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Estimating a Mean Ocean State from Hydrography and

Sea-Surface Height Data with a Non-linear Inverse
Section Model: Twin Experiments with a Synthetic

Data Set

Martin Losch1,2, René Redler3,4, and Jens Schröter1

Abstract. The recovery of the oceanic flow field from in situ data is one
of the oldest problems of modern oceanography. In this study, a stationary,
non-linear inverse model is used to estimate a mean geostrophic flow field from
hydrographic data along a hydrographic section. The model is augmented
to improve these estimates with measurements of the absolute sea-surface
height by satellite altimetry. Measurements of the absolute sea-surface
height include estimates of an equipotential surface, the geoid. Compared
to oceanographic measurements, the geoid is known only to low accuracy
and spatial resolution, which restricts the use of sea-surface height data
to applications of large scale phenomena of the circulation. Dedicated
satellite missions that are designed for high precision, high resolution geoid
models are planned and/or in preparation. Our study, which relies on twin
experiments, assesses the important contribution of improved geoid models
to estimating the mean flow field along a hydrographic section. When the
sea-surface height data are weighted according to the error estimates of the
future highly accurate geoid models GRACE (Gravity Recovery And Climate
Experiment) and GOCE (Gravity field and steady-state Ocean Circulation
Explorer) integrated fluxes of mass and temperature can be determined with
an accuracy that is improved over the case with no sea-surface height data
by up to 55%. With the error estimates of the currently best geoid model
EGM96, the reduction of the estimated flux errors does not exceed 18%.

1. Introduction

Estimating the mean ocean circulation is one of the
major tasks of physical oceanography. Wunsch [1978]
and many later studies [e.g. Rintoul , 1991; Macdonald ,
1998; Sloyan and Rintoul , 2001] provide one approach
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to determine the mean steady-state circulation from hy-
drographic section data. The method of these studies
uses in-situ measurements along hydrographic sections
and employs thermal wind and inverse techniques to ob-
tain an estimate of the large scale, low frequency flow
through those sections. In this approach, the vertical
shear of velocity is determined directly from the in-situ
measurements and geostrophy, that is the balance of
Coriolis force and horizontal pressure gradient force.
Consequently possible measurement errors or system-
atic errors that arise when one tries to estimate a mean
state from quasi-synoptic data are interpreted as im-
plicit model errors. All errors are formally assigned to
the unknown additive reference velocity and to mass
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imbalances [Ganachaud and Wunsch, 2000].
The natural extension to that approach is to treat

temperature, salinity, and passive tracers as control pa-
rameters that are to be fitted to the in-situ measure-
ments. It is then possible to allow certain deviations
(or errors) of these variables from the data a priori.
One could then estimate mean tracer fields from the
in-situ data and from physical assumptions, to which
prior errors can be attributed. On the basis of such
mean tracer fields, the estimate of the mean velocity
field, derived transport estimates, and their estimated
errors are more reliable. For not only do they include
the uncertainty of the reference velocity but also the
errors of the mean tracer field estimates. A model that
includes this extension has been used by Nechaev and
Yaremchuk [1995], Yaremchuk et al. [1998], and Yarem-
chuk et al. [2001] to estimate a mean state of the ocean
along a single section from the hydrographic data of
multiple repeat cruises.

To our knowledge the model of Nechaev and Yarem-
chuk [1995] is the first and so far only inverse section
model that estimates new tracer fields along with the
velocity field. A few studies employ three dimensional
models in which density is a control parameter [e.g.,
LeGrand , 2001] to estimate a mean state from hydro-
graphic data. Zhang and Hogg [1996] and de las Heras
and Schlitzer [1999] assume in their inverse models that
the thermal wind balance is not exact, which introduces
an explicit description of the model error. However,
none of these studies are devoted to analyzing hydro-
graphic data along an isolated section. The same holds
true for the numerous assimilation studies, which use
general circulation models.

In this paper, we investigate the ability of a
geostrophic model similar to that of Yaremchuk et al.
[2001] to estimate a mean state along a single hydro-
graphic section with data of only one hydrographic
cruise. Clearly, hydrographic data from a single cruise
will not be sufficient to estimate a mean state. In-
stead, we make use of additional types of data for which
time series are available. Two data types immediately
come to mind: long-term current measurements from
moorings and satellite based altimetric measurements of
the sea-surface height. Of these two types, sea-surface
height measurements provide potentially the best res-
olution and coverage for all ocean regions. Sea-surface
height also proves to be useful as in the geostrophic con-
text its slope is directly proportional to the geostrophic
surface velocity. Ganachaud et al. [1997] explored the
combination of TOPEX/Poseidon altimetry and hydro-
graphic data with a box inverse model. In their model,

hydrographic measurements and geostrophy fix the ver-
tical velocity shear, as described above. Our approach
includes the use of sea-surface height as well but we
employ an inverse model that allows deviations of tem-
perature, salinity, and tracer fields from the measure-
ments. Thus, our model can handle uncertainties (e.g.,
associated with the steady-state assumption) explicitly
by allowing model data misfits a priori.

With the advent of altimetric data of extraordinary
accuracy and precision from the TOPEX/Poseidon or
ERS2 mission, measurements of sea-surface height data
are at hand. To date, this information has mostly been
used in studies of the time-dependent phenomena in
the ocean [e.g. tides or ocean variability, see Wunsch
and Stammer , 1998, for a review] where the absolute
sea-surface height is not needed. For the use of satel-
lite altimetry data in the steady-state ocean problem,
one has to reference the altimetric measurement to a
marine geoid in order to determine the mean dynamic
sea-surface height. Unfortunately, the uncertainties as-
sociated with the presently available marine geoids ex-
ceed those of the altimetry by an order of magnitude
that renders the mean sea-surface height very noisy
[Ganachaud et al., 1997].

While the present geoid accuracies limit the use of
satellite altimetry on the determination of the mean
ocean circulation, two dedicated satellite missions,
which will determine an accurate geoid, are now funded
or proposed: Gravity Recovery and Climate Experi-
ment (GRACE) [Tapley, 1997] and Gravity field and
steady-state Ocean Circulation Explorer (GOCE) [Bat-
trick , 1999]. Given that in the near future we will have
an accurate marine geoid, we can now explore the im-
pact of accurate sea-surface height data on the analysis
of hydrographic sections. Obviously, there is no accu-
rate sea-surface height data now, but estimates of the
errors of the future marine geoids are very well avail-
able. Therefore, we choose to use – along with these
error estimates of the marine geoid – a synthetic data
set that provides a complete and consistent ensemble
of hydrography, current measurement, and sea-surface
height data. This choice enables us to assess the impact
of the new geoid models without the actual data.

Inverse models are often tested using synthetic data
and dynamics. These studies range from testing the ap-
plicability of inverse models in general [Thacker , 1989]
to “validation” of particular inverse models [McIntosh
and Rintoul , 1997]. In fact, Nechaev and Yaremchuk
[1995] tested their model – the first published version
of the model presented here – with data from the FRAM
atlas [Webb et al., 1991]. Zhang and Hogg [1996] used
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data from a GCM to test their inverse model. Most
studies report, that the inverse models are able to re-
produce the synthetic data within estimated errors, al-
though there are a few studies where the inverse models
fail their tests, as reported by Zhang and Hogg [1996].

