8)
=k

This latter formula, with reordered wavenumbers and
degrees, shows that a given power spectral coefficient
¢k (in Fourier sense), pertaining to a certain wavenum-
ber k, contains contributions of degrees [ = k up to
L. Thus, changing the maximum degree L automat-
ically changes the power of the entire Fourier spec-
trum. Figure 3 illustrates this behavior for the ex-
pected isotropic and homogeneous GOCE error covari-
ance function.
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Figure 3. Fourier spectra of GOCE geoid error covari-
ances with different maximum degree L.

More important, it is seen that the coeflicients a;
in (8) are multiplied by the degree variances p; in order
to provide the coefficients c¢i. Thus, the decreasing be-
haviour of the a;; does not automatically carry over to
the Fourier coefficients.

This is exactly what will happen in the case of geoid
error covariance functions from gravity field missions
as demonstrated by Figure 2. The spherical harmonic
geoid error spectrum may vary over several orders of
magnitude with the smallest degree variances at the low
degrees. This is already unfavorable for the calculation
of cx. The situation becomes worse when the omission
error is taken into account. Beyond the maximum de-
gree of resolution L, the signal degree variance takes
the role of an error degree variance. Although the level
of the omission error decreases slowly for increasing de-
gree, it remains at a considerably high level for a large
range of degrees. This whole range will project onto the
low wavenumber Fourier spectrum by virtue of (8).

What we have described so far is hardly more than
what usually occurs when one makes a change of basis
from one set of orthogonal functions to another set. But
this change of basis can become a problem in oceano-
graphic applications because no ocean model domain
covers the entire sphere. Consequently, spherical har-
monic functions are not a convenient basis for describ-
ing the marine geoid, since they are not orthogonal on
a fraction of a sphere. Neither are the trigonometric
functions orthogonal on such a domain. They have been
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used only to illustrate the problem. However, this prob-
lem arises with any change of basis, its severity depend-
ing on the shape of the model’s domain, that is, by how
much the domain differs from the full sphere.

Taking the problem to the extreme, one could in-
clude the complete geoid omission error into the calcu-
lation of the error covariances of the signal to degree
and order L. We assume an isotropic and homogeneous
omission error covariance function and estimate its co-
efficients using Kaula’s rule [Kaula, 1966]. We arrive
at the following formulation for the geoid height error
covariances:

Cn(0.7, 0, N) =

CPO.00 . N)+ R Y kiPi(cosv). (9)
I=L+1

The commission error C](VL) (0,0, \) is calculated
from the series (3) and truncated at a certain maximum
degree L.

o 1071920 + 1)
e 204

is the signal variance according to Kaula’s rule of
thumb. The second term in (9) represents the omis-
sion error. In practice, it is impossible to extend the
sum in (9) to infinity. Therefore, given the finite res-
olution of the inverse ocean model used in this paper,
which is at best (1/3)° spherical distance, we decided
to stop the summation at [ = 1000, which corresponds
approximately to a wavelength of that size. Also at this
degree the cumulative sum of the Kaula signal variance
is no longer increasing rapidly. It is well known that
Kaula’s rule does not adequately describe the anomaly
degree variances for degrees higher than 1000. For this
range other rules may be used [Rapp, 1972]. These are
in principle similar, that is, they describe the spheri-
cal harmonic coefficient variance as a function of [, but
at the same time ensure that the sum in (9) remains fi-
nite. However, for the purpose of our study we used the
more familiar Kaula rule, which is almost as good, and

describes variances below L = 1000 accurately [Rapp,
1972].

A geoid error covariance function Cp calculated
by (9) contains contributions at wavelengths down to
27 R/1000. We remove these short scales by applying a
Butterworth low-pass filter to the covariance function
Cn with a cut-off wavelength of 2R/ L [e.g, Kulhdnek,
1976]. The resulting Cy is an estimate of the geoid
height error covariance only for the long wavelengths,
where now long means longer than A = 2rR/L.

~ 10710773 (10)
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Figure 4. Fourier spectra of geoid height error covari-
ance functions: commission error up to L = 200 (C200),
commission plus omission error (Ciggp) and a filtered
version of the latter with cut-off £ = 200.

Figure 4 illustrates the effect of our procedure.
Shown are the Fourier power spectra of the GOCE co-
variance functions, where the Legendre series (3) has
been truncated at degree L = 200 (dotted line) and
L = 1000 (dashed line). As before, the power of the
long wavelengths increases with increasing L. Here, the
increase is over 3 orders of magnitude. Also shown is
the power spectrum of the covariance function to degree
1000 after application of the Butterworth low-pass filter
with a cut-off wavelength 2w R/k, k = 200 (solid line).
For this covariance function the power of the long wave-
lengths is independent of k, where k& now describes the
shortest wavelength 2w R/k contained in the covariance
function.

3. A Simple Section Model

In this section we use a very simple model, based
on geostrophy, that mimics the more complex inverse
box model of the following section, to demonstrate the
problem discussed in Section 2. The model consists
of one section through an arbitrary ocean of constant
depth with one integral conservation equation for vol-
ume. This section could close a marginal sea, for ex-
ample, thus forming a closed “box” with the coastlines.
The volume of the water is conserved in the box. We
assume no vertical shear in velocity but consider only
the vertically constant velocity component, so that the

7

unknowns are the surface velocities v. They can be cal-
culated from sea-surface topography by

0
=4 (11)

where ¢ is the acceleration due to gravity and f the
Coriolis parameter. Spherical harmonic functions are
clearly not the proper basis to describe the unknown ve-
locities. We will show the impact of the change of basis
by investigation of the posterior errors of the transport
through the section.

