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A B S T R A C T

The Walvis Ridge is one of the major hotspot trails in the South Atlantic and a classical example for volcanic
island chains. Two models compete about the origin of the ridge: It is either the result of a deep mantle
plume or active fracture zones above mantle inhomogeneities. Among other things crustal information is
needed to constrain the models. Here, we provide such constraint with a 480 km long P-wave velocity model
of the deep crustal structure of the eastern Walvis Ridge at 6◦ E. According to our data the Walvis Ridge
stretches across the Florianopolis Fracture Zone into the Angola Basin. Here, we observe a basement high
and thick basaltic layers covering the oceanic crust and the fracture zone. We found two crustal roots along
the profile: one is located beneath the ridge crest, the other one beneath the northern basement high in the
Angola Basin. The crustal thickness reaches 18 km and 12 km and the lower crustal velocities are 7.2 km/s
and 7.4 km/s, respectively. The bathymetric expression of the ridge along the profile is less pronounced
than closer to shore, which is mainly attributable to the absence of a thick layer of volcanic debris, rather
than to reduced crustal thickness below the basement surface. Therefore, this part of the ridge was never or
only briefly subaerially exposed. The crustal structure suggests that the ridge and the fracture zone formed
independently of each other. The oceanic crust north of the fracture zone, which is buried underneath the
basalt layer, is younger than the reconstructed age of hotspot volcanism of the Walvis Ridge. We interpret
these structures north of the fracture zone to be at least partly a product of late stage volcanism.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Worldwide, volcanic activity appears at hotspots along ocean
island chains far from plate boundaries. The underlying processes
within the Earth’ mantle are still discussed and two models compete
to explain the source for the volcanism: either a deep mantle plume
(Morgan, 1971) or tectonic stress release at fertile areas in the
inhomogeneous upper mantle (e.g. Anderson, 2005).

The Walvis Ridge is one of the most striking bathymetric fea-
tures of the South Atlantic and a classical example for a volcanic
hotspot trail (Fig. 1). This volcanic ridge rises more than 2000 m
above the surrounding seafloor and stretches SW away from the
African continent for over 3000 km to the islands of Tristan da Cunha
and Gough near the Mid-Atlantic Ridge. The eastern part of the ridge
(east of 3◦ E) is a continuous, massive structure, whereas the western
part is a widely distributed guyot province with loosely connected
ridges and scattered seamounts forming a frayed lineament. The

* Corresponding author.
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entire ridge shows a linear age-progression (O’Connor and Duncan,
1990; Rohde et al., 2012) starting with Cretaceous volcanism at its
junction with the African continental margin. The onset of this vol-
canism is interpreted to be closely connected with the opening of the
South Atlantic and the emplacement of continental flood basalts at
∼132 Ma (Renne et al., 1996; Fromm et al., 2015).

The conjugate South American plate shows corresponding
volcanic features, although a massive, elongated ridge like the Walvis
Ridge is missing and the volcanic structures have a different shape.
The Torres Arch (Fig. 1) is the conjugate structure to the eastern
Walvis Ridge and connected to the large Rio Grande Rise via an
indistinct bathymetric high.

Both structures (Walvis Ridge and Rio Grande Rise) form conju-
gate trails of the present day Tristan hotspot (Morgan, 1971). The
variable sizes and shapes of the volcanic provinces are explained
with reference to the changing relative positions of the hotspot and
the Mid-Atlantic Ridge (O’Connor and Duncan, 1990). According to
these models the Torres Arch, Rio Grande Rise and the eastern Walvis
Ridge formed when the hotspot was close to or at the Mid-Atlantic
Ridge. Between 80 and 60 Ma, the Rio Grande Rise and its conju-
gate, the N–S oriented part of Walvis Ridge at 5◦ E, might have been
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Fig. 1. General map of the South Atlantic of our study area showing the main geological structures and magmatic features (orange, after Coffin et al., 2006). Transformation zones
after Moulin et al. (2010) are indicated by dashed lines.

large a igneous province similar to Iceland today. This section of
Walvis Ridge lacks an age progression, implying that it developed as
a product of large scale eruptions covering a broad region (O’Connor
and Duncan, 1990). In contrast, the western seamount province of
Walvis Ridge formed when the Tristan hotspot was well separated
from the Mid-Atlantic Ridge. Therefore, no corresponding volcanism
occurred on the South American plate.

