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Application Aspects of Ensemble Methods L. Nerger 

Outline 

 

!  Instability of serial observation processing 
filter in case of localization 

! Adaptive localization following the degrees 
of freedom given by the ensemble 
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Localization 
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Localization: Why and how?   

!  Combination of observations and  
model state based on ensemble estimates  
of error covariance matrices 

!  Finite ensemble size leads to  
significant sampling errors  

•  errors in variance estimates 

!  usually too small 

•  errors in correlation estimates 
!  wrong size if correlation exists 
!  spurious correlations when true correlation is zero  

!  Assume that long-distance correlations in reality are small 

!  damp or remove estimated long-range correlations 
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Covariance localization 

Covariance localization 
!  Applied to forecast covariance matrix 

!  Element-wise product with correlation matrix C of compact support 
to reduce covariances 

 
 

!  Only possible if forecast covariance matrix is computed (not in 
ETKF or SEIK) 

E.g.: Houtekamer & Mitchell (1998, 2001), Whitaker & Hamill (2002) 
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Domain & Observation localization 
Domain localization (local analysis) 
!  Perform local filter analysis with 

observations from surrounding domain 

Observation localization (Hunt et al. 2007) 

!  Use non-unit weight for observations 

!  reduce weight for remote observations by 
increasing variance estimate 

 

 

!  Localization effect similar to covariance 
localization  

!  equivalence to covariance localization only 
shown for single observation (Nerger et al. 
QJRMS, 2012) 

S: Analysis region 
D: Corresponding data region 

Domain Localization 
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E.g.: Brankart et al. (2003), Evensen (2003), Ott et al. (2004), 
Hunt et al. (2007) 
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Instability of serial observation processing  
filters in case of localization 

(EnSRF, EAKF) 
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Serial observation processing   

Synchronous assimilation 

ETKF, SEIK, ESTKF, (EnKF) 

•  Assimilation all observation at a 
given time at once 

•  Usually using ensemble-space 
transformations 

•  Possible for arbitrary observation 
error covar. matrices  

Serial observation processing 

EnSRF, EAKF 

•  Perform a loop assimilating each 
single observation 

•  Efficient: Avoids matrix-matrix 
operations 

•  Requires diagonal observation 
error covar. matrix 

Use 

observation localization 

Use 

covariance localization 

(EnSRF: Whitaker & Hamill, 2002; EAKF: Anderson, 2001) 
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EnSRF (Whitaker & Hamill 2002) 
 

For obs. error=1.0: 
•  EnSRF and LESTKF almost identical 

Test with Lorenz9[568] Model 
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Test with Lorenz9[568] Model 
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RMS error over number of observations 

How does the RMS error develop during the loop over all observations?  

At first analysis step: 
•  EnSRF: Compute RMS errors at each iteration 
•  LESTKF: Do 40 experiments with increasing number of obs. 
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Instability of serial obs. processing with localization 

More detailed view: 

•  State estimate for different numbers of observations 
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•  State estimate for different numbers of observations 
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Inconsistent matrix updates 

The Kalman filter updates the covariance matrix according to 

 

With the Kalman gain 

 

this simplifies to  

 

(1) and (3) yield same result only with gain (2)! 

Pa = (I�KH)Pf (I�KH)T +KRKT

K = PfHT
�
HPfHT +R

��1

Pa = (I�KH)Pf

Not fulfilled with localization:  

 
 

!  Update of P is inconsistent in localized EnSRF (already noted by 
Whitaker & Hamill (2002), but never further examined)  
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Inconsistent matrix updates (2) 

The inconsistency also occurs in LETKF, LESTKF, LSEIK ... 