3.1. Model without Sea-Surface Topography
Data

For the hydrographic model without sea-surface to-
pography we choose a zonal section with 61 stations
along 30°S. The station spacing is constant with
Ax; = 0.5" longitude. The depth at each station pair
is D = 4000 m. The only conservation equation is

DY wjAx; = ¢+ 6. (12)
J

The actual values for the unknown velocities v;, do not
matter in this investigation, as the model is linear. We
choose them to be zero. We assume that the trans-
port ¢ is zero within §¢ = 410 Sv (1 Sv = 10° m3/s).
Equation (12) can be rewritten in matrix form

Myx =yo +1ng (13)

where x is the vector of unknown velocities, yg = ¢, and
ng = d¢. In this sense, the matrix operator My maps
the surface velocities onto the total volume transport.
The index 0 indicates that this is the zero order infor-
mation available before adding sea-surface topography
data. We estimate a new xg by minimizing

1 _ 1 _
J = 5 nOT RO 1Ilo -+ 5 (Xo — Xoo)T Pool (Xo — Xoo). (14)

with the a priori estimate xop = 0 m/s, the a pri-
ori covariance Pgg = diag(0.01 m/s)? of this estimate
and the error covariance Ry = d¢? of the conserva-

tion equation. The error estimates represent typical
values for the quantities Py and 0¢ [e.g., Macdonald,
1998a; Ganachaud and Wunsch, 2000; Sloyan and Rin-
toul, 2001b]. The solution to this problem is a Gauss-
Markov estimate [ Wunsch, 1996] of the form

x0 = Xo0 + Ko (yo — Moxoo) (15)
with the posterior error covariance or uncertainty

Pg = Pgo — KoMoPqpo, (16)



where
Ky = PooMg(MoPooMg + Ro)il. (17)

Since we have chosen yog = MXqq, the new estimate xq
is the same as the old one (xq0), except for a reduced
error covariance. Equations (15)—(17) can also be in-
terpreted as the first step of recursively improving the
estimate of x: for the n’th set of equations we would
have

X, =Xp-1 + K, (Yn - Mnxn—l)
Pn = Pn—l - KnMnPn—l

and
K, =P, M/M,P,_ M. +R,)".

When we add more equations recursively we expect
that the error covariance is reduced even further. In
particular, when using sea-surface topography data the
inclusion of more and more spherical harmonic func-
tions of a geoid model increases the resolution and the
accuracy of the resulting sea-surface topography. Al-
though the accuracy of the spherical harmonic coef-
ficients decreases with increasing degree, we expect,
from a naive point of view, that more coefficients al-
ways mean more information. This gain of information
should be reflected in a decrease of the posterior error
covariance matrix for the velocities until very high de-
grees [ are reached, for which the errors are so large that
on these scales the sea-surface topography data contains
no useful information. Especially for an observable such
as the horizontally integrated total volume transport ¢,
the short scale, noisy data should not lead to any im-
provement. On the other hand, the addition of noisy
data should not, again according to naive intuition, de-
grade the estimate of any observable, in particular not
that of a horizontally integrated quantity. However,
from the discussion of the sea-surface topography er-
rors in Section 2, we anticipate that spherical harmonic
functions of high [ contribute to the long wavelength
components of the estimated velocities.

3.2. Model with Sea-Surface Topography Data

The model sea-surface topography at the j-th station
is calculated from the velocity between the i-th station
pairs by

j .
=3 uan-q. (1)
=1
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which is the discretized integration of (11). The inte-
gration constant {y can be set to zero for our purposes.
The matrix analogue of this equation to (13) is

M(XZC*—I—HC. (19)

The “measurement” vector ¢* is obtained by substitut-
ing xo for x in (19). We assume the altimeter mea-
surement to be perfect, so that the error covariance
matrix R¢ is calculated from the geoid error covari-
ance function (5) alone. Since the maximum resolution
of the geoid model is generally lower than that of the
ocean model, R¢ does not describe errors on the short
scales of the model. In fact, if we sought a new Gauss-
Markov estimate of x with equations (19) and a low res-
olution error covariance of the sea-surface topography,
we would implicitly assume that on the short scales the
data have an error of zero. We therefore have to modify
the operator M in equation (19), so that only the scales
described by the geoid error covariance are included in
the calculation. In other words, we need to filter the
model’s sea-surface topography estimate before we can
compare it to the sea-surface topography data in equa-
tion (19). In order to design a filter, we diagonalize
R.. If the section is long enough so that n/2 waves of
wavelength 27 R/L fit into it, the eigenvalue spectrum
of R¢ drops sharply to zero after n eigenvalues. Only
these n eigenvalues are kept and the equations (19) are
expanded into the corresponding eigenfunctions of the
error covariance matrix Re:

M x =y, +ny, (20)

with Ms-f) =VIM, y = VE¢*. The columns of ma-
trix Vi are the eigenvectors corresponding to the kept

eigenvalues o?. M(LC) x is the vector of coefficients of

the expansion of M¢ =V, M(LC) x. Because we use the
eigenvectors V, of the geoid model error covariance ma-
trix, we make sure that only those structures that the
sea-surface topography data can describe are compared
in (20). By construction, these can only be long scales,
as the error covariance matrix does not contain high de-
grees (higher than maximum degree L). Note that our
procedure is similar to the truncated SVD solution of
Wunsch [1978] where only the resolved data structures
are kept to construct the flow field.

The error Ry, is then a diagonal n X n — matrix with
the eigenvalues 0%____7n as diagonal elements. The sub-
script L indicates ‘that the number of eigenvalues and
the eigenvectors themselves depend on the maximum
degree L used in the geoid model. The analogous re-
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cursive Gauss-Markov estimate to (15)—(17) is:

xr =x0+ Kp(yr — Mrxo) (21)
P, =P, - K M;P, (22)
K, =PM (M PM? +Rp)™ . (23)

Again, since we have chosen ¢* so that y;, — My xg =
0, only the posterior error estimate is affected by the
new equations. These new equations either decrease
the posterior error estimates or leave them unchanged.

For the following experiments we use the expected
error spectrum of the GRACE mission, since the geoid
model resulting from this mission will have very small
errors for low degrees | (Figure 1). The error spectrum
increases almost exponentially with degree. It is there-
fore ideal for demonstrating the effect of large errors of
high degrees on long scales.