However, some observations are not consistent with predictions
of the plume model and alternative tectonic models for the origin
of Walvis Ridge exist. Hotspots should form age progressive volcanic
chains with active volcanism occurring only at or near the hotspot
location. In contrast to this prediction, earthquake swarms in the
western seamount province of Walvis Ridge have recently been
interpreted as volcanogenic explosions (Haxel and Dziak, 2005). If so,
the large distance to the hotspot location (∼780 km) requires either
a much larger reach of the hotspot then expected or a different origin
for this volcanism.

As an alternative, Fairhead and Wilson (2005) proposed that
changes in intra-plate stress triggered the excess magmatism of the
Walvis Ridge. In this model, fracture zones play an important role as
they separate regions of contrasting stress fields and are locations of
intra-plate stress release. The eastern Walvis Ridge is located directly
south of the Florianopolis fracture zone (Fig. 1, FFZ; also referred to
elsewhere as Rio Grande fracture zone, e.g. Cappelletti et al., 2013;
Heine et al., 2013). The FFZ merges towards the west with the conti-
nental Paraná-Chacos shear zone, a line of major deformation prior to
and during the breakup (Moulin et al., 2010, and references therein).
The FFZ might have had an extensional component during the ini-
tial opening, forming a short-lived spreading ridge with increased
magmatism building the Walvis Ridge (Elliott et al., 2009).

The FFZ and the Walvis Ridge mark a major boundary between
the volcanic and non-volcanic passive margins along the African con-
tinent. By contrast, numerous seismic studies have focused on the

nature of the volcanic margins of South America and Africa (e.g.
Becker et al., 2012; Becker et al., 2014; Hirsch et al., 2009; Bauer et al.,
2000; Fromm et al., 2015), but despite their importance, seismic
data revealing the crustal structure in this region are rare. Here, we
present details of a seismic refraction profile (Fromm et al., 2015)
acquired 600 km west of the Namibian coast that provides new infor-
mation on the crustal fabric underlying a topographically subdued
part of Walvis Ridge. One hypothesis to be checked was that the part
of the ridge with a subdued topography might be underlain by thin-
ner crust, thus indicating several phases of the ridge evolution. The
seismic line also offers the opportunity to gain new insights into the
origin of Walvis Ridge (with regard to the competing hypotheses),
the evolution of the Tristan hotspot and the interplay of hotspots
with fracture zones. These results will be compared with a more east-
erly N–S line acquired across a topographically more pronounced
part of the Walvis Ridge (Fig. 2, P3).

2. Seismic data

The acquired seismic refraction data are part of a larger geophys-
ical experiment conducted by the Alfred Wegener Institute, (AWI) in
January 2011 with the research vessel Maria S. Merian (MSM 17/2)
in cooperation with Geomar, Kiel and the GeoforschungsZentrum,
Potsdam (GFZ). Multidisciplinary studies in this experiment, includ-
ing seismological and magnetotelluric experiments, investigated the
junction of Walvis Ridge and the African continent both with ocean
bottom seismometers and recording stations onshore Namibia (e.g.
Heit et al., 2015; Jegen et al., 2016).

In this study, we present the results of the seismic profile P150
that crosses Walvis Ridge in a NW–SE direction at 6◦ E, ∼600 km
off the Namibian coast (Fig. 2). Here, the ridge forms a bathymetric
saddle 1000 m deeper than at the western end of P100, 200 km
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closer to the coast (Fig. 2). Along the profile P150 the ridge is wider
and the flanks are gentler than at P3 (Fig. 2). Furthermore, the FFZ
marking the northern escarpment of the ridge east of 7◦ E is not vis-
ible along the line. The profile extends 480 km across the ridge and
into the interiors of the adjacent ocean basins. In total, 29 ocean bot-
tom stations equipped with hydrophones (OBH) were deployed at a
nominal spacing of ∼13 km. Two OBH did not record any data. The
data were sampled at either 200 or 250 Hz. The seismic source con-
sisted of 8 × 8l (64l or 3905 cu in total) G-gun clusters operated at

200 bar (2900 psi) in 8 m depth. A shooting interval of 90 s resulted
in 230 m mean shot spacing. Simultaneously, we acquired reflection
data with a short (300 m), four channel streamer at 1000 Hz sample
rate to map the sediment thickness and basement topography.