From the synthetic data set, which is produced by an
ocean general circulation model (OGCM) of the North
Atlantic Ocean, a mean ocean state can be estimated.
In our case, it will be characterized by fluxes of mass
and temperature through parts of a hydrographic sec-
tion along approximately 24◦N. In a twin experiment,
the inverse model estimates these fluxes from a synop-
tic snapshot of hydrographic data, representing a sin-
gle “cruise”, and from selected velocity “measurements”
and eventually sea-surface height data averaged over
one model year. The inverse model makes these esti-
mates by fitting the model to the data, allowing cer-
tain model and data errors a priori. For sea-surface
height data, these errors include the error estimates of
the different marine geoids available: that of the state-
of-the-art geoid model EGM96, and those of GRACE
and GOCE. Because the resolution of the inverse model
is higher than that of the sea-surface height data for all
of the geoid models, particular care must be taken so
that the model is only fitted to long scales determined
by the sea-surface height data.

Model and approach are very similar to the second
part of Schröter et al. [2001]. Here, however, we divide
the section plane into five parts. This division allows
us to assess the vertical and horizontal impact of high
precision sea-surface height data. While Schröter et al.
are primarily interested in their impact on the error re-
duction of net mass and temperature fluxes through the
section, we emphasize the impact on the fluxes them-
selves and their resemblance to the reference state. It is
not clear whether or not a synoptic section in conjunc-
tion with time-averaged sea-surface height data can be
used successfully to estimate a mean state. Furthermore
we take into account errors due to the model assump-
tions: for example, the deviation of a mean velocity, as
estimated from hydrography and geostrophy, from the
“true” mean, which includes all of the physics of the
OGCM. In this context, we analyze the posterior error
covariances of the inverse model to aid the interpreta-
tion of the results. Although the original data used in
all experiments are exactly the same, we anticipate dif-
ferent solutions for different prior data error estimates
because the model is underdetermined and non-linear.
This makes regularization necessary, which will not al-
low to same closeness of fit to data for different data
errors.

Section 2 briefly describes the synthetic data set used
in this study and the OGCM that produced it. Section 3
outlines the basic properties of the inverse model and
the design of the prior error covariances. Special atten-
tion is paid to the error covariances of the sea-surface
height data because the treatment of those errors is dif-
ferent to, for example, Ganachaud et al. [1997]. For a
more thorough description of the model, the reader is
referred to the appendix. In Section 4 the twin exper-
iments and their results are described. The summary
and conclusion are given in Section 5.

2. FLAME Model Description: “Data”

The data for the twin experiments of Section 4
were obtained by integration of the (1/3)◦ North At-
lantic Model of the the FLAME group [Redler et al.,
1998]1. The code of this ocean general circulation model
(OGCM) is derived from MOM2 [Pacanowski , 1995]
and extended for use on massive parallel computer ar-
chitectures. In this text, we will call the model the
FLAME-model (as opposed to the inverse model de-
scribed in Section 3) for brevity.

The model area extends from 18◦S to 70◦N in the At-
lantic Ocean. The grid has a resolution of (1/3)◦ merid-
ionally and (1/3)◦cosφ zonally (φ denotes latitude). In
the vertical, the separation between the 45 grid levels
increases from 10 m near the surface to 225 m below
2250 m depth. At the surface, the model is driven by
monthly mean values of ECMWF re-analysis data of
wind stress and surface fluxes of heat and fresh wa-
ter [Barnier et al., 1995]. The model is spun up from
initial conditions based on (1/4)◦ horizontal resolution
annual mean potential temperature and salinity fields
[Boyer and Levitus , 1997] for a period of 10 years. Af-
ter spin-up, snapshots of temperature, salinity, and the
three-dimensional velocity fields are stored in intervals
of three days. At the same time, three-day means of
the sea-surface height are stored.

For our purposes the output of the FLAME-model
is considered as “reality”. This is very convenient be-
cause in contrast to the real ocean this “model ocean”
is very well sampled. A subset of the model ocean is
treated as measurements from which the inverse model
estimates velocities. We can then compare the estimate
of the flow field by the inverse model to the flow field of
the FLAME “model reality”. Here we will not discuss
the degree of resemblance of the FLAME-model output
to the real Atlantic Ocean; to our belief, the FLAME-

1http://www.ifm.uni-kiel.de/fb/fb1/tm/research/FLAME/index.html
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Figure 1. Part of the model area of the FLAME 1/3◦ North Atlantic Model and location of the “section” at
24◦30’N. Contours show the mean sea-surface height for the eleventh model year; contour interval is 20 cm.

model can simulate the Atlantic Ocean fairly well. How-
ever, one has to be aware that the physics incorporated
in the FLAME-model and the inverse model are dif-
ferent so that one cannot expect perfect agreement be-
tween the two results. At the same time, this difference
in physics is not the same as the difference between the
physics of the inverse model and the physics of the real
ocean [Zhang and Hogg, 1996]. On the other hand, here
we will use only integrated transports for evaluating the
performance of the inverse model that are less sensitive
to the specific model configurations than, for example,
velocity values at individual grid points.

From the data set we extract a synoptic snapshot
at 24◦30’N, approximately at stations identical to the
WOCE section A5 (see Fig. 1). This provides us with
hydrography and sea-surface height data that are con-
sistent within the dynamics of the FLAME model. A
reference mean state is constructed from a one-year
mean of the eleventh model year. At the time of
the snapshot, January 3, of the eleventh model year,
the instantaneous net mass flux through the section
is φV = −0.4 Sv (1 Sv = 106 m3/s), the one-year
mean φV = −0.2 ± 0.3 Sv, the instantaneous tem-
perature transport relative to 0◦C is φθ = 0.73 PW
(1 PW = 1015 J/s) and its one-year mean value φθ =
0.74 ± 0.13 PW. The uncertainties are the standard
deviations of the respective one-year means. The tem-
perature flux values of the FLAME-model are smaller
than recent temperature flux estimates across the real
section A5 of 1.1 to 1.3 PW by Roemmich and Wunsch
[1985], Bryden [1993], Macdonald and Wunsch [1996],
and Ganachaud and Wunsch [2000]. However, the dif-
ferences between the FLAME-model and the real ocean
do not affect our study, because – as stated above –
we regard the FLAME simulation as “reality”. For a

discussion of the heat transport in a similar model of
the North Atlantic, the reader is referred to Willebrand
et al. [2001] and Böning et al. [2001]. The net mass
flux through a zonal section of the FLAME is zero by
construction. However, the values obtained here are
calculated after subsampling and interpolating the ve-
locity onto the grid of the inverse model (see Section 3).
Therefore, one can expect small sampling errors. For
the net mass flux this error is well within one standard
deviation.

Figure 2 shows the temporal average of the spatial
power spectral density of the one-year sea-surface height
record and the same for the vertically integrated mass
and temperature transports, the quantities of interest
in this study. Large portions of the signal have a wave-
length of 200 to 500 km. In particular, this wavelength
band accounts for 58% of the mass flux variance and
46% of the temperature flux variance along the section.
Although current estimates of the sea-surface height do
not resolve this spectral band properly we can still use
these data because the sea-surface height spectrum is
“much more red” so that the 200-500 km band describes
only 5% of its variance. The sea-surface height esti-
mates are limited by the coarse resolution of the state-
of-the art geoid model EGM96. Future geoid models
will have a resolution high enough to resolve the spec-
tral range down to 200 km wavelength (see Section 4).
Below 200 km the spectra drop sharply. As Böning and
Budich [1992] noted, this is approximately the length
scale where diffusion starts to dominate in a (1/3)◦

model with biharmonic parameterization of horizontal
mixing.

In this paper, we will use integrated transports for
evaluating the performance of the inverse model. The
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Figure 2. One-year record: Power spectral density of
sea-surface height, mass transport φV , and temperature
transport φθ at 24◦30’N of the FLAME 1/3◦ North At-
lantic Model.

hydrographic section is divided into five regions to re-
solve the major currents that pass through it. Fig. 3
shows these regions along with their mass flux values of
the FLAME-model for the Florida Current (I), the An-
tilles Current (II), the deep western boundary current
(IV), the return flow (III), and the deep sea (V).