3.3. Results and Discussion

The posterior error of the total volume transport
VMP,M!' for the hydrographic model without sea-
surface topography data is 8.4 Sv. So the assumption
of an error of 1 cm/s for the barotropic velocities re-
duces the prior error estimate of the volume transport
of 10 Sv by 16%.

We decided to use three different cut-off degrees for
the model with sea-surface topography: L = 20, which
is representative of the very long wave range, L = 70,
the range for which GRACE is expected to improve
the present geoid models, and L = 150, where the er-
ror estimate intersects Kaula curve. The wavelengths
associated with these degrees are 2000 km, 570 km,
and 270 km, respectively. The corresponding eigenvalue
spectra drop after 3, 11, and 22 eigenvalues (Figure 5).

Note that in general the size of the eigenvalues in-
creases with L. This can be explained as follows: The
square root of eigenvalues describes the error of the
data coefficients y;,. The error increases with L be-
cause more structures of the data are kept in the calcu-
lation. For small L the errors of these new structures
contribute to the omission error.

For L = 20 the posterior transport error is reduced
to 4.0 Sv. Using a geoid model to degree L = 70 ap-
proximately halves this error again to a value of 1.9 Sv.
Here the result meets our naive expectation that addi-
tional resolution of the geoid model improves the esti-
mate of the total transport. However, increasing L to
150 increases the posterior error again to 3.9 Sv. In this
section, as opposed to Section 2, the basis functions are

9
10°
................ L_lso
<10
g xlxxx:.ggg-/_—70
[%]
I x
% "‘++ L=20 *
2 +
® -10 *
10 " +
x
+ x
+ x
0 5 10 15 20 25 30 35
index

Figure 5. Eigenvalue spectrum of the geoid error co-
variance matrix for the three cases L = 20, L = 70, and
L = 150.

not sines and cosines but the eigenfunctions of the geoid
error covariance matrix. In this sense we have used the
presuppositions of the geoid model as much as possible.

Although a geoid model to degree L = 150 contains
more information than one to degree L = 70, its impact
on the posterior volume transport error of this section
model is smaller than for the coarse geoid model. The
large scale volume transport is already well determined
by low degrees of the spherical harmonic functions. The
precision of these harmonics is diluted by the higher de-
gree functions, whose short scales cannot decrease the
transport errors as much as their “leakage” into long
waves degrades the quality of the low degree functions.
This “leakage” becomes apparent because the spectrum
of the geoid model error spans several orders of magni-
tude. The contributions of high degree spherical har-
monics to long wavelengths, which decrease rapidly for
decreasing wavenumber k, are amplified by the large
error coefficients (see equation (8)).

4. Box Inverse Model of the Southern
Ocean

For the purpose of this study we use the South-
ern Ocean inverse model of Sloyan and Rintoul
[2000, 2001a, b], which is based on Wunsch [1978].

The inverse box model defines a system of conser-
vation equations, derived from hydrographic sections,
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that can be written in the same matrix form as equa-
tion (13). Mp is a matrix whose elements are the area
x property concentration (for the properties mass, tem-
perature, salt) at each station pair in each layer, and
for each layer interface; yq is the property divergence in
each layer due to relative (baroclinic) and Ekman fluxes
and x is the vector of unknown reference (barotropic)
velocities, diapycnal property transfer rates, and cor-
rections to air-sea climatologies.

The model noise is ny. Again, the index 0 indicates
that this is the information available before the addition
of sea-surface topography data. The Gauss-Markov es-
timate of this system is completely analogous to equa-
tions (15)—(17) with x¢o = 0, since we will choose the
reference velocities to be at an estimated level of no
motion with prior errors of (0.01 m/s)? for mid-basin
stations and (0.06 m/s)? at western boundaries [Mac-
donald, 1998a; Ganachaud and Wunsch, 2000; Sloyan
and Rintoul, 2001b].

The inclusion of sea-surface topography data is also
absolutely analogous to the simplified model of the pre-
vious section. We choose ¢* = M¢xp, so that again
yr—Mpxg = 0. The prior errors of (* are estimated for
each section separately as described in Section 3.2. This
way the total covariance matrix for sea-surface topogra-
phy is block-diagonal, i.e., small correlations which exist
between different sections are neglected in our calcula-
tions.

4.1. Hydrographic data, model domain and a
priori constraints

The inverse model of Sloyan and Rintoul
[2000, 2001a, b] used nine hydrographic sections
to define six “boxes” in the southern hemisphere
oceans (Figure 6). Twenty-three neutral density
[Jackett and McDougall, 1997] layers were chosen to
span the water masses in the model domain, and the
following a priori assumptions were used to constrain
the general circulation produced by the model (see also
Figure 6):

e —0.8 £ 2 Sv net southward transport at SAVE2
[Coachman and Aagaard, 1988; Wijffels et al.,
1992];

e 4 + 2 Sv northward bottom water transport in
Brazil basin [Hogg et al., 1982; Speer and Zenk,
1993];

e 0+ 2 Sv net transport into the Weddell Sea and
1645 Wm ™2 heat loss over the Weddell Sea [Gor-
don and Huber, 1990; Fahrbach et al., 1994];
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Figure 6. Position of hydrographic sections, box re-
gions and constraints used in the inverse model.

e 60 £ 5 Sv northward Malvinas Current [Peterson
and Stramma, 1991; Peterson, 1992];

e 6+ 2 Sv northward transport of AABW across
Argentine basin [ Whitworth et al., 1991];

e 1145 Sv northward transport of LCDW/AABW
coincident with WOCE PCM-9 (P32) [Whitworth
et al., 1997];

e O(500 kmols™!) Silica conservation all regions
[Tréguer et al., 1995].

4.2. Hydrographic Estimate of the Mean
Circulation

A description of the net meridional and zonal fluxes
(Table 1) and a general description of the mean circula-
tion is given below. This is provided to familiarize the
reader with the gross circulation features of the model.
For a more thorough description the reader is referred to
Sloyan and Rintoul [2000], Sloyan and Rintoul [2001Db],
and Sloyan and Rintoul [2001a].