We filtered the refraction data with a bandpass of 3.5–13 Hz
and applied an automatic gain control (AGC, 1 s window). Occasion-
ally, we used higher frequencies, especially for sediment reflections,
which were clearer at frequencies of up to 100 Hz. Arrival times were
picked with the software ZP (Zelt, 2004). In general the data quality
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Fig. 3. Raw seismic reflection data (top) with interpretation (bottom) and station locations. Three sediment layers can be identified (layers 2–4). The basement (top of layer 5)
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is excellent. Almost all stations show continuous crustal refractions,
crust–mantle reflections (PmP-phases) and a few mantle refractions
(Pn-phases) at offsets up to 100 km. A strong basement reflector is
clearly visible in both the OBHs and the streamer data. For stations
located on the ridge crest, however, the basement is diffuse and its
rough topography scatters the seismic energy. The seismic reflec-
tion data are displayed in Fig. 3 and selected OBH data examples are
shown in Figs. 4–5.

3. Modelling

3.1. Seismic modelling

Before the initial model set up, the OBH stations needed to be
relocated because ocean currents may displace the station while it
sinks to the bottom with the result that its real position on the
seafloor is slightly different from the deployment position. The shift
along the profile line can be calculated from the direct arrivals. For
a correctly located instrument they resemble a reflection hyperbola
with its apex at zero. However if the station is misplaced along

the profile line, the apex is shifted to the left or right. We picked
the direct arrivals, computed a hyperbolic curve fit, and determined
the in-line shift. The mean shift for all instruments was 160 m
(maximum 600 m). Once relocation was complete, we projected the
relocated stations onto a straight profile line without modifying the
original shot-receiver offsets (Zelt and Smith, 1992).

The starting model was constrained by the bathymetry, sed-
imentary layers and the basement topography derived from the
seismic reflection data. Because of the short streamer, we calculated
velocities for the sediments using OBH data. Clear sediment reflec-
tions at the northern flank of the ridge were observed on both the
streamer and OBH recordings and a standard velocity analysis using
normal move outs (NMO) was carried out with the OBH data. The
crustal structure was modelled with the ray-tracing software rayinvr
(Zelt and Smith, 1992) mainly by forward modelling following a
top to bottom approach. Velocities and boundaries were adjusted to
match the observed slopes and onsets. Finally, we inverted the whole
model to obtain error statistics and uncertainty estimates. The final
model consists of 9 layers (Figs. 6, 7): layer 1 is the water, layers 2–
4 represent the sediment layers based on the seismic reflection data
(Figs. 3, 7), layers 5 and 6 are the upper crust, 7 middle crust, 8 lower
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crust and the mantle is layer 9. The top of layer 5 corresponds to the
basement derived from the reflection data. The model reveals thick
crust beneath the ridge crest and a basement high north of the ridge.
At the northern flank of the Walvis Ridge between those regions
with thickened crust, we modelled a local low velocity zone between
layers 5 and 6. More details on the velocities and crustal structure is
given in Section 4.

3.2. Error analysis

The model quality and uncertainty can be estimated from the
normalized w2-value and the travel time residuals. The normal-
ized w2 value depends on the assumed uncertainties for travel time
picks, the residuals of calculated arrivals and the node distribution.
Our final model has a w2 of 0.6 and is therefore well constrained
within the given uncertainties ( the ideal value is 1). The travel time
residuals of 82 ms are within the estimated pick uncertainties of 60
and 150 ms (depending on the signal to noise ratio). Table 1 sum-
marizes the mathematical error analysis for the modelled phases

and stations. Additionally, we estimate the spatial uncertainty of the
model with the ray coverage and the resolution plot (Figs. 8, 9). The
resolution plot displays the diagonal values of the resolution matrix
(values greater than 0.5 are considered well resolved) and reflects
the number of data constraining a parameter. Therefore, the number
and spacing of nodes strongly influence the results of this analysis.
As shown in Fig. 9, our model is well resolved, except for the low
velocity zone (LVZ) at the northern flank of the ridge, where refracted
phases needed to constrain velocities are missing.

Although the Moho topography is well constrained with a good
coverage of PmP and deep refracted phases, the area below the LVZ
at a depth of 14 km is more uncertain. In particular, the transition
around the intersection with the FFZ (Fig. 6, around km 190) seems
to be complex, displaying several intracrustal reflections, which we
could not fit at all stations.

Finally, we tested the reliability of our model by perturbing
velocity and depth nodes and found, that changes of ±0.2 km/s and
±2 km in the lower crust result in model variability within error
bounds and so have to be considered as unresolved.
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(Mohorovičić discontinuity or abbreviated Moho) are plotted with thick black lines. There is no data coverage for the white areas of the model. The red triangles indicate the
locations of the OBH recording stations.