Flux values calculated from the winter snapshot dif-
fer substantially from annual mean fluxes due to weaker
density gradients in winter that lead to weaker deep
western boundary currents. In this sense the choice of
the winter snapshot turns recovering the mean circula-
tion into a hard test for the inverse model.

3. Inverse Section Model

3.1. Description of the model

The model used in this investigation is a geostrophic
inverse model based on the approach described in
Nechaev and Yaremchuk [1995] and Yaremchuk et al.
[1998]. Density is calculated from an estimate of tem-
perature and salinity with the non-linear equation of
state for sea water [Fofonoff and Millard , 1983]. The
thermal wind equations determine the corresponding
vertical profile of horizontal velocity except for an un-
known constant. This constant, commonly called refer-
ence velocity, is constrained by a local advective conser-
vation equation for potential temperature and salinity
and the planetary vorticity equation (see Appendix A1).

The equations are discretized on a finite differ-
ence grid that “envelops” the hydrographic section (see
Fig. 4): there is one grid plane on each side of the
section consisting of tracer grid points. These are the
positions of the (independent) model parameters tem-
perature and salinity, from which density is calculated.
Four of these grid points on each plane make up the
eight vertices of a grid box in the center of which there
is a horizontal velocity grid point. Vertical velocity grid
points lie on the upper and lower faces of this grid box.
On the western end of the section (the Florida Strait)
the spacing of these boxes coincides with the grid size of
the OGCM; east of 78◦W it increases to 1◦. The width
of the boxes in the direction normal to the section is
the average of their along-section size. In the vertical,
the vertices of the boxes are also defined by the uneven
GCM grid. From this grid the inverse model’s esti-
mates of temperature, salinity, velocity, and sea-surface
height are mapped to the data locations between the
grid planes.

Following the standard “assimilation philosophy”, we
consider all data as a kind of spatio-temporal sample of
a random ensemble of the ocean states. By treating
the large-scale steady state of the model ocean as an
average over this ensemble, it is possible to find an ap-
proximation to this mean under the assumption that
the prior probability distribution is Gaussian. In ad-
dition, a number of conservation laws and dynamical
relationships must be satisfied [Yaremchuk et al., 1998].
These constraints comprise the model described above.
Furthermore, an integral kinematic constraint imposes
a net mass transport across the section.

Some of these constraints—namely the advective
conservation equation, the vorticity balance and the
transport constraint—are imposed in a weak form; that
is they are to be satisfied only within certain error
bounds defined by a priori statistical assumptions. The
error bounds reflect the model errors and the uncer-
tainty of the a priori transport estimate, both of which
can be treated explicitly by our inverse scheme. On the
other hand, since we are interested in the large scale,
low frequency component of the circulation, geostrophy
is assumed to be an accurate approximation. The error
of the density equation of Fofonoff and Millard [1983]
is smaller than 0.03 kg/m3. Therefore, both density
equation and geostrophy are satisfied exactly.

After specifying the probability distribution and the
dynamical constraints, we invert the data by seeking
the most probable state of the North Atlantic on our
model grid under the assumption that the dynamical
constraints are satisfied. The numerical technique for
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Figure 3. Section along 24◦N through the FLAME model with division into five regions. Note the stretched
coordinate system that emphasizes the regions above 1000 m and west of 72◦W. The upper numbers are the one-
year mean mass fluxes through the regions with standard deviation; the lower numbers are instantaneous values of
the same fluxes at the time of the snapshot.

that procedure is well established [e.g., Le Dimet and
Talagrand , 1986]. The prior probability density func-
tion is proportional to exp(−J ) where the argument J
has the form of the following quadratic cost function
(for a more detailed description of the cost function see
the appendix):

J = JC + Ju + Jζ︸ ︷︷ ︸
data terms

+ Jτ + J−H + Jq + JφV︸ ︷︷ ︸
weak constraints

+ Juref
+ J∂yC + JŜC + JŜq + JŜu︸ ︷︷ ︸

regularization

(1)

The first three terms in J attract the solution to
the data. The subscripts C, u, and ζ denote hydro-
graphic parameters (temperature and salinity), horizon-
tal velocities and sea-surface height, respectively. The
model-data misfits are weighted with weighting matri-
ces, which are the inverse covariance matrices account-
ing for the prior statistical structure of the hydrographic
properties (Wmn), the horizontal velocity field (Wu),
and the sea-surface height (Wζ). In the case of sea-
surface height, this matrix contains among other errors
the error structure of the geoid to which real data would
have been referenced (see Section 3.2.3).

The next four terms are labeled as weak constraints.
They are included to reduce the imbalance of the vor-
ticity equation via the boundary conditions for vertical

velocity at the surface (Jτ ) and at the sea floor (J−H),
the terms neglected in the advective tracer conservation
(Jq) and the deviation of the model from the a priori
estimate of the net mass transport (JφV ). As these
terms are a measure of the model error, they tend to
reduce the model error.

Because the number of unknowns is large compared
to the available information—twice as many model pa-
rameters T and S than measurements plus the unknown
reference velocities and boundary conditions for vertical
velocities—, additional assumptions about the unknown
mean state have been made in order to regularize the
under-determined problem. In particular, the model
should not deviate too much from a priori estimates of
the reference velocity (Juref

) and the temperature and
salinity gradients across the section (J∂yC). In this pa-
per, these estimates can conveniently be taken from the
reference data set as produced by the OGCM. When
analyzing real hydrographic sections, the temperature
and salinity gradients across the section have to be esti-
mated from a climatological atlas and a first guess of the
reference velocities can be obtained by choosing a level-
of-no-motion. Although we know the “true” values for
these quantities in our scenario, our choice of weights
for the corresponding cost function terms reflects the
uncertainties one normally associates with them (see
Section 3.2).

The remaining terms of the cost function are aimed
at diminishing variances of the grid-scale components
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Figure 4. Sketch of the model grid. The solid lines connect the positions of the (independent) model parameters
temperature and salinity. The dotted lines lie in the plane where the in situ data were collected.

of C, q, and u (smoothness of the fields). They are
represented by applying the differential operator Ŝψ :=
∂xx + νψ(z)∂zz, where νψ depends on the field ψ.

All weak constraints and regularization terms are
weighted with diagonal weighting matrices. This con-
stitutes the implicit assumption that a priori all argu-
ments in the last nine quadratic terms are statistically
independent and have zero means.

To find the maximum of the probability distribution
we have to minimize the cost function J . This opti-
mization problem is solved iteratively using the adjoint
method. The adjoint code necessary for this method
was generated by the Tangent-linear Adjoint Model
Compiler [TAMC, Giering , 1999].

3.2. Prior Covariances

This section discusses the design of the covariance
matrices and particularly their inverses—Wmn, Wu,
Wζ , Wτ , W−H , Wq, WφV , Wuref

, W∂yC , WŜC , WŜq,
and WŜu—to be used as weighting functions. These
quantities define “physically acceptable” deviations of
the model variables from their steady state geostrophi-
cally balanced counterparts. The weights W should be
inversely proportional either to the measurement error
covariances (Wmn, Wu, and Wζ) or to the squared am-
plitudes of the fields that are not represented by the
model equations (all others). We assume that all fields
are statistically homogeneous in time and, with the ex-
ception of Wmn and Wζ , also in space.