Across the Atlantic, there is a small net southward
volume transport which corresponds to the leakage of
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Table 1. Total Section Volume and Temperature

Transports
Section Mass [Sv] Heat [PW]
SAVE2 —0.824+0.39 0.49 + 0.06
SAVE4 —0.314+1.60 0.37+0.05
DP 137.5 +6.6 1.44 £0.05
SA 138.5 +£7.0 1.12 4+ 0.09
WS 0.01 4+0.20 —0.05 £+ 0.004
118 —7.40 +4.02 —1.284+-0.19
132 —8.14+3.71 —0.79+0.14
SR3 146.7 +7.3 1.72 £0.09
P32 7.314+3.20 0.36 +0.13

1 Sv =10 m?/s, 1 PW = 10'5 J/s, positive val-
ues refer to northward or eastward transports, tem-
perature transports are relative to 0°C.

Pacific water through Bering Strait into the North At-
lantic Ocean (Table 1). The mass flux between SAVE2
and SAVE4 decreases slightly because of the dominance
of evaporation over precipitation in the subtropical
South Atlantic. The southward transport of 18 +£4 Sv
of North Atlantic Deep Water (NADW) agrees with
previous estimates [Dickson and Brown, 1994; Rintoul,
1991; McCartney, 1993]. The NADW overturning cell
is close by northward transport of thermocline and in-
termediate water, which results in a northward temper-
ature transport across the Atlantic of 0.37 + 0.05 PW
at SAVE4 and 0.49 + 0.06 PW at SAVE2 (1 PW =
10'5 J/s). These values agree with those of Macdonald
[1998Db] of 0.49 & 0.25 PW and those of Saunders and
King [1995] of 0.5 + 0.1 PW.

In the Indian Ocean there is a southward volume
transport at 18°S and 32°S of 7.40+4 Sv and 8.144+4 Sv,
respectively (Table 1). The increased volume transport
between 118 and 132 is not significant and within the a
priori model noise of 0(1 — 2 Sv). The southward flow
corresponds to the size of the Indonesian Throughflow
and is within reasonable agreement of recent estimates
[Cresswell et al., 1993; Meyers et al., 1995].

Across 32°S in the Pacific Ocean there is a net north-
ward volume transport of 7.31 43 Sv. This results from
a net northward flux of thermocline layers. The temper-
ature transport across 32°S of 0.36 +0.13 PW is larger
than the heat flux estimates by Macdonald [1998b] of
—0.04 £0.32 PW at 28°S and 0.26 + 0.28 PW at 43°S.
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In the Southern Ocean the Antarctic Circumpolar
Cwrrent (ACC) dominates the three choke point sec-
tions with an eastward volume transport of 137.5+7 Sv
at Drake Passage, 138.5 + 7 Sv south of Africa, and
146.7 + 7 Sv south of Australia (Table 1). The prop-
erty divergences between the choke point sections result
from imports or exports across the three southern sub-
tropical sections and changes to the water layer com-
position between the choke point sections. The largest
divergences occur between south of Africa and south of
Australia. The increases in eastward property trans-
ports south of Australia result from the inclusion of
Indonesian Throughflow water in the Indian sector and
their eastward transport with the ACC.

4.3. Experiments with Sea-Surface Height Data

We study the impact of different a priori assumptions
about the geoid model error, thus its covariance ma-
trix. Three covariances are available: EGM96 [Lemoine
et al., 1997] to degree and order L = 70 and one
estimate each of the geoid covariances for the future
GRACE and GOCE missions [Balmino et al., 1998].
The latter two are available to degree and order L = 150
and L = 300, respectively, where they attain maximum
resolution. However, we choose lower resolutions (half
wavelength), namely 286 km (L = 70) for GRACE and
100 km (L = 200) for GOCE. These choices correspond
to the respective scales, which the geoid missions are
designed to resolve. In fact, the curves of the cumula-
tive geoid error as a function of maximum degree L of
GRACE and GOCE intersect at L ~ 70 (Figure 7), so
that GRACE is expected to perform better than GOCE
only for [ < 70. Although the EGM96 geoid’s maximum
degree is 360, its error covariance is only complete to
degree and order 70 and the remaining part is a diag-
onal variance. This variance is used for estimating the
error contribution from [ = 71 to 360.

We show two suites of experiments. The first set
consists of the model which includes the sea-surface to-
pography data weighted by the geoid error up to the
maximum degree L corresponding to the resolution of
EGM96 (L = 70), GRACE (L = 70), and GOCE
(L = 200). This set of experiments has been previ-
ously discussed by Schréter et al. [2001] — their Exper-
iment B. The “design” of the geoid error used in these
experiments is basically the same as in other studies
[e.g., Ganachaud et al., 1997; LeGrand, 2001] and ap-
pears to be generally accepted. In the current study we
label this set of experiments NOM (no omission error).

In a second set of experiments we take the extreme
point of view, that all of the geoid omission error has
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Figure 7. Cumulative geoid error as a function of max-
imum degree L for EGM96, GRACE and GOCE. The
curves are extended to L = 1000 with Kaula’s law.

a contribution to the long wavelengths. For each geoid
model, we include the omission error to degree L =
1000 and then remove the short scales by applying a
low-pass filter as described in Section 2.2. This set of
experiments is labeled FOM (full omission error).

For all experiments the altimeter measurement er-
rors Cp, are assumed to be 4 cm [Tapley et al., 1994]
and white on the model grid scale. Their diagonal er-
ror covariances have to be low-pass filtered to remove
uncorrelated errors on scales shorter than the geoid res-
olution. This is done in analogy to filtering the geoid
error covariance in Section 2.2 with a Butterworth fil-
ter. For a more detailed description see Schréter et al.
[2001]. In all cases, sea-surface topography error covari-
ances are calculated separately for each section. This
way small error correlations between sections that do
exist are neglected.