•  But here: update is only done once followed by ensemble forecast 

•  LETKF with serial observation processing also shows instability 
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Simple Example 

x

f =

✓
1
1

◆
; P

f =

✓
1 0.8
0.8 1

◆

y =

✓
0
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◆
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◆
; H =

✓
0 1
1 0

◆

C =

✓
1 0.25

0.25 1

◆

State estimate & covariance matrix 

Observation 

Localization matrix 
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Simple Example 

Bulk update (all observations at once) 

Serial update 
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Effect of observation reordering 

•  Before: Assimilated observation from grid point 1 to 40 with 
increasing index 

•  What is the effect when we re-order the observations? 
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(Whitaker et al. 2008) 
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Maximum-distance 
reordering 

•  practically no effect on 
final results 

Observation reordering 
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Full experiment over 50000 analysis steps, N=10 

EnSRF with local  
observation sorting 

•  improves stability 
•  But not minimum error 

L. Nerger, Mon. Wea. Rev. 143 (2015) 1554-1567 
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Optimal Localization Radius 
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Domain & Observation localization 

Localization radius can depend on 

!  Ensemble size 

!  Model dynamics & resolution 

!  Field 

 

Optimal localization radius 

!  Typically determined experimentally 
(very costly) 

!  Some authors proposed adaptive methods 
(e.g. Anderson, Bishop/Hodyss, Harlim)  

"  still with tunable parameters 
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Relation between ensemble size and localization radius 

!  Test runs with Lorenz-96 model 

!  Vary ensemble size and localization radius 

!  White: Filter divergence 
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Optimal localization radius 

!  Optimal localization radius as function of ensemble size 

!  Linear dependence for domain and observation localization 

!  Radius larger for OL than DL 
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Relate domain and observation localizations 

!  Define:  
 Effective observation dimension dW = sum of observation weights 

 

!  Minimum RMS errors when effective obs. dimension slightly larger 
than ensemble size  

!  When dW=N, errors are almost as small 
(optimal use of degrees of freedom from ensemble?) 

P. Kirchgessner et al. Mon. Wea. Rev. 142 (2014) 2165-2175 
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2D Shallow Water Model 

!  Shallow water model simulating a double gyre in a box 
!  Assimilate sea surface height at each grid point 

 

!  For DL: steps due to addition of observations 

!  dW optimal if about or slightly lower than ensemble size 

!  relation holds for different weight functions 

P. Kirchgessner et al. Mon. Wea. Rev. 142 (2014) 2165-2175 
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PDAF: A tool for data assimilation 

PDAF - Parallel Data Assimilation Framework  
"  a software to provide assimilation methods 
"  an environment for ensemble assimilation 
"  for testing algorithms and real applications 
"  useable with virtually any numerical model 
"  also:  

•  apply identical methods to different models 
•  test influence of different observations 

"  makes good use of supercomputers  
(Fortran and MPI; tested on up to 17000 processors) 

"  first public release in 2004; continued development 

More information and source code available at 

http://pdaf.awi.de 

L. Nerger & W. Hiller, Computers & Geosciences 55 (2013) 110-118 
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Extending a Model for Data Assimilation 

Aaaaaaaa 

Aaaaaaaa 

aaaaaaaaa 
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plus: 
Possible 
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2D Shallow Water Model 

!  Sparser observations 
!  1/4 and 1/9 of observations 

!  Still linear dependence between effective obs. dimension and N  

!  Effective obs. dimension has to be scaled by obs. density 

P. Kirchgessner et al. Mon. Wea. Rev. 142 (2014) 2165-2175 

normalized by the observational density. This espe-
cially becomes an issue, if the spatial distribution of the
observations is not regular. This case will be examined
in future studies.
Figure 5 also allows us to estimate the optimal local-

ization radius as a function of the ensemble size. The
relationship is approximately

lopt ’ 8

ffiffiffiffiffi
N

40

r
dx , (11)

where dx denotes the grid spacing. At this localization
radius, the effective observation dimension is approxi-
mately equal to the ensemble size. This relation should
hold in general for dense observations that are distrib-
uted in two dimensions and a regular orthogonal model
grid.