Most of the prior inverse covariances have been esti-
mated in the same way as in Yaremchuk et al. [2001].
We therefore limit our discussion to those weights for
which the calculation differs from that of Yaremchuk
et al. [2001]. As almost all of the covariances are diag-

onal, so are their inverses.
3.2.1. Tracer Weights The tracer weights Wm,n

are constructed in a way similar to that described by
Yaremchuk et al. [2001]: first we construct covariance
functions Cm,n(z, z′) that are local to their respective
stations. They include vertical cross-correlations and
tracer-tracer correlations because the vertical spacing of
the grid resolves the scales of mesoscale eddies, which
are treated as noise by the assimilation scheme. In-
cluding these correlations allows the model to change
the depth of an isopycnal without changing the T-S re-
lation on the isopycnal [Yaremchuk et al., 2001]. The
local covariance functions are assumed to vary slowly
along the section in order to account for east-west varia-
tions in hydrographic fields. Therefore, the covariances
are smoothed by a Gaussian-bell-shaped running av-
erage over the along section coordinate of the section.
Furthermore, an estimate of “ocean noise” according to
Bindoff and McDougall [1994] has been added to the
diagonal. Inverting the covariance matrix yields the
weights to be used in the cost function.

The gradients of temperature and salinity normal to
the section are one-year mean values of the FLAME-
model data serving as a substitute for climatological
data based on observations. The a priori errors are
estimated from the horizontal variance per layer. The
inverses of these errors are down-weighted by a factor of
the order of 1000 that is proportional to the local grid
box volume, so that the gradients have a smaller weight
in the more variable small scale western boundary re-
gions. In total, deviations from background values of
the tracer gradients are only weakly penalized.

3.2.2. Velocity and Flux Constraints The
Florida Current is very well monitored. To reflect the
availability of velocity data in the Florida Strait, nine



8 Losch et al.

velocity data from the reference data set—three each at
the three levels 37 m, 146 m, and 748 m—were used as
contraints on the Florida Current. These velocity data
represent mean value “measurements” from long-record
current moorings; therefore, they are assigned a small
error estimate of 1 cm/s. In many areas of the ocean,
velocity measurements from moorings are not available
and would have to be replaced by other data, if available
(e.g. Acoustic Doppler Current Profiler data).

The net mass flux has been chosen to 0 ± 1 Sv a
priori (WφV = 1 Sv−2) to account for the assumption
of mass conservation in the North Atlantic. Although
the FLAME model does not have any significant source
of transport uncertainty across a zonal section, we use
the relatively large prior uncertainty of 1 Sv. By that
we account for sampling errors because of the coarse
resolution of the section and for “real” transport uncer-
tainties that would be introduced if we dealt with data
from the real ocean. These include uncertainties of the
inflow through the arctic, difference between evapora-
tion and precipitation, etc.. The temperature flux is
not constrained.

The velocity at the deepest grid point between
two stations is taken as the reference velocity uref .
Its first guess (and background) value is taken from
the FLAME-model at the same time as the hy-
drography. The temporal dispersion of its modulo∫ t1
t0
|uref |2dt/(t1 − t0) of the one-year time series serves

as a priori error estimate. With this choice the a pri-
ori error for reference velocities ranges from 1–2 cm/s
in the deep basins to 10–25 cm/s in the region of the
western boundary currents.

3.2.3. Sea-Surface Height Weights The
weighting matrix for the sea-surface height data term
Jζ requires some additional care. Because dynamic
sea-surface height (sometimes also called sea-surface
topography) is the difference of the surface height h
over a reference ellipsoid and the geoid height N , its
covariance Cζ is the sum of the error covariances of
the measurement of h by altimetry and that of the
geoid model, which provides the geoid undulation
N . Unfortunately, h and N are available in different
resolutions and representations. Therefore, their error
covariances describe different scales. In addition to
that, the inverse model’s estimate of the sea-surface
height has still another resolution. Of these three data
types, the geoid model, which is given as coefficients
of an expansion into spherical harmonic functions, is
generally the one with the poorest resolution. Also, its
large omission error, represented by high degree spher-
ical harmonics, calls for a procedure that suppresses

high degrees and short spatial scales.
We have chosen a filter that was proposed by Jekeli

[1981] and recently used by Wahr et al. [1998] to inves-
tigate the geoid’s time variability on long spatial scales.
The kernel of this filter

K(ψ) =
b

2π
e−b(1−cosψ)

1− e−2b
,

b =
ln(2)

(1− cos(r/R))
,

(2)

is nearly Gaussian—for large spherical distances ψ it
drops more slowly than the Gaussian bell curve—and
has good attenuation properties for high degrees in the
spectral domain of spherical harmonics. It is depicted
in Fig. 5 for an averaging radius of r = 286 km that, by
a rule of thumb, corresponds to a maximum spherical
harmonic degree of L = πR/r ≈ 70. R is the radius of
the earth.

We proceed as follows: the geoid coefficient error co-
variance 〈δciδck〉 is transformed to a (nondiagonal) rep-
resentation in spherical coordinates x = (λ, φ):

CN (x, x′) =
L∑
i,k

Yi(x) 〈δciδck〉Yk(x′), (3)

where Yk(x) are the fully normalized spherical harmonic
functions. The sum of the geoid error covariance CN
and the altimetric error covariance Ch, which is as-
sumed to be diagonal, yields an unsmoothed estimate of
the sea-surface height error covariance Cζ . The Gaus-
sian filter kernel (2) removes all scales shorter than the
averaging radius r from both “data” and the error co-
variance by

ζ(x) =
∫
K(x, y) ζ(y) dy, (4)

CN (x, x′) =
∫∫

K(x, y)CN (y, y′)K(x′, y′) dy dy′. (5)

The smoothed estimate ζ along with its error covariance
CN is then restricted to the section coordinates.

The sea-surface height error covariance is generally
ill-conditioned on the grid of the inverse model. There-
fore, we construct the weighting matrix as a pseudo-
inverse of the covariance matrix by eigenvalue decom-
position. Only those eigenvalues which are significantly
different from zero are kept in building the weighting
matrix. As the covariance matrix does not contain
any small spatial scales, the resulting weighting matrix
does not, either. This way, short scales effectively have
zero weight and only the long scale components of the
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Figure 5. Left hand side: Quasi-Gaussian filter kernel K(ψ), where ψ is the spherical distance, for an averaging
radius of 286 km [Jekeli , 1981]. This averaging radius corresponds to a geoid model resolution of degree l = 70.
Right hand side: Spectral expansion of the filter into spherical harmonic functions.

model’s estimate are fitted to the long scale components
of the sea-surface height data.

Geoid error estimates of three different geoid models
were available. The first one is that of the state-of-the-
art geoid model EGM96 [Lemoine et al., 1997]2. The
geoid model’s coefficients are available up to degree 360;
however, its error estimate is only complete to degree
and order 70. Therefore, we chose an averaging radius
of r = πR/70 ≈ 286 km for this geoid model.

The other two geoid models do not exist yet. They
will be available when the dedicated gravity satellite
missions GRACE [Tapley, 1997] and GOCE [Battrick ,
1999] operate in presumably 2002 and 2004, respec-
tively. Nevertheless, a priori error estimates of these
models are available to us [Balmino et al., 1998]. From
now on we will call these error estimates by the names
of their corresponding satellite missions.

The error estimates for GRACE and GOCE are avail-
able to degrees 150 and 300, respectively. Because
GRACE is expected to have the smallest errors below
degree 70 and rapidly increasing errors above, we chose
an averaging radius of r ≈ 286 km as for the EGM96 er-
rors. The GOCE mission is designed to resolve a spatial
scale of approximately 100 km, which corresponds to a
degree of l = 200. Consequently, this was our choice for
the averaging radius.