The sea-surface topography “data” is calculated from
the model solution with hydrographic data only de-
scribed in the previous section, so that as in Section 3,
yr = Mpxg. The new solutions with sea-surface to-
pography data will only be different from the solution
without sea-surface data in their posterior error esti-
mates.

Figure 8 shows all six sea-surface topography error
covariance matrices R¢, for the sample hydrographic
section of Section 3. Comparing the covariance matrices
from left to right, the different scales included in esti-
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mating these errors become apparent by the “sharper”
main diagonal of the error covariances of the GOCE
geoid model error. In the case when the geoid omis-
sion error is not included (top row) the GOCE geoid
model describes far more wavelengths than the other
geoid models and its error variance is larger than the
error variance of the GRACE geoid model. This situa-
tion is reversed when the geoid omission error is taken
into account (bottom row). Comparing the top figures
with the bottom figures, all variances have increased
(note the change in scale between the upper and lower
panels). In the case of GRACE and GOCE, the increase
is two orders of magnitude. Also the GRACE omission
error is much larger than that of GOCE. Therefore, in-
cluding the effects of the omission error on the long
wavelengths increases the GRACE variance by more
than the GOCE variance. Thus, not only do the scales
become smaller from left to right in the bottom row
of Figure 8, but also the size of the variances, that is,
the errors decrease. Here including the omission error
to degree L = 1000 makes the performance of GRACE
worse than that of GOCE; it does so even at the wave-
length A = 27 R/70 and in spite of the small per-degree-
errors of GRACE for the low degrees. Again, we point
out that the “leakage” of omission into commission er-
ror is due to a change of basis functions. Although
GRACE and GOCE have small error at low degrees,
the geoid error dominates the total error even at large
scales (> A = 2nR/L) when the omission error is in-
cluded.

In the discussion of the experiments it is useful to
remember that a priori constraints on the property
flux across some hydrographic sections, based on hydro-
graphic information, are imposed. For example, conser-
vation of mass dictates zero mass flux across the Wed-
dell Sea (WS) and a small net southward volume trans-
port across the transatlantic section at 12°S (SAVE2)
with small prior errors, whereas the transport through
Drake Passage or south of Australia (SR3) cannot be
fixed to precise values a priori. Therefore the posterior
errors in the solution from hydrography alone are large
for the latter type of sections and an order of magnitude
smaller for the former. For those section with very small
prior errors, noisy SSH data cannot add much new infor-
mation. Only across hydrographic sections with large
prior errors would we expect a considerable reduction
in the posterior errors due to inclusion of SSH data.

Figure 9 summarizes the experiments with sea-
surface topography data in terms of the percent (%)
error reduction relative to the base experiment without
sea-surface topography for the volume and temperature
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Figure 8. SSH error covariance matrices R¢ without omission error (top row, note the different scale for GRACE
and GOCE) and with omission error (bottom row) after filtering out all small scales according to the maximum
degree and order used for EGM96, GRACE, and GOCE, for the zonal sample section of Section 3.
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Figure 9. Error reduction relative to hydrography alone solution without omission error (NOM, left) and with
omission error (FOM, right). The upper numbers are the error reductions of mass transports (in %), the lower
numbers those of temperature transports.



14

transport. No values for the Weddell Sea section are
shown because the sea-surface topography data has no
visible impact due to small prior errors on the trans-
ports.

Schréter et al. [2001] discuss the experiments which
exclude the geoid omission error (NOM, left hand side of
Figure 9). They conclude that improvements of trans-
port estimates with sea-surface topography data rela-
tive to EGM96 is smaller than 10% (NOM, left hand
side of Figure 9, first column). Furthermore, they point
out that when using real sea-surface topography data
instead of values taken from a previous model run, the
inverse model yielded unrealistic results (not shown).
With the expected geoid error estimates from GRACE
and GOCE there is an average reduction of posterior
error estimates of 16% for sections with a priori con-
straints for transport estimates (i.e., SAVE2, SAVE4)
and 54% for sections without such prior assumptions
(i.e., SR3, DP, and SA). The additional effect of a higher
GOCE resolution is small compared to the results with
the GRACE geoid model. To Schréter et al. [2001], this
came as a surprise as the latter is only accurate on long
scales.

The right hand side of Figure 9 shows the error re-
duction (in percent) for the FOM-experiments relative
to the base experiment without sea-surface topography
data. Compared to the NOM-experiments, the FOM
posterior error improvements over the base experiment
are greatly reduced when the geoid omission error is
included in the error estimates of the sea-surface to-
pography data. This is expected because the prior sea-
surface topography errors are much larger for the FOM-
experiments. The greatest improvement possible with
GOCE is now of the order of 10%, about five times
smaller than in the case without geoid omission error.
EGM96 shows only a minimal improvement, and even
the on long scales accurate GRACE geoid model shows
little posterior transport error reduction.

The error reduction has a different dependence on
the resolution of the sea-surface topography for each
geoid model. The GRACE geoid model, due to its
low resolution, has a very large omission error. There-
fore the improvements obtained with this model are
not significantly greater than that achieved with the
much less accurate EGM96 geoid model. Because of
the high resolution of the GOCE geoid model — that
is, smaller errors at small scales — the omission error
of this model is smaller than that of the EGM96 and
GRACE. Therefore, in the FOM-experiments GOCE
provides larger improvement in the posterior transport
errors than those of the low resolution EGM96 and
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GRACE geoid models, although the FOM-GOCE geoid
model results in a smaller improvement when compared
to NOM-GOCE. With the FOM-GOCE geoid model
the best transport estimates can be obtained with an
improved accuracy of between 10-14% over the baseline
experiment without sea-surface topography.

In general, when the omission error to degree L =
1000 is included in the error estimates of the sea-surface
topography data, the possible posterior error reduction
for transport estimates is disappointing. However, we
do not claim that our approach is correct. We jux-
taposed the two different ways of estimating the geoid
errors because we wanted to demonstrate the effect that
the omission error might have on the long — supposedly
well-known — scales. How (or if) to properly account for
the geoid omission error, must be the topic of further
research.

