

Natural variability of geochemical conditions, biogeochemical processes and element fluxes in sediments of the CCZ

Jessica Volz¹, José Mogollón², Walter Geibert¹, Pedro Martínez Arbizu³, **Gerard Versteegh¹**, Andrea Koschinsky⁴, Sabine Kasten¹

¹Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven ²Utrecht University, Department of Earth Sciences - Geochemistry, Utrecht ³Forschungsinstitut Senckenberg, DZMB, Wilhelmshaven ⁴Jacobs University Bremen, Department of Physics and Earth Sciences, Bremen

Introduction

During RV SONNE cruise SO239 in March/April 2015 five sites in the area of the Clarion-Clipperton Fracture Zone (CCZ) in the eastern equatorial Pacific were visited as part of the JPI Oceans pilot action "Ecological Aspects of Deep-Sea Mining". Here, we present a comparable study on (1) the redox zonation in the sediments induced by the input flux of organic matter, (2) biogeochemical reactions including the driver of organic matter degradation and (3) diagenetic manganese redistribution and implications for manganese nodule formation.

Methods

Four European exploration license areas including the German BGR area, the InterOceanMetal (IOM) area, the Belgian GSR area and the French IFREMER area were visited as well as one of the Areas of Particular Environmental Interest

(APEI) and referred to as APEI3 (Fig. 1). Sediment cores were taken using a multiple corer (MUC) for the retrieval of undisturbed surface sediments and a 10 m long gravity corer (GC) which were subsequently sampled and analysed:

	Analysis	Method	Protocol
Onboard	Ex-situ O2	Clark-type electrode (Unisense)	Revsbech (1989)
AWI lab	NO₃⁻, DIC	QuAAtro (Seal Analytical)	
AWI lab	Mn ²⁺	ICP-OES (IRIS Intrepid)	
AWI lab	Total acid digestion	ICP-OES (IRIS Intrepid)	Nöthen and Kasten (2011)
AWI lab	TOC, TS	Eltra CS2000	
AWI lab	Radionuclides	ICP-MS (Element2)	Anderson et al. (2012)

For the determination of organic carbon (OC) oxidation rates, a one-dimensional reaction transport model was used (Boudreau, 1997).

Figure 1: Maps of the study area during RV SONNE cruise SO239 showing the bathymetry of the Pacific Ocean (left), the five investigated areas (right) with sampling locations (white circles) and estimated upper limit in POC flux [mg C_{org} m⁻² d⁻¹] to the seafloor by Lutz et al. (2007) (modified after Vanreusel et al., 2016).

Results and Discussion

the seafloor (Fig. 1) correlate with surface sediment TOC and TS contents: 0.4-0.6 wt% in BGR, IOM, 0.3-0.4 wt% in IFREMER, GSR, ~0.2 wt% in APEI3 (Fig. 2). • The main biogeochemical process during OC degradation is aerobic respiration with diffusive O_2 fluxes within 0.172 and 0.057 mmol m⁻² d⁻¹ (BGR, APEI3). Bioturbation is limited to the upper 7 cm of sediment and 13 cm at the IOM site. Close correlation of TOC, TS and Ba indicate biogenic barite deposition that could be used as paleoproductivity proxy.

productivity and POC fluxes to the seafloor, (2)

• The diagenetic redistribution of Mn in the suboxic zone is caused by the abiotic reduction of Mn oxides (Fig. 2) with no recent suboxic diagenetic formation of nodules.

Table 1: Sedimentation rates, POC fluxes for the model input and modelled POC oxidation rates. Sedimentation rates for the BGR area were published by Mewes et al. (2014). Nodule coverage was derived from nearby box corer stations with a nodule sampling area is 0.25 m². The length of scale corresponds to 10 cm.

sedimentaton rates, (3) abiotic Mn reduction and (4) diffusive upward flux of O_2 from basal sediments

- Productivity ultimately determines the intensity of OC degradation and in turn the consumption of O₂ close to the sediment surface
- Recently, there is no suboxic diagenetic formation of nodules at any site
- The APEI3 site is not representing the natural geochemical setting of the investigated European license areas

References

Revsbech. Limnol.Oceanogr. 34 (2), 474-478 (1989); doi:10.4319/lo.1989.34.2.0474 Boudreau. Springer Verlag. 505 (1997)

Lutz et al. J. Geophys. Res. 112, 1-26 (2007); doi:10.1029/2006JC003706 Nöthen and Kasten. Mar. Geol. 287, 1-4 (2011); doi:10.1016/j.margeo.2011.06.008 Anderson et al. Limnol. Oceanogr. Methods, 10 (2012); doi:10.4319/lom.2012.10.179 Mewes et al. Deep-Sea Res. Pt I 119, 125-141 (2014); doi:10.1016/j.dsr.2014.06.001 Mewes et al. Earth Planet. Sci. Lett., 433, 215-225 (2016); doi:10.1016/j.epsl.2015.10.028 Vanreusel et al. Sci. Rep. 6, 26808 (2016); doi:10.1038/srep26808

Acknowledgements

Thanks to the crew and the scientific party of RV SONNE cruise SO239 for the technical and scientific support. Thanks to Jennifer Ciomber, Benjamin Löffler and Vincent Ozegowski for the analytical support onboard. For the analytical support in the home laboratory and during data evaluation we want to give special thanks to Ingrid Stimac, Olaf Kreft, Ingrid Dohrmann and Gerhard Kuhn.

This project is BMBF-funded (03F0707G) and part of the JPI-O EcoMining-DEU -Ecological Aspects of Deep-Sea Mining.

JPI

HELMHOLTZ **BREMERHAVEN**

Am Handelshafen 12 27570 Bremerhaven Tel. +49471 4831-0 www.awi.de