The mean sea-surface CLS SHOM98.2 [Hernandez
and Schaeffer , 2000] provides an error estimate Ch for
the altimetric measurements that is of the order of 2 cm
over the mid-ocean basin and increasing to approxi-

2http://cddisa.gsfc.nasa.gov/926/egm96/egm96.html

mately 4 cm near the coasts. This estimate was used in
all experiments. (Because of the interpolation technique
used by Hernandez and Schaeffer , the formal errors can
increase to values far above 4 cm near boundaries where
only few data are available. We set those high values to
the maximum error of 4 cm. This choice avoids singular
behavior of the covariance matrices during filtering and
inversion.)

Fig. 6 shows the error covariance matrices for sea-
surface height—the sum of geoid error and altimetry
error, smoothed with the Gaussian filter—-for the three
geoid error estimates EGM96, GRACE, and GOCE. For
GRACE the variance is almost two orders of magnitude
smaller than for EGM96, because the geoid error is al-
most negligible. In addition to that the higher resolu-
tion (smaller averaging radius) of GOCE is visible in
the narrow main diagonal of the error covariance ma-
trix. Again, this diagonal consists mainly of errors in h
because the GOCE geoid model errors are very small.

3.3. Minimization

After the careful definition of J the minimization
routine M1QN3 of the MODULOPT library [Gilbert
and Lemaréchal , 1989] was applied. The minimizer
searches for the optimal state in the space of indepen-
dent variables or parameters p = {T, S, uref , q−H},
where T is temperature, S salinity, uref are the refer-
ence velocities, and q−H is the correction to the bound-
ary condition for the vertical velocity at the sea floor.
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Figure 6. Error covariance matrices for sea-surface height data after filtering of all small scales according to the
averaging radius used for a) EGM96, b) GRACE, and c) GOCE.

3.4. Posterior variances

Variances of all integral quantities shown in Fig. 7,
Section 4 were computed through linear transforma-
tions of the error covariance matrix C between the con-
trol variables. C is identified as the inverse of the Hes-
sian matrix H associated with the assimilation scheme
[Thacker , 1989]. Any observable φ can be approximated
by an expansion around the optimal state of the control
parameters p:

φ ≈ δφ

δp
p+ φ0 = L̂p+ φ0 (6)

where L̂ is a linear operator (in case of a scalar ob-
servable, it is a covector). This operator describes the
sensitivity of φ to variations in p. Its numerical code
can be obtained with the TAMC [Giering , 1999].

Following the standard approach [Thacker , 1989], we
assume that the posterior statistics, as well as the prior
statistics, are Gaussian and that fluctuations around
the optimal state are small in the sense that the orig-
inal dynamics are well approximated by the linearized
equations. Then the error covariance of φ can be calcu-
lated as

Cφ = L̂TH−1L̂. (7)

For scalar observables Cφ reduces to a single value: the
error variance. As the number of control variables is
fairly large (of order 104), it is computationally pro-
hibitive to calculate H and especially H−1. However,
it is possible to calculate the product of H with any
vector [Le Dimet and Talagrand , 1986; Giering , 1999].
It enables us to use a polynomial approximation of the
property ψ = H−1/2L̂ from which Cφ = ψTψ can be ob-
tained. This procedure is described in detail by Yarem-
chuk and Schröter [1998].

4. Experiments

We now describe a set of four experiments with the
non-linear section model. In all experiments the in-
verse model has to reproduce an annual mean state of
the FLAME-model ocean from a snapshot “measure-
ment” of the hydrographic parameters temperature and
salinity taken under winter conditions, a three-by-three
array of estimates of the mean velocity in the Florida
Strait, and an estimate of the reference velocity and
the temperature and salinity gradient across the sec-
tion. Wind fields to calculate Ekman velocities with an
assumed Ekman depth of approximately 40 m are taken
from Trenberth et al. [1990]; the bottom slope is calcu-
lated by simple central differences from the FLAME
model bathymetry.

The first experiment in which no further informa-
tion is used is called NOSSH. In the other three ex-
periments a one-year mean of sea-surface height data,
also taken from the FLAME-model ocean, supplements
the model as an additional data constraint on the sur-
face geostrophic velocities. These data are weighted
according to the error estimates of the three different
geoid models described in the previous section. We call
these experiments by the names of the corresponding
geoid models: EGM96, GRACE, and GOCE. Because
the sea-surface height data are the same for all of the
latter three experiments, its effect on the solution will
be only due to the different error estimates of Fig. 6.
When evaluating the results, we will focus on mass and
temperature flux through the five regions defined in Sec-
tion 2. Mass and temperature flux values are summa-
rized in Fig. 7.



Estimating a Mean Ocean State with an Inverse Section Model (submitted to JPO) 11

(I) (II) (III) (IV) (V) sum
−30

−20

−10

0

10

20

30

m
as

s 
flu

x 
[S

v]

FLAME mean         
FLAME instantaneous
NOSSH              
EGM96              
GRACE              
GOCE               

(I) (II) (III) (IV) (V) sum
−2.5

−2.0

−1.5

−1.0

−0.5

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

he
at

 fl
ux

 [P
W

]

Figure 7. Mass and temperature flux through region
I to V: FLAME-model mean with standard deviation,
instantaneous values of January 3, and estimates of the
inverse model with error bars.

4.1. Comparison with the One-Year Mean
State of the FLAME Model

The estimates of mass and temperature flux of all
four experiments are generally in agreement with each
other within the prior and posterior error bars. In the
Florida Strait (region I), the a posteriori estimated er-
rors are small because here the mean velocity field is as-
sumed to be well known from long-term measurements
(a priori error of 1 cm/s). The mass flux errors cor-
respond to the estimates of climatological variability of
the real Florida Current of 1 Sv by Schott et al. [1988].
The error of the net mass flux is only 1 Sv because this
quantity has also been assumed well known a priori. In
the regions II–V, the estimated mass flux errors can be-
come large, up to 15 Sv in regions V. The large errors
of the individual regions can add up to the small to-

tal error of 1 Sv because of significant anti-correlations
(see Section 4.3). In contrast to the mass flux errors,
the temperature flux errors in the deep regions IV and V
are small. This is a consequence of the specific tempera-
ture scale used, namely the Celsius scale, which assigns
values near 0 ◦C to the deep-sea regions.

For the experiments NOSSH, EGM96, and GRACE,
the estimated mass and temperature flux values are dif-
ferent from the FLAME reference values by less than
their posterior error estimates. However, the inverse
model generally underestimates the mean values. These
systematic deviations can have various reasons. The
most important one appears to be the fact that small
horizontal gradients of the measured density field lead
a priori to weak geostrophic shear and thus to weak
geostrophic mass flux. These weak velocities cannot
become stronger through an inversion that includes
penalty terms for roughness. On the contrary: The
least-square method itself implicitly leads to smooth so-
lutions [Thacker , 1988; Bennett , 1992, page 301]. The
underestimation of the Antilles Current (region II) and
the deep western boundary current in region IV can es-
pecially be explained this way. Both currents are ex-
tremely variable in the FLAME model and have smaller
than mean mass fluxes at the time of the “measure-
ment”. More information about the mean vertical strat-
ification of the water column, taken for example from
a climatological atlas, will be necessary to improve the
estimate of the mean circulation. The barotropic infor-
mation of the sea-surface height data alone appears not
to be sufficient.

Different forcing wind fields that lead to different Ek-
man transports are another cause for the deviations of
the inverse model’s solutions from the FLAME refer-
ence values. The Ekman transport through region III
calculated from the climatological wind field of Tren-
berth et al. [1990] is 6.3 Sv, thus much higher than the
3.9 Sv that one obtains when using the mean of the
monthly mean fields that drive the FLAME model. The
bigger Ekman transport reduces the overall southward
flow through region III.

