Workshop on Terrestrial Data Assimilation, Bonn, 19. – 21.9.2016

Building Ensemble-Based Data Assimilation Systems for High-Dimensional Models with the Parallel Data Assimilation Framework PDAF

Lars Nerger, Paul Kirchgessner, Wolfgang Hiller Alfred Wegener Institute for Polar and Marine Research Bremerhaven, Germany

Overview

How to simplify to apply data assimilation?

simplify building a data assimilation application

Structure data assimilation application into

- > generic part
- case-specific part (model and observations)

Provide

- software for generic part (e.g. filter methods, incl. methods like localization & inflation)
- code templates and documentation for case-specific part

Data Assimilation in Ocean and Ocean-Biogeochemistry

Example: Forecast model for North and Baltic Seas

Focus on ensemble-based assimilation

- Ensemble Kalman filters
- Particle filters

Losa, S.N. et al. J. Marine Syst. 105 (2012) 152-162

DAF Bata Assimilation Framework

PDAF - Parallel Data Assimilation Framework

- a program library for data assimilation
- provide support for ensemble forecasts
- provide fully-implemented filter and smoother algorithms (EnKF, LETKF, LSEIK, LESTKF ... easy to add more)
- easily useable with (probably) any numerical model (applied with NEMO, MITgcm, FESOM, HBM, TerrSysMP, ...)
- makes good use of supercomputers (Fortran, MPI & OpenMP)
- allows for separate development of model and assimilation algorithms
- first public release in 2004; continued development

Open source: Code and documentation available at

http://pdaf.awi.de

L. Nerger, W. Hiller, Computers & Geosciences 55 (2013) 110-118

Framework Considerations

3 components of an assimilation system **Observations** Model mesh data/coordinates initialization obs. vector time integration obs. operator post processing obs. error state state observations time **DA** method initialization analysis step ensemble transformation

Nerger, L., Hiller, W. Software for Ensemble-based DA Systems – Implementation and Scalability. Computers and Geosciences 55 (2013) 110-118

Ensemble-based Kalman Filter

Offline coupling – separate programs

+ Simple to implement **Assimilation** Model - Inefficient: program Start file reading/writing model restarts Initialize Model generate mesh Start Initialize fields read ensemble files Do i=1, nsteps equeric qeneric analysis step Time stepper Model error consider BC write model Consider forcing restart files Stop Post-processing Stop

For each ensemble state

- Initialize from restart files
- Integrate
- Write restart files

- Read restart files (ensemble)
- Compute analysis step
- Write new restart files

Ensemble filter analysis step

Filter analysis implementation

Operate on state vectors

- Filter doesn't know about 'fields'
- Computationally most efficient
- Call-back routines for
 - Transfer between model fields and state vector
 - Observation-related operations
 - Localization operations

For forecast

• Transfer data from state vector to model fields

Logical separation of assimilation system PDAP

Explicit interface

+---> Indirect exchange (module/common)

Parallel Data

Assimilation Framework

2-level Parallelism

- 1. Multiple concurrent model tasks
- 2. Each model task can be parallelized
- Analysis step is also parallelized
- Configured by "MPI Communicators"

2 compartment system – strongly coupled DA

Extending a Model for Data Assimilation

Framework solution with generic filter implementation

PDAF Similation Framework

- Defined calls to PDAF routines and to call-back routines
- Model und observation specific operations: elementary subroutines implemented in model context
- User-supplied call-back routines for elementary operations:
 - transfers between model fields and ensemble of state vectors
 - observation-related operations
 - filter pre/post-step to analyze ensemble
- User supplied routines can be implemented as routines of the model (e.g. share common blocks or modules)

Features of online program

- minimal changes to model code when combining model with filter algorithm
- model not required to be a subroutine
- no change to model numerics!
- model-sided control of assimilation program (user-supplied routines in model context)
- observation handling in model-context
- filter method encapsulated in subroutine
- complete parallelism in model, filter, and ensemble integrations

Parallel Performance

Global ocean model

FESOM (Finite Element Sea-ice Ocean model, Danilov et al. 2004)

• Uses unstructured triangular grid

Global configuration

- > 1.3° resolution, 40 levels
- horizontal refinement at equator
- state vector size 10⁷

Setup used for assimilation of sea surface height data

Parallel Performance

Use between 64 and 4096 processor cores of SGI Altix ICE cluster (HLRN-II)

94-99% of computing time in model integrations

Speedup: Increase number of processes for each model task, fixed ensemble size

- factor 6 for 8x processes/model task
- one reason: time stepping solver needs more iterations

Scalability: Increase ensemble size, fixed number of processes per model task

- increase by ~7% from 512 to 4096 processes (8x ensemble size)
- one reason: more communication on the network

Very big test case

- Simulate a "model"
- Choose an ensemble
 - state vector per processor: 10⁷
 - observations per processor: 2.10⁵
 - Ensemble size: 25
 - 2GB memory per processor
- Apply analysis step for different processor numbers
 - 12 120 1200 12000

- Timing of global SEIK analysis step 3.9 time for analysis step [s] 7. 2. 2. 2. 2. 8. 8. 2. 8. ⊷N=50 -N=25 3.3 3.2 120 12000 12 1200 State dimension: 1.2e11 Observation dimension: 2.4e9
- Very small increase in analysis time (~1%)
- Didn't try to run a real ensemble of largest state size (no model yet)

Summary

- Simplify building data assimilation systems
- Efficient online coupling with minimal changes to model code
- Generic model interface
 and case-specific call-back routines
- Parallelization allows for ensemble forecasts
- Data assimilation framework PDAF (http://pdaf.awi.de) supports high-dimensional models
- Coding you own Ensemble Kalman filter or Particle Filter
 usually not necessary

Thank you !

