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The kinetic energy and enstrophy spectrum

Transition to spectral wavenumber space by application of
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The spectral budget equations for kinetic energy and enstrophy

Nonlinear spectral interaction

- Nonlinear spectral fluxes

The nonlinear interaction terms only redistribute

Synoptic-planetary scale interaction

Decomposition into stationary ¢ and transient ¢ = (" — ("
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but allows to study processes relevant
to large-scale turgurence F., H, = const. - turbulent inertial range energy and enstrophy
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n - total wavenumber

m - zonal wavenumber

Meridionalization a - radius of Earth

European blocking highs

NAO phase shifts
Extreme weather?

The kinetic energy spectrum
Seasonal cycle - Climatology over High Ice period

Summary & Outlook

Mesoscale shallowing Seasonal changes low minus high ice conditions

: : : : : » In general there is a good agreement between
Study of synoptic-planetary wave interactions is crucial

YV
Research questions

- Can the analysis of atmospheric spectra and nonlinear
spectral fluxes deliver new insights into the interactions
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» Future task: Study of full energy budget and cycle
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Changes with height larger than changes with season
Stationary part dominates up to n=7-8

Largest differences in February
ERA-I & AFES agree especially on changes
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