In experiment GOCE the sea-surface height is avail-
able with very high accuracy and resolution. With this
data, the formal flux errors are greatly reduced by up
to 55% compared to NOSSH [see also Schröter et al.,
2001]. On the other hand, the model’s transport es-
timates in the layers above 1000 m deviate from the
FLAME values by more than the posterior error esti-
mates.

Two a priori assumptions are responsible for these
deviations. The a priori error of the height over the
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reference ellipsoid h was estimated to be no larger than
4 cm. Increasing this error near the coastal boundaries
could lead to larger posterior flux errors—especially in
the Florida Strait—so that here the estimate would be-
come consistent with its errors. Second, the sea-surface
height had to be assumed as homogeneous perpendicu-
lar to the orientation of the section because the inverse
model cannot provide an estimate of the slope of the
sea-surface height in that direction. This assumption
appears to be too crude in the context of the high res-
olution of the GOCE geoid model.

The deviations of the flux estimates of the inverse
model from the reference values of the FLAME model
show that close to the surface some of the model’s as-
sumptions are not consistent with accurate sea-surface
height data. In addition to those mentioned above, as-
suming a steady state and the lack of a mixed layer
model in the dynamics of the inverse model might cause
these deviations. The assumption of thermal wind be-
ing the only dynamically relevant process above 1000 m
water depth also appears as too restrictive when using
the high precision sea-surface height data in the GOCE
experiment. Finally, the model does not take into ac-
count turbulent diffusion explicitly in the conservation
equations for potential temperature and salinity.

4.2. Error Reduction due to Additional
Sea-Surface Height Data

Fig. 8 shows the reduction of flux errors that are
obtained by using the sea-surface height data with dif-
ferent a priori error estimates in experiments EGM96,
GRACE, and GOCE. The reduction is given in percent
relative to experiment NOSSH. Schröter et al. [2001]
discuss only total fluxes and fluxes through part of the
Florida Strait (approximately region I), whereas here
this discussion is extended to two vertical layers and
five separate regions. A further refinement does not
seem reasonable at this point as the inverse model due
to its nature is not able to reproduce very small scale
properties.

As expected, with increasing accuracy and resolu-
tion of the sea-surface height data, the inverse model
estimates smaller posterior flux errors. The reduction
is greatest in the top layer near the surface (regions I
to III), for the absolute velocity at the surface can be
determined best with the additional data. Going to
greater depths, the errors of the density field (actually
the formal errors of temperature and salinity) sum up
continuously so that deep velocities and thus fluxes can-
not be estimated as accurately as those near the surface.
A similar result was found by [LeGrand , 2001].
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Figure 8. Reduction (in %) of estimated flux errors
relative to NOSSH that are obtained by including sea-
surface height data with three different error estimates.

The reduction of flux errors relative to experiment
NOSSH is least in experiment EGM96. With a more
accurate geoid model, represented by the smaller errors
of the potential GRACE model, fluxes near the surface
can be improved by up to 23%. The total tempera-
ture flux, being a truly large scale feature of the sec-
tion, is more accurate by even 44%. Therefore, with a
geoid model as accurate on large scales as the GRACE
model, properties with long wavelengths can be esti-
mated with a higher precision than those with small
wavelengths. The mass and temperature carried by the
Florida Current is assumed well known through current
measurements a priori. However, with a high precision,
high resolution geoid model such as GOCE, the inverse
model can reduce the flux errors through Florida Strait
even further by 30–34%. In regions II and III, the re-
duction is largest with GOCE, too (up to 55%). On the
other hand, the effect of the sea-surface height data on
the large errors of the fluxes beneath 1000 m is smaller
than 15%.

The total mass flux error of 1 Sv prior to the inver-
sion cannot be reduced, not even with the “best” data
in experiment GOCE. The total temperature flux, how-
ever, for which no a priori assumption has been used,
can be improved with sea-surface height data by up to
51% with GOCE over experiment NOSSH without sea-
surface height data. With the less accurate EGM96 this
improvement still is 18%.



Estimating a Mean Ocean State with an Inverse Section Model (submitted to JPO) 13

FLAME

I II III IV V I II III IV V

V
V

V
V

V
H

H
H

H
H

I
II

III
IV
V
I
II

III
IV
V

NOSSH

I II III IV V I II III IV V

I
II

III
IV
V
I
II

III
IV
V

EGM96

I II III IV V I II III IV V

I
II

III
IV
V
I
II

III
IV
V

GRACE

I II III IV V I II III IV V

I
II

III
IV
V
I
II

III
IV
V

GOCE

I II III IV V I II III IV V

I
II

III
IV
V
I
II

III
IV
V

−1 −0.6 −0.2 0.2 0.6 1

}
φM

}
φθ

Figure 9. Correlations of the flux errors: the first five columns and rows describe the correlations of the five mass
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4.3. Posterior Error Correlations

4.3.1. FLAME reference Fig. 9 shows the pos-
terior error covariances of the mass and temperature
fluxes normalized by their variances. These matrices
describe the correlation Cmn/

√
CmmCnn between the

m-th and n-th flux error. Also shown as a reference
are the correlations of the standard deviations of the
FLAME model from its one-year mean.

In the FLAME reference case, all mass fluxes are
anti-correlated to the fluxes through their respective
horizontal neighboring region. The vertical correlation
on the other hand is always positive; however, it is not
greater than 0.6. This vertical correlation is interpreted
as a manifestation of the barotropic variability of the
current field which dominates the overall vertical fluc-
tuations of the flow. The fluctuations of the fluxes above
1000 m are out of phase for neighboring regions: in the
statistical mean, a strong Florida Current comes along
with a weak Antilles’ Current and strong recirculation
in the eastern Atlantic. The correlation of the Florida
Current with the flows through the deep regions IV and
V is a consequence of their vertical coupling with the
fluxes through respective regions above 1000 m. The
strong horizontal anti-correlation also shows up in the

eigenvalue decomposition of the error covariance matri-
ces (Fig. 10, top panel). Here the eigenvectors of the
first two eigenvalues, which together describe 94% of
the variance, display the negative correlation clearly.

4.3.2. Solutions of the inverse model Up to
now, the variances of the fluxes in the solution of the
inverse model have been conceived to be formal errors.
Now they shall be interpreted as the deviation from the
estimated mean value due to variability. This allows us
to treat the statistical covariances of the inverse model
as temporal properties of the estimated fluxes.

In the experiment NOSSH without sea-surface height
data, some of the correlations of the FLAME-model
cannot be completely reproduced. The horizontal anti-
correlation between regions II and III or IV and V are
present both in the FLAME-model and in the inverse
model, as can also be seen in the eigenvalue decompo-
sition of the mass flux error covariance matrices: The
eigenvectors of the two largest eigenvalues—describing
together almost 94% of the total variance—are similar
for the FLAME and the NOSSH panel in Fig. 10. How-
ever, there is almost no correlation, represented by the
small forth eigenvalue in the NOSSH panel in Fig. 10,
between the Florida Strait and the remaining regions of
the section in the inverse model solution. This is due to



14 Losch et al.

−1.0
−0.5

0.0
0.5
1.0

F
LA

M
E

λ
1
 = 105.14 (74%)

−1.0
−0.5

0.0
0.5
1.0

λ
2
 = 28.10 (20%)

−1.0
−0.5

0.0
0.5
1.0

λ
3
 = 7.93 (6%)

−1.0
−0.5

0.0
0.5
1.0

λ
4
 = 1.41 (<1%)

−1.0
−0.5

0.0
0.5
1.0

λ
5
 = 0.02 (<1%)