5. Discussion and Conclusion

We have shown that defining a scale for spherical
harmonics in the context of oceanographic applications
has some difficulties — Legendre polynomials of high de-
gree contribute to low Fourier wavenumbers as a con-
sequence of changing the orthonormal basis. Usually
this contribution is small. Omitting high degrees ap-
pears to be appropriate when dealing with geoid models
for which the coefficients of the spherical harmonics de-
crease with increasing degree [ according to Kaula’s rule
of thumb (o [~2). However, the spectral coefficients of
the geoid model errors are very small for low degrees
and increase rapidly by several orders of magnitude for
high degrees. This is especially true for the errors of
the future geoid models GRACE and GOCE. Neglect-
ing the geoid omission error (which consists of the high
degrees) might lead to a serious underestimation of the
total geoid error on long scales.

This problem was demonstrated with the use of a
simple (idealized) barotropic box model and a realistic
box inverse model of the Southern Ocean. In both cases,
the basis functions of the model domains were not the
Fourier functions but the eigenfunctions of the geoid er-
ror covariance matrix evaluated along the section. The
original Gauss-Markov estimate of each model was im-
proved by including sea-surface topography data. How-
ever, in the idealized model, continual addition of in-
formation (in the form of more coefficients of higher
degree) eventually led to an increase of the a posteriori
estimated errors of the total volume transport through
the section. Therefore, contrary to naive intuition, sup-
plying more data led to a smaller gain of information
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by the model.

In the Southern Ocean box inverse model, the omis-
sion error of the EGM96 and the future gravity missions
GRACE and GOCE, calculated to degree 1000, was in-
cluded in the geoid error estimates. The improvement in
the error estimate by the inclusion of sea-surface topog-
raphy data over that of a hydrographic only model was
compared and contrasted with earlier results of Schriter
et al. [2001]. This earlier study uses the same Southern
Ocean box inverse model but completely neglected the
omission error, which appears to be common practice.
In both cases three different geoid error estimates are
used: EGM96, GRACE, and GOCE. The prior error
estimates for the sea-surface topography data are much
larger when the geoid omission error is included. It is
therefore not surprising that in this study the possible
improvements of transport estimates are much smaller
than those found by Schriter et al. [2001]. We also
found that the improvements from the on-low-degrees-
highly-accurate GRACE geoid model and the imprecise
EGM96 geoid model are almost negligible when the
omission error of both geoid models is taken into ac-
count. GRACE has a large omission error because its
low resolution contributes to errors on the long scales.
If one includes the geoid omission error to degree 1000,
only the high resolution GOCE geoid model, due to
its comparatively small omission error, will improve
oceanic transport estimates from box inverse models.
We have chosen to include the omission error to degree
1000 to emphasize the full effect the omission error has
on the long scales of the ocean model. A smaller omis-
sion error (e.g., to degree 300) would not change our
conclusion, namely that the geoid omission error needs
to be accounted for. However it would have made the
effects of the omission error less obvious.

Our results show that the impact of the geoid omis-
sion error on estimates of the ocean circulation is not
negligible. It is now necessary to find ways to deal with
this error. Clearly, taking into account the entire geoid
error to degree 1000 overestimates the actual error and
we have expressed our concerns about the validity of
this approach earlier in the paper. Since the dynamic
sea-surface topography is the difference between alti-
metric measurement and geoid undulation, the omis-
sion error of the altimetry will cancel out some of the
omission error of the geoid model. This is not in conflict
with equation (1) because omission errors are actually
unmodeled signals. Also, the model estimate of the sea-
surface topography, due to the finite resolution of the
model grid, has an omission error as well which needs
to be described in the cost function, thus in the error
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estimates. However, this cancellation of omission error
will not be complete because the spectral characteristics
of the three types of errors — inverse model, geoid, and
altimetry — are different. Furthermore, the omission
error of altimetry is most likely anisotropic as the reso-
lution of the altimetric measurement is very high along
track, where the omission error is probably negligible,
and considerably lower in the across track direction. For
the TOPEX/Poseidon satellite the track separation is
on the order of 100 km.

A possible remedy might be a filter that has simi-
lar spectral properties in all domains of interest. Jekeli
[1981] proposed a nearly Gaussian filter to improve the
Earth’s gravity field. This filter has been used by Wahr
et al. [1998] to investigate whether it will be possible
to detect hydrological and oceanic effects on the time
variability of the Earth’s gravity field. Since this filter
is nearly Gaussian, its spectral representation is also
nearly Gaussian for spherical harmonic coefficients. As
an approximation, its spectral response in Fourier space
can be taken as that of a truly Gaussian cap, making
the problem of “leakage” of high degree spherical har-
monics into low Fourier wavenumber functions smaller.
However, one major drawback of a Gaussian filter is its
high attenuation in the pass band. The omission error
of geoid models needs to be taken into account when
estimating the error of absolute sea-surface topography
data. How this should be done is subject to further
investigations.

Notation

C error covariance function
P error covariance matrix of independent vari-
ables
R model error covariance matrix
M  model operator
¢ (absolute) sea-surface topography
h sea-surface height relative to reference ellip-
soid
N geoid height, geoid undulation
P, Legendre polynomial
P, associated Legendre function
Y;m spherical harmonic function

AABW Antarctic Bottom Water
NADW North Atlantic Deep Water
IDW Indian Deep Water
PDW Pacific Deep Water
LCDW  Lower Circumpolar Deep Water
ACC Antarctic Circumpolar Current
WOCE World Ocean Circulation Experiment

Earth Gravitational Model 1996
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GRACE Gravity Recovery and Climate Experiment
GOCE Gravity field and steady-state Ocean Circu-
lation Explorer

Acknowledgments.

This work was completed while B.M.S. held a National
Research Council Research Associateship at NOAA /Pacific
Marine Environmental Laboratory (PMEL). PMEL contri-
bution 2311.