2

2.8

3
3.2

4.4

4.
8

5.4

5.4
5.4

5.6

5.
65.
6

152 154 156 158 160
162

164 166 168 170
172

174 176 178

VE 1:28

NW SE

2

4

6

D
ep

th
 [k

m
]

0 50 150 200 250 300 350 400 450

Distance [km]

2 3 4 5 6 7 8

Velocity [km/s]

1

2
3
4
5

67

Acoustic BasementSediment

Upper Crust

Upper Crust

5.6
5.4

5.4

5.5

5.4

5.6 2.8-2.9
2.5

1.5-1.6

1.9

Sediment-BasaltLVZ

100

Fig. 7. Enlarged part of the final P-wave velocity model (Fig. 6) for the sediment layers and upper crust. Labelling similar to Fig. 6.

3.3. Gravity modelling

After the seismic modelling we derived a gravity model to con-
firm that the modelled crustal structure is consistent with observed
gravity data. We used free air satellite data (Sandwell et al., 2014)

Table 1
Summarized error statistics for the P-wave modelling. Columns show the number of
picks (n), their mean deviation trms and the normalized w2 value for different geolog-
ical units and boundaries. The boundaries summarize reflected phases and the units
main refracted phases (except for the sedimentary layers, which also include some
reflections). The low velocity zone (LVZ) north of the ridge is constrained solely by
reflections from the top and bottom and is therefore relatively poor resolved (see
Fig. 9).

Unit n trms/s w2

Sediments 942 0.070 0.855
Crust 5729 0.074 0.475
Mantle 244 0.094 0.494
Boundary
Moho 2369 0.097 0.558
Basement 517 0.101 1.803
LVZ (top) 65 0.045 0.208
LVZ (bottom) 254 0.092 0.921
Total 10120 0.082 0.607

and modelled the density structure with the software IGMAS (Götze
and Lahmeyer, 1988).

First, we converted the P-wave velocity model to a density
model using the empirical Nafe-Drake velocity-density correlation
of Barton (1986) and Ludwig et al. (1970). We kept the model
as simple as possible and merged sediment layers and layers
with similar densities, which were not constrained by reflections.
Seismically-constrained boundaries were not changed. Since the
gravity modelling software accepts no density gradients, we devided
the seismic layers into polygons accounting for lateral variations and
assigned a density value reflecting the converted velocities. The dif-
ference in water depths of the Cape and Angola basins (1000 m)
initially caused a large difference of the gravity anomaly level
between the two ends of the profile. We added an additional upper
crustal layer with a density of 2.17 cm3 in the Cape Basin, which
resembles the upper oceanic crust with velocities of 2.8-2.9 km/s.
Finally, we inverted the densities while keeping the polygon geom-
etry to minimize the misfit. The maximum change of +0.15 g/cm3

was in the lower crust beneath the Walvis Ridge. All density changes
fall within the range of the velocity–density correlation given by
Barton (1986). Fig. 10 shows the gravity anomaly data and the den-
sity model along the seismic line, which is discussed in detail in
Section 4.4.
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4. Results and interpretation

In this section we describe the final velocity model (Fig. 6) and
interpret the observed velocities and structures (Fig. 11). Selected
data examples with picked arrivals and ray-tracing results are dis-
played in Figs. 4 and 5.

The seismic reflection data and the velocity model reveal the
asymmetric morphology of the Walvis Ridge along the line: the
northern flank of the edifice differs significantly from the south-
ern flank. The wide, northern flank is characterized by a gentle dip
towards a basement high at km 40–100 marking the transition to
the Angolan Basin (Fig. 6). The bathymetry is mirrored by the crust–
mantle topography (Moho) with thickened crust underneath the
ridge crest (∼18 km) and the northern basement high (∼12 km).
Therefore, we divide the profile into the main ridge section around
the peak from km 250 to 360, which resembles the continuation of
the Walvis Ridge, and the northern edifice (km 20–250) that has an
atypical crustal structure and is in an area not classically recognized
as a part of Walvis Ridge based on bathymetry (Fig. 1). Both ends of
the profile, in the Angola and Cape Basins (km 0–20 and 400–480),
show typical velocity-depth functions of oceanic crust as described
by White et al. (1992).