6. Localization in a global ocean model

The experiments discussed above indicate that an op-
timal localization radius is obtained when the effective
observation dimension is approximately equal to the
ensemble size. To assess whether this localization can be
applied in a realistic large-scalemodel, we apply it here in
twin experiments using a global configuration of the

finite-element sea ice ocean model (FESOM; Danilov
et al. 2004; Wang et al. 2008; Timmermann et al. 2009).
The twin experiments are similar to an application of
FESOM by Janji!c et al. (2012) where real satellite dy-
namic ocean topography data were assimilated.

a. Experimental setup

FESOM is an ocean general circulation model that
utilizes finite elements to solve the hydrostatic ocean
primitive equations. Unstructured triangular meshes are
used, which allow for a varying resolution of the mesh.
The configuration used here has a horizontal resolution
of about 1.38 with refinement in the equatorial region.
The model uses 40 vertical levels.
For the data assimilation, FESOMwas coupled to the

assimilation frameworkPDAF (Nerger et al. 2005;Nerger
and Hiller 2013; http://pdaf.awi.de) into a single program.
The state vector includes the sea surface height (SSH)
and the three-dimensional fields of temperature, salinity,
and the velocity components. The state vector has a size
of about 10 million. For the twin experiments, the model
is initialized from a spinup run and a trajectory over 1 yr is
computed. This trajectory contains the model fields at
each tenth day and represents the ‘‘truth’’ for the assim-
ilation experiments. An ensemble of 32 members is used,
which is generated by second-order exact sampling from
the variability of the true trajectory (see Pham 2001). The
initial state estimate is given by the mean of the true tra-
jectory. Pseudo observations of the SSH at each surface
grid point are generated by adding uncorrelated random
Gaussian noise with a standard deviation of 5 cm to the

FIG. 6. The optimal and divergent observation dimensions for (top)
DL and (bottom) OL for the shallow-water model.

FIG. 7. The optimal effective observation dimension with an
observation frequency of 1 (blue), 2 (green), and 3 (red). For each
observation frequency, the optimal value depends linearly on the
ensemble size. The smaller the observation density, the smaller is the
slope of the function.
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Large scale data assimilation: Global ocean model 

•  Finite-element sea-ice ocean 
model (FESOM, Danilov et al. ) 

•  Global configuration  
(~1.3 degree resolution with 
refinement at equator) 

•  State vector size: 107 

•  Scales well up to 256 processor 
cores 

Sea surface elevation 

•  Assimilate synthetic sea surface height (SSH) data  
for ocean state estimation 

•  Costly due to large model size 
(using up to 2048 processor cores) 
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Model mesh at the equator 

Drake passage 
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Adaptive localization radius in global ocean model 

•  Localization radius follows mesh resolution 

•  Fixed 1000km radius leads to increasing errors in 2nd half of year 

•  Lower RMS error in SSH than fixed 500km radius 

truemodel state. The analysis step is computed after each
forecast phase of 10 days with an observation vector
containing about 68 000 observations. Overall, the ex-
periments were conducted over a period of 360 days.
The experiments use the ETKF with OL. Two ex-

periments with fixed localization radii of l5 500 km and
l5 1000 km are performed. A third experiment uses the
localization radius determined such that the effective
observation dimension is equal to the ensemble size.
The inflation factor was set to r 5 1.1.

b. Assimilation performance

Figure 8 shows of the RMS errors of the sea surface
height over time relative to an experiment without data
assimilation for the three experiments. For the fixed
radius of l 5 1000 km, the relative RMS error is quickly
reduced below 0.5, but increases again after day 150. The
relative RMS errors for the fixed radius of 500 km and
the experiment with the localization radius based on the
effective observation dimension are similar and the er-
rors generally decrease over time.However, the variable
localization results in smaller RMS errors than the fixed
localization radius. In the second half of the experiment,
the RMS errors obtained with the variable localization
radius are even smaller than those for the fixed locali-
zation radius of 1000 km.
Overall, the experiments show that the effective ob-

servation dimension can be used to specify a spatially
varying localization radius that yields estimates of similar
quality than those produced by a fixed radius. However,
while the fixed radius has to be tuned with several ex-
periments, this is not required for the variable radius.