−1.0
−0.5

0.0
0.5
1.0

N
O

S
S

H

λ
1
 = 405.08 (72%)

−1.0
−0.5

0.0
0.5
1.0

λ
2
 = 116.58 (21%)

−1.0
−0.5

0.0
0.5
1.0

λ
3
 = 37.05 (7%)

−1.0
−0.5

0.0
0.5
1.0

λ
4
 = 2.79 (<1%)

−1.0
−0.5

0.0
0.5
1.0

λ
5
 = 0.20 (<1%)

−1.0
−0.5

0.0
0.5
1.0

E
G

M
96

λ
1
 = 379.90 (76%)

−1.0
−0.5

0.0
0.5
1.0

λ
2
 = 92.98 (19%)

−1.0
−0.5

0.0
0.5
1.0

λ
3
 = 25.86 (5%)

−1.0
−0.5

0.0
0.5
1.0

λ
4
 = 2.70 (<1%)

−1.0
−0.5

0.0
0.5
1.0

λ
5
 = 0.20 (<1%)

−1.0
−0.5

0.0
0.5
1.0

G
R

A
C

E

λ
1
 = 353.78 (80%)

−1.0
−0.5

0.0
0.5
1.0

λ
2
 = 74.82 (17%)

−1.0
−0.5

0.0
0.5
1.0

λ
3
 = 13.18 (3%)

−1.0
−0.5

0.0
0.5
1.0

λ
4
 = 2.52 (<1%)

−1.0
−0.5

0.0
0.5
1.0

λ
5
 = 0.19 (<1%)

I II III IV V
−1.0
−0.5

0.0
0.5
1.0

G
O

C
E

λ
1
 = 336.68 (90%)

I II III IV V
−1.0
−0.5

0.0
0.5
1.0

λ
2
 = 28.63 (8%)

I II III IV V
−1.0
−0.5

0.0
0.5
1.0

λ
3
 = 7.99 (2%)

I II III IV V
−1.0
−0.5

0.0
0.5
1.0

λ
4
 = 1.38 (<1%)

I II III IV V
−1.0
−0.5

0.0
0.5
1.0

λ
5
 = 0.19 (<1%)

Figure 10. Eigenvalue decomposition of the mass flux error covariance matrices: for the FLAME reference case and
for each experiment, there are five plots of the eigenvectors in one row. The size of the eigenvalues (in [106m3/s]2)
and the percentage of the variance they describe is given above each eigenvector plot.

the fact that the velocity field and the fluxes are deter-
mined independently by the current measurement. Ver-
tical correlations of the inverse model are weaker than
in the FLAME-model. For regions III and V the corre-
lation is even negative (not resolved by the gray scale
in Fig. 9). This negative correlation stems from fluctu-
ations of the vertical shear of the geostrophic velocities
due to allowed variability (non-zero a priori error) of
the hydrographic fields.

With the additional sea-surface height data the in-
verse model can improve the estimates of some of the
correlations of the FLAME-model. In particular, the
new data constrain the barotropic component of the
flow so that the positive vertical correlations are re-

tained.
In Section 4.1, a systematic underestimation of fluxes

outside of Florida Strait was described. By analyz-
ing the posterior error covariances we get an idea of
how this underestimation comes about. The horizon-
tal anti-correlation between fluxes through horizontally
neighboring regions points to a mechanism, by which
the inverse model satisfies the constraint of zero net
mass flux: the inverse model estimates too small fluxes
through regions II and IV. One reason for this was that
weak horizontal density gradients lead too weak verti-
cal shear of geostrophic velocities that in turn lead to
too small fluxes. These small fluxes are compensated
by fluxes east of 73◦W, which consequently must also
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Figure 11. Mass flux through combinations of regions I
to V: FLAME-model mean with standard deviation, in-
stantaneous values of January 3, and estimates of the
inverse model with error bars.

be too small in order to get the correct net mass flux.
By the horizontal anti-correlation we can state that a
larger flux to the north west of 73◦W will automati-
cally lead to a larger southward flux east of 73◦W and
vice versa. This anti-correlation is even increased when
using GOCE data, which explains that despite this ac-
curate data this part of the solution cannot be improved
(see Fig. 10, bottom panel). Because of the horizontal
anti-correlation, the estimates of the horizontal sum of
the fluxes (region II + III and IV + V) agree much more
with the FLAME reference values than the estimates of
the vertical sum (Fig. 11), and the net mass flux can be
estimated correctly to be zero in spite of an estimate of
the sub-tropical gyre that is too weak.

5. Summary and Conclusion

An inverse model was described that estimates a
mean ocean state along a hydrographic section. The
choice of independent parameters allows this model to
estimate not only the flow through the section but also
new temperature and salinity fields that deviate from
measurements as the latter do not represent a mean.
Here, these deviations have only been discussed inso-
far as they influence the flow field and contribute to
the overall error of flux error estimates. The fluxes and
their errors can be estimated more reliably than from
the standard box inverse models, which have only ve-
locities as unknown parameters. More reliable error es-
timates will help interpret fluxes that are inferred from
hydrographic data.

In addition to hydrographic data, the model includes

sea-surface height data in its estimates. The corre-
sponding measurement to be assimilated is the differ-
ence between the measured sea-surface height over a
reference ellipsoid and a marine geoid. The presently
available geoid model EGM96 has large uncertainties
associated with it. On the other hand, there is the
prospect of new geoid models for which there are er-
ror estimates available, but no data yet. As a conse-
quence we have chosen a synthetic data set produced
by an ocean general circulation model to investigate
the ability of the inverse model to reproduce a reference
mean state along a transatlantic hydrographic section
at 24◦N. In the inverse scheme, the sea-surface height
data were weighted by different error estimates corre-
sponding to errors of geoid models that differ in accu-
racy and resolution: EGM96, and that of the future
GRACE and GOCE missions.

The estimates of fluxes through five regions of the
section by the inverse model are mostly consistent with
the reference state within their large posterior error esti-
mates. With sea-surface height data the posterior errors
reduce. However, with the most accurate data that will
be available with GOCE the errors become smaller than
the deviation of the inverse model’s estimate from the
reference. In this case, the model assumptions need to
be reviewed critically. Geostrophy and the model’s sta-
tionarity appear as approximations, that are too crude
in the context of the very precise sea-surface height data
available with GOCE. Furthermore the assumption of
horizontal homogeneity of the sea-surface height data
normal to section seems to be too strong for the very
short scales resolved by GOCE.

The analysis of the posterior error covariance esti-
mates of the inverse model provides further informa-
tion on the estimated flow field. Interpreting the pos-
terior error estimates of the inverse model as temporal
variances and comparing them to the FLAME model’s
covariances also gives substantial insight into some of
the mechanisms of the inverse model and provide ex-
planations for some of the inverse model’s drawbacks.
Because of the constraint on the net mass flux the un-
derestimation of a flux in one region is compensated
horizontally by underestimating a flux going the op-
posite direction through another region. In this way,
the inverse model underestimates the strength of the
subtropical gyre and cannot reproduce the vertical cor-
relations of fluxes correctly. The flux through Florida
Strait in the inverse model is almost completely deter-
mined by velocity measurements and thus, in contrast
to the FLAME model, decoupled from the remainder of
the section.
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We have shown in this paper that the non-linear in-
verse section model can yield consistent estimates of a
mean state from synoptic hydrographic measurements
and a mean sea-surface height derived from a time se-
ries. However, if the sea-surface height data are too
precise, the assumptions of the stationary, geostrophic
inverse model appear to be too crude. Only taking
into account all model errors associated with these as-
sumptions will lead to consistent results in the case
of very precise data. On the other hand, with ad-
ditional a priori errors the posterior errors might in-
crease as well. From this point of view, the estimated
errors of the fluxes in experiments NOSSH, EGM96,
and GRACE can be interpreted as a lower error bound
that one can achieve when estimating fluxes with a sta-
tionary, geostrophic model from synoptic hydrographic
measurements. In order to improve estimates of the
state of the ocean over this bound—as it will be possi-
ble with the geoid model GOCE—more complex inverse
models of the ocean circulation will be necessary.