4.1. Sedimentary layers

Based on the seismic reflection data, we modelled three sedi-
mentary layers with a maximum thickness of 1.2 km in the Cape
Basin and velocities varying between 1.6 and 3.1 km/s. The two
upper layers have been modelled with constant velocities of 1.6
and 1.9 km/s and represent unconsolidated deep-sea sediments. The
third sediment layer is laterally variable and represents different
types of sedimentary infills. It disappears completely at basement
highs and velocities ranging between 2.4 and 3.1 km/s. Within this
layer, sediments with the highest velocities of 3.1 km/s fill a base-
ment depression at the northern edifice of the ridge (km 100–150,
Fig. 3), while sediments with the lower velocities of 2.4 km/s overlay
the oceanic crust in the Cape Basin.

4.2. The crustal architecture

Crustal velocities in the Cape Basin resemble those typical
of oceanic crust: The upper 0.5 km thick layer 5 with velocities of
2.8 km/s is therefore likely to consist of pillow basalts, followed by
a layer of sheeted dikes with velocities of 5.0–6.2 km/s and gabbro
in the lower crust (velocities of 6.6 to 7.2 km/s). The total thickness

Fig. 9. Resolution plot for profile 150. The model is well resolved in the lower crust (values above 0.5, light grey, Zelt and Smith, 1992; Lutter et al., 1990). The lower resolution
north of the ridge (LVZ) is due to a velocity inversion, which does not produce refracted waves and is therefore only constrained by reflections.
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of the igneous crust is 7.4 km, which is normal for 59–127 Ma old
oceanic crust (White et al., 1992).

The upper crustal velocity of 2.8 km/s is remarkable. Such a veloc-
ity is in the range of oceanic Layer 2A, but unusually slow for a 59–
127 Ma old oceanic crust (White et al., 1992). It is possible that we
miss-interpreted the S-wave of layer 6 (Vp= 5.0 km/s ⇒ Vs= 2.88
km/s) as the refracted P-wave of layer 5. But the model is inconsistent
with a velocity of 5.0 km/s in layer 5 and requires slower veloci-
ties beneath the basement. Such layers are known as hidden layers
and a common problem in seismic refraction data. However, gravity
modelling supports the existence of a low density/low velocity layer
in the upper crust of the Cape Basin. Sediments could be mixed with
pillow basalts and reduce the seismic velocity to 2.8 km/s.

The thickness of the oceanic crust north of the ridge in the Angola
Basin is not as well constrained. Since the experiment design did
not anticipate the anomalous crust extending that far, no station
was placed on normal oceanic crust. Only the far offsets of the
northernmost station cover this region. However, Moho reflections
constrain the crustal thickness of 7.2 km. Here, crustal velocities

range from 5.2 km/s in the upper crust to 7.4 km/s at the Moho. The
lower crustal velocity is higher than for normal oceanic crust but this
should not be over interpreted due to the sparse data coverage and
missing reversed shots.
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Fig. 11. Geological interpretation of the velocity and density model.
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4.2.1. The ridge crest
The rough basement at the ridge crest (km 250 to 300) is only

defined by a weak, discontinuous reflector indicating a small veloc-
ity contrast between the basement rocks and the overlying material
(Fig. 3). Additionally, a few seamounts disrupt the basement topog-
raphy at km 250, 270 and 300. Upper crustal velocities at the
ridge range between 4.4 and 5.6 km/s and display moderate lat-
eral heterogeneities. Seismic velocities can be an indicator for the
water depth of volcanic eruptions. Deep water is suggested by the
absence of large amounts of volcaniclastic material (velocities less
than 4.0 km/s, Hill and Zucca, 1987) , which result from explo-
sive eruptions near the water surface as observed around many
seamounts and volcanic islands e.g. Louisville, the Marquesas and
Canary Islands (Contreras-Reyes et al., 2010; Wolfe et al., 1994;
Watts et al., 2006). Thus, we speculate that this part of Walvis Ridge
was never or only briefly near or at the surface during its active vol-
canic phase. The mid- and lower crustal velocities range between
6.2 and 7.2 km/s. Such velocities are typical of the gabbroic layer
of igneous crust. The main ridge is not characterized by the excep-
tionally high velocities (> 7.2 km/s) occasionally observed at other
hot spot trails (e.g. the Ninetyeast Ridge, Grevemeyer et al., 2001) or
under the Walvis Ridge more close to the Namibian margin (Fromm
et al., 2015).