References

Balmino, G., F. Perosanz, R. Rummel, N. Sneeuw,
H. Siinkel, and P. Woodworth, European views on ded-
icated gravity field missions: GRACE and GOCE, An
Farth Sciences Division Consultation Document, ESA,

ESD-MAG-REP-CON-001, 1998.

Battrick, B. (Ed.), Gravity Field and Steady-State Ocean
Circulation Ezplorer, ESA SP-1233 (1) — The Four Can-
didate Earth Explorer Core Missions, ESA, c/o ESTEC,
Noordwijk, The Netherlands, 1999.

Bell, M. J., R. M. Forbes, and A. Hines, Assessment of
the FOAM global data assimilation system for real-time
ocean forecasting, J. Mar. Sys., 25, 1-22, 2000.

Coachman, L., and K. Aagaard, Transport through Bering
Strait: Annual and interannual variability, J. Geophys.
Res., 93, 15,535-15,539, 1988.

Cresswell, G. R., A. Frische, J. Peterson, and D. Quad-
fasel, Circulation in the Timor Sea, J. Geophys. Res.,
98, 14,379-14,389, 1993.

Dickson, R. R., and J. Brown, The production of North
Atlantic Deep Water: Sources, rates and pathways, J.
Geophys. Res., 99, 12,319-12,341, 1994.

Egbert, G., Tidal data inversion: Interpolation and infer-
ence, Prog. Oceanogr., 40, 53-8, 1997.

Fahrbach, E.,; G. Rohardt, M. Schroder, and V. Strass,
Transport and structure of the Weddell Gyre, Ann. Geo-
phys., 12, 840-855, 1994.

Fu, L.-L., Mass, Heat and Freshwater fluxes in the South
Indian Ocean, J. Phys. Oceanogr., 16, 1683-1693, 1986.

Fukumori, 1., Assimilation of TOPEX sea level measure-
ments with a reduced-gravity, shallow water model of the
tropical Pacific Ocean, J. Geophys. Res., 100, 25,027—
25,039, 1995.

Ganachaud, A., and C. Wunsch, Improved estimates of
global ocean circulation, heat transport and mixing from
hydrographic data, Nature, 408, 453—-457, 2000.

Ganachaud, A., C. Wunsch, M.-C. Kim, and B. Tapley,
Combination of TOPEX/POSEIDON data with a hydro-
graphic inversion for determination of the oceanic general
circulation and its relation to geoid accuracy, Geophys. J.
Intern., 128, 708-722, 1997.

Gordon, A. L., and B. A. Huber, Southern Ocean winter
Mixed Layer, J. Geophys. Res., 95, 11,655—11,672, 1990.

Hernandez, F., and P. Schaeffer, Altimetric mean sea

surfaces and gravity anomaly maps inter-comparisons,
AVISO technical report AVI-NT-011-5242-CLS, CLS,
Toulouse, France, 2000.

Losch et al.

Hogg, N. G., P. Biscaye, W. Gardner, and W. J. Schmitz,
Jr., On the transport and modification of Antarctic Bot-
tom Water in the Vema Channel, J. Mar. Res., 40, 231—
263, 1982.

Jackett, D., and T. J. McDougall, A neutral density variable
for the worlds oceans, J. Phys. Oceanogr., 27, 237-263,
1997.

Jekeli, C., Alternative methods to smooth the Earth’s grav-
ity field, Tech. Rep. 327, Department of Geodetic Science
and Surveying, Ohio State University, 1981.

Kaula, W. M., Theory of Satellite Geodesy, Blaisdell Pub-
lishing Company, 1966.

Kulhdnek, O., Introduction to Digital Filtering in
Geophysics, Elsevier Scientific Publishing Company,
Amsterdam—Oxford—New York, 1976.

Le Provost, C., F. Lyard, J. Molines, M. Genco, and F. Ra-
billoud, A hydrodynamic ocean tide model improved by
assimilating a satellite altimeter-derived data set, J. Geo-
phys. Res., 103, 5513-5529, 1998.

LeGrand, P., Impact of the Gravity Field and Steady-State
Ocean Circulation Explorer (GOCE) mission on ocean
circulation estimates: Volume fluxes in the climatologi-
cal inverse model of the Atlantic, J. Geophys. Res., 106,
19,597-19,610, 2001.

Lemoine, F. G., et al., The development of the NASA GSFC
and NIMA joint geopotential model, in Gravity, geoid and
marine geodesy, edited by J. Segawa, H. Fujimoto, and
S. Okubo, vol. 117, pp. 461-469, International Associa-
tion of Geodesy Symposia, Springer, New York, 1997.

Macdonald, A. M., The global ocean circulation: A hydro-
graphic estimate and regional analysis, Prog. Oceanogr.,
41, 281-382, 1998a.

Macdonald, A. M., The global ocean circulation: a hydro-
graphic estimate and regional analysis, Prog. Oceanogr.,
41, 281-382, 1998b.

Malanotte-Rizzoli, P. (Ed.), Modern Approaches to Data
Assimilation in Ocean Modelling, Elsevier, Amsterdam,
1996, 455 pp.

McCartney, M. S., Crossing of the Equator by the Deep
Western Boundary Current in the western Atlantic
Ocean, J. Phys. Oceanogr., 23, 1953-1974, 1993.

Meyers, G., R. J. Bailey, and A. P. Worby, Geostrophic
transport of Indonesian throughflow, Deep-Sea Res., 42,
1163-1174, 1995.

Pedlosky, J., Geophysical Fluid Dynamics, Springer, New
York, 1987, 710 pp.

Peterson, R., The boundary currents in the western Argen-
tine basin, Deep-Sea Res., 39, 623-644, 1992.

Peterson, R., and L. Stramma, Upper-level circulation in the
South Atlantic Ocean, Prog. Oceanogr., 26, 1-73, 1991.