Appendix: Model Equations and Cost
Function

A1. Equations

The inverse model calculates density from the non-
linear equation of state of sea-water [Fofonoff and Mil-
lard , 1983] as a function of salinity S, in situ tempera-
ture T , and pressure p (depth). According to the ther-
mal wind equation, the vertical shear of horizontal ve-
locity is proportional to the horizontal density gradient.
Integrating the thermal wind equation yields

ug = uref +
g

ρ0f

z∫
−H

k×∇ρ dz. (A1)

with the unknown reference velocities uref . f =
2Ω sinφ is the Coriolis parameter that depends on lati-
tude φ. g is the acceleration resulting from gravity and
ρ0 a mean density, in accordance with the Boussinesq
approximation [see e.g., Gill , 1982]. The local coordi-
nate system is oriented along the section, so that the
x direction is parallel to the section (unit vector i) and
the y direction normal to it (unit vector j). The verti-
cal unit vector is k. The horizontal geostrophic current
vector can be written as ug = ug i + vg j (+ 0k).

The “geostrophic” vertical velocity wg can be calcu-
lated from integration of the planetary vorticity equa-
tion

f
∂wg
∂z

−∇hf · ug = 0. (A2)

At this point we take a different approach than Nechaev
and Yaremchuk [1995] and do not differentiate this
equation to get a new equation with two boundary con-
ditions. Instead, we integrate (A2) from the bottom
(z = −H) with boundary condition

wg(−H) + (uref · ∇hH + q−H) = 0 (A2a)

where unknown errors q−H are allowed. These stem
from inaccurate estimates of the bottom slope ∇H and
from neglecting Ekman pumping. The solution

wg(z) = wg(−H) +
∇f
f

z∫
−H

ug(z′) dz′ (A3)

satifies the surface boundary condition at z = 0
only approximately. According to Pedlosky [1996] the
geostrophic vertical component wg(0) and the wind-
driven Ekman component wek(0) = −(k×∇)(τ/f)/ρ0

cancel each other at the surface, so that the surface
boundary condition reads

wg(0)−
(

(k×∇) (τ/f)
ρ0

+ qτ

)
= 0. (A2b)

The error qτ , which can be interpreted as wind stress
error, is subject to minimization.

Potential temperature θ = θ(S, T, p, p0) relative at-
mospheric pressure p0 and salinity S are conservative
properties [see e.g. Gill , 1982]. In this model, they have
to obey the stationary advective balance

u · ∇hCn + w
∂Cn
∂z

= qn (A4)

with u = ug + uek and w = wg + wek. The unknown
source terms qn describe processes for the hydrographic
parameters Cn = θ, S that the model cannot resolve.
These are for example turbulent diffusion and chemical
and biological processes. uek is the directly wind-driven
near-surface velocity of the Ekman spiral [see e.g. Ped-
losky, 1987, pp. 226]. The vertical Ekman velocity wek
follows from the equation of continuity [Pedlosky, 1996]:

∂wek
∂z

= −∇ · uek

with wek(0) = − (k×∇) (τ/f)
ρ0

.
(A5)

The slow, large scale motion calculated by the inverse
model has to meet another constraint: a prior estimate
of total mass transport φV normal to the section∫∫

Ω

v dz dx = (φV + δφV ). (A6)
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Here δφV is an unknown error of this estimate, Ω the
area of the section. Temperature flux (or rather internal
energy flux) of a section of vanishing net mass transport
is estimated as the product of velocity, density, specific
heat at constant pressure cp, and potential temperature
[Warren, 1999]:

φθ =
∫∫
Ω

v ρcpθ dz dx. (A7)

The geostrophic velocity vg at the surface is directly
proportional to the slope of the sea-surface ζ:

vg =
g

f

∂ζ

∂x
. (A8)

In this paper, the model variable ζ is determined by
integration of this geostrophic equation:

ζ(x) − P̂u = 0 (A9)

with

P̂u =

x∫
0

f

g
vg(x′, z = 0) dx′

− 1
L

L∫
0

x′∫
0

f

g
vg(x′′, z = 0) dx′′ dx′,

where L is the total length of the section. This way,
data and model values are normalized so that they have
zero mean. The wind-driven Ekman velocity at the sur-
face does not generate a pressure boundary layer and
sea-surface elevation [Wunsch and Stammer , 1998].

A2. Cost Function and Adjoint Method

The individual terms of cost function (1) are in
detail:

a) data terms (the Φ̂’s map the model variables to the
data points)

JC =
1
2

∑
m,n

L∫
0

0∫
−H

0∫
−H

dz dz′ dx . . .

. . . (Φ̂CCm(x, z)− C∗
m(x, z)) . . .

. . .Wmn(x, z, z′)(Φ̂CCn(x, z′)− C∗
n(x, z′))

Jζ =
1
2

L∫
0

L∫
0

(Φ̂ζζ(x) − ζ∗(x)) . . .

. . .Wζ(x, x′)(Φ̂ζζ(x′)− ζ∗(x′)) dx′ dx

Ju =
1
2

∫∫
Ω

(Φ̂uu− u∗)Wu(Φ̂uu− u∗) dx dz

b) “soft” constraints

Jτ =
1
2

L∫
0

Wτ q
2
τ dx

J−H =
1
2

L∫
0

W−Hq2−H dx

Jq =
1
2

∑
n

∫∫
Ω

Wqnq
2
n dz dx

JφV =
1
2
WδφV (δφV )2

c) regularization

Juref
=

1
2

L∫
0

Wuref
(uref − u∗

ref )
2 dx

J∂yC =
1
2

∑
n

∫∫
Ω

W∂yCn

(
∂Cn
∂y

− ∂Cn
∂y

∗)2

dz dx

JŜC =
1
2

∑
n

∫∫
Ω

WŜCn
(ŜcCn)2 dz dx

JŜq =
1
2

∑
n

∫∫
Ω

WŜqn
(Ŝqqn)2 dz dx

JŜu =
1
2

∫∫
Ω

WŜu(Ŝuu)2 dz dx

Here, Cn stands for temperature and salinity, Wmn

for their nondiagonal weights. q−H , qτ , and qn are
the residuals of equations (A2) to (A4) and Ŝψ are
the differential smoothness operators that act on the
tracer fields, the tracer residuals, and the velocity field.∫∫

Ω
dx dz denotes integration over the section plane Ω.

Summations are performed over the hydrographic pa-
rameters temperature and salinity, which are labeled by
n (or m).

The model equations (A1) through (A9) can be sum-
marized into an operator M̂ that maps the independent
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model parameter vector p onto the data vector d. The
cost function can be symbolically written as

J =
1
2

(M̂(p)− d)T W (M̂(p)− d). (A10)

Variation of the cost function yields the gradient of the
cost function with respect to p:

∇J =

(
∂M̂

∂p

)T
W (M̂(p)− d). (A11)

In our case, the numerical code of the Jacobi- or adjoint
operator (∂M̂/∂p)T is generated automatically by the
Tangent-linear Adjoint Model Compiler [TAMC, Gier-
ing, 1999]. An iterative algorithm searches for the min-
imum of J , where ∇J = 0.
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