7. Conclusions

In this study, the optimal value for the localization
radius in domain localization and observation localiza-
tion was examined using numerical experiments. Using
the Lorenz-96model and a nonlinear shallow-watermodel
allowed for the assessment the localization behavior with
two simple nonlinear models with different dynamics.
The main focus was on dense observations with uniform
observational error, which are used in real assimilation
applications (e.g., as gridded satellite observations of the
ocean surface temperature or sea surface height). For this
type of observations, it was possible to assess the relation
of the localization radius to the ensemble size over the
whole model domain.
The localization radius is optimal if the estimation errors

are minimal. It depends on the ensemble size and varies
for different weight functions. Typically, the optimal
radius is determined by experimentation. Yet, one can
define an effective observation dimension given as the
sum of the observation weights involved in a local anal-
ysis. The optimal localization radius was obtained, if
the effective observation dimensionwas about equal to the
size of the ensemble. Moreover, the optimal value of the
effective observation dimension is constant for different
weighting functions. This situation can be explained by
the fact that the degrees of freedom for the analysis are
determined by the rank of the ensemble. The degrees of
freedom are optimally utilized if the ensemble size
equals the effective observation dimension. In the case
of constant observation errors, the degrees of freedom
are distributed over different numbers of observations
for different weight functions. If the observation network
is less dense, other effects, like sampling error for distant
observations, become more important so that this re-
lation is weaker. For multivariate data assimilation in the
shallow-water model, the optimal effective observation
dimension was the same for all three model fields. If the
observation density is reduced, the linear relation in the
shallow-water model was still conserved, but the slope
was different. For both models, the optimal value of the
effective observation dimension was roughly equal to the
ensemble size if a field was completely observed. For
dense observations that are distributed in two dimensions,
a simple relation between the ensemble size and the op-
timal localization radius was deduced from the experi-
ments. This relation can be used to define an adaptive
localization radius that ensures that the effective obser-
vation dimension is equal to the number of ensemble
members. The relation was tested using a global ocean
model where synthetic observations of the sea surface
height were assimilated. With the adaptive localization,
without tuning, a similar error reduction as using an

FIG. 8. RMS errors for the assimilation experiment using FESOM
relative to the errors from an experiment without assimilation.
Shown are the relative RMS errors for a fixed localization radius of
1000km (black), 500km (red), and the variable localization derived
from the effective observation dimension (blue).
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Discussion on localization radius 

!  Findings: 

!  Effective observation dimension dW relates to degrees of 
freedom 

!  dW close to ensemble size a good choice 

!  No dependence on model dynamics 

!  Limitations 

!  Observations at each grid point 
(optimal dW smaller for incomplete observations) 

!  Uniform observation error 

!  Ignoring information content of observations 
(e.g. Migliorini, QJRMS 2013) 

P. Kirchgessner et al. Mon. Wea. Rev. 142 (2014) 2165-2175 
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Weight Functions 
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Weight function 

•  Why 5th-order Gaspari/Cohn polynomial? 

•  Covariance function not required for OL 

•  Furrer/Bengtsson (2007) indicate best 
sampling error reduction in Pf for exponential 
covariances 

•  For Lorenz96, some other functions give 
similar errors – but not significantly lower ones 
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Summary 

!  Serial observation processing filters can be unstable when 
used with localization 

!  Update of state error covariance matrix P inconsistent when 
localization is applied (all filters except classical EnKF) 

!  Estimation of adaptive localization radius dependent on 
ensemble size possible for “dense” observations 

•  luckily a usual situation for ocean models assimilating 
satellite data 

Thank you! 