Rapp, R., Geopotential coefficient behaviour to high degree
and geoid information by wavelength, Tech. Rep. 180,
Ohio State University, Department of Geodetic Science,
Columbus, Ohio, 1972.

Rintoul, S. R., South Atlantic interbasin exchange, J. Geo-
phys. Res., 96, 2675-2592, 1991.



Box Inverse Models, Altimetry and the Geoid

Roemmich, D.; and T. McCallister, Large scale circulation
of the North Pacific Ocean, Prog. Oceanogr., 22, 171-204,
1989.

Saunders, P. M., and B. R. King, Oceanic Fluxes on the
WOCE A11 Section, J. Phys. Oceanogr., 25, 1942-1957,
1995.

Schréter, J., M. Losch, and B. M. Sloyan, Impact of the
Gravity Field and Steady-State Ocean Circulation Ex-
plorer (GOCE) mission on ocean circulation estimates:
Volume and heat transports across hydrographic sections,
J. Geophys. Res., 2001, in press.

Sloyan, B. M., and S. R. Rintoul, Estimates of area—
averaged diapycnal fluxes from basin—scale budgets, J.
Phys. Oceanogr., pp. 2320-2341, 2000.

Sloyan, B. M., and S. R. Rintoul, Circulation, renewal and
modification of Antarctic mode and intermediate water,
J. Phys. Oceanogr., 31, 1005-1030, 2001a.

Sloyan, B. M., and S. R. Rintoul, The Southern Ocean
limb of the global deep overturning circulation, J. Phys.
Oceanogr., 31, 143-173, 2001b.

Sneeuw, N.; and R. Bun, Global spherical harmonic compu-
tation by two-dimensional fourier methods, J. Geod., 70,
224-232, 1996.

Speer, K. G., and W. Zenk, The flow of Antarctic Bot-
tom Water into the Brazil Basin, J. Phys. Oceanogr., 23,
2667-2682, 1993.

Stammer, D.; C. Wunsch, R. Giering, Q. K. Zhang, and
J. Marotzke, The global ocean circulation estimated from
TOPEX/POSEIDON altimetry and a general circulation
model, Report 49, Center of Global Change Science, Mas-
sachusetts Institute of Technology, 1997.

Tapley, B. D., The gravity recovery and climate experiment
(GRACE), Suppl. Trans. Am. Geophys. Union (EOS),
78, 163, 1997.

Tapley, B. D., et al., Precision orbit determination for
TOPEX/POSEIDON, J. Geophys. Res., 99, 24,383-
24,683, 1994.

Treguer, P., D. M. Nelson, A. J. Van Bennekorn, D. J. De-
Master, A. Leynaert, and B. Queguiner, The Silica bal-
ance in the world ocean: A reestimate, Science, 268,
375-379, 1995.

Wahr, J., M. Molenaar, and F. Bryan, Time variability of
the Earth’s gravity field: Hydrological and oceanic effects
and their possible detection using GRACE, J. Geophys.
Res., 103, 30,205-30,299, 1998.

Wenzel, M., J. Schréter, and D. Olbers, The annual cycle

17

of the global ocean circulation as determined by 4D VAR
data assimilation, Prog. Oceanogr., 48, 73-119, 2001.
Whitworth, T., III., W. D. Nowlin, Jr., R. D. Pillsbury, and
R. F. Weiss, Observations of the Antarctic Circumpolar
Current and deep boundary current in the Southwest At-
lantic, J. Geophys. Res., 96, 15,105-15,118, 1991.
Whitworth, T., III., B. A. Warren, W. D. Nowlin, Jr.,
R. D. Pillsbury, and M. I. Moore, On the deep western-
boundary current in the Southwest Pacific Basin, Prog.

Oceanogr., 1997, submitted.
Wijffels, S. E.; R. W. Schmitt, H. L. Bryden, and A. Stige-

brandt, Transport of freshwater by the oceans, J. Phys.

Oceanogr., 22, 155-162, 1992.

Wunsch, C.,; The North Atlantic general circulation west of
50° determined by inverse methods, Rev. Geophys. Space
Phys., 16, 583-620, 1978.

Wunsch, C.; The Ocean Circulation Inverse Problem, Cam-
bridge University Press, Cambridge, New York, Mel-
bourne, 1996.

Wunsch, C., and E. M. Gaposchkin, On using satellite
altimetry to determine the gerneral circulation of the
oceans with application to geoid improvement, Rev. Geo-
phys. Space Phys., 18, 725-745, 1980.

Wunsch, C., and D. Stammer, Satellite altimetry, the ma-
rine geoid, and the oceanic general circulation, Ann. Rev.
Earth and Planet. Sci., 26, 219-253, 1998.

Martin Losch, Department of Earth, Atmospheric,
and Planetary Sciences, Massachusetts Institute of
Technology, Massachusetts Avenue 77, Bldg. 54-1523,
Cambridge, MA, 02139, USA

Bernadette Sloyan, Department of Physical Oceanog-
raphy, MS 21, Woods Hole Oceanographic Institution,
Woods Hole, MA 02543, USA

Jens Schroter, Alfred-Wegener-Institute for Polar-
and Marine Research, Postfach 12 0161, 27515 Bremer-
haven, Germany

Nico Sneeuw,
Physikalische  Geodaésie,
Miinchen, Germany

Astronomische und
80290

Institut fiir
Arcisstrafle 21,

This preprint was prepared with AGU’s IATEX macros v5.01,
with the extension package ‘AGUT*’ by P. W. Daly, version 1.6b
from 1999/08,/19.



	Introduction
	Sea-Surface Topography Data
	Data and Model Errors
	Concept of Wavelength

	A Simple Section Model
	Model without Sea-Surface Topography Data
	Model with Sea-Surface Topography Data
	Results and Discussion

	Box Inverse Model of the Southern Ocean
	Hydrographic data, model domain and a priori constraints
	Hydrographic Estimate of the Mean Circulation
	Experiments with Sea-Surface Height Data

	Discussion and Conclusion