4.2.2. The northern edifice
The northern flank of the ridge (km 100–250) between the crest

and the basement high is characterized by a strong and smooth
basement reflector and elevated seismic velocities (5.1–5.6 km/s)
in the upper crust (layer 5). Such basement velocities are typical
of basalts, although too high for the pillow basalts seen in normal
oceanic crust. The underlying layer 6 is characterized by slightly
lower velocities of 5.4 km/s. Low velocity zones (LVZ) generate no
refracted waves and cause a time gap in the travel time curve, which
is observed at all 11 OBHs along the northern flank. The thickness
of this LVZ increases towards the ridge crest, where we observe a
maximum time gap of 600 ms corresponding to 3.5 km thickness
(Fig. 7, km 240). Within this layer 5, we observe a sequence of strong
reflections with the same or slightly stronger move out (Fig. 5).
This reflection pattern might be caused by an alternating layering

of basaltic rocks and sediments, volcaniclastic material or pillow
lavas (Inoue et al., 2008), which can amplify amplitudes for certain
frequencies due to constructive wave interference (Braile and Smith,
1975). We therefore interpret the upper crust as an inter-layered
basalt–sediment sequence. Velocities of 6.2–7.2 km/s characterize
the ∼ 5.6 km thick middle and lower crust beneath the northern
ridge flank (layers 7 and 8, Fig. 6). The thickness and shallow veloc-
ity gradient indicate gabbroic material of oceanic crust. We therefore
interpret the crust beneath the LVZ (km 100–230) as oceanic crust
that predates the activity of the hotspot in this region. Within this
pre-hotspot crust we observe slightly lower velocities (6.1–7.0 km/s)
at km 200 and a modest decrease in Moho depth (∼ 2 km). This is
the position where the Florianopolis Fracture Zone (FFZ) intersects
the profile and we interpret this structural change as indicating the
effects of the fracture zone. To sum up, we interpret the northern
flank to consist of a thick lava-sediment layer (possibly lava flows)
covering older oceanic crust and the FFZ.

4.3. Mantle

The mantle seems to be homogeneous with a constant velocity
of 8.0 km/s, which is common for oceanic lithosphere (White et al.,
1992). Although the Walvis Ridge is derived from melting within
the mantle, we do not observe any velocity variations or anisotropy
beneath the ridge. This result might be biased by the few Pn arrivals,
which are visible in the data.

4.4. Density model

The free air anomaly values vary from −18 mGal to +25 mGal
along the profile (Fig. 10). The minimum is located south east of the
crustal root of the Walvis Ridge. The northern basement high, the
northern flank and the ridge crest (km 40–340) are characterized by
positive anomalies of 10, 23, and 25 mGal with a local minimum at
km 190, where the free air anomaly drops from 23 to 6 mGal. Here,
the FFZ intersects the profile and the model reveals a LVZ (Fig. 12)
with decreased seismic velocities and reduced densities in the upper
and lower crust (Fig. 10).
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Overall, we obtain a good long wavelength fit, with deviations of
5 mGal. Misfits reach ±5 mGal at the northern flank of the ridge (km
50 to 190), where we observed the low velocity zone. The shorter
wavelength misfits in this region reach up to 10 mGal, especially at
the ridge crest (km 220 to 290). The basement topography has a large
influence on the modelled gravity anomalies and we suggest that
the poorly constrained geometry from the reflection seismic data is
responsible for the large misfit.

Seismic velocities in the lower crust beneath the ridge (km 270-
370, 7.2 km/s) are slightly decreased compared to the basement high
(km 50 to 100, 7.5 km/s). This is consistent with the modelled den-
sities of 3.005 cm3 beneath the ridge and 3.033 cm3 beneath the
basement high (Fig. 10).

Overall, the gravity modelling confirms the crustal structure of
the seismic model, with high misfits only in areas of poor seismic
resolution. Because we do not have more constraints, we chose not
to fit those areas by changing the model geometry.

5. Discussion

In this section, we compare the crustal structure modelled in pro-
file P150 with seismic data at other profiles along the Walvis Ridge
and other hotspot trails. The first two parts of the discussion are lim-
ited to the crustal structure beneath the main ridge. The structures
north of the FFZ are discussed in the geodynamic framework and,
last, the FFZ and its interplay with the hotspot is analysed.

5.1. The Walvis Ridge and hotspot tracks worldwide

The morphology of Walvis Ridge at the profile location is less
prominent than closer to shore. The water depth at the ridge crest
is 3200 m, about 1000 m deeper than at the western end of P100
(Fig. 2). However, a comparison of the basement depth at the ridge
crest (km 300) with the western end of P100, 200 km away, does
not reveal a significant change in depth (Fromm et al., 2015). The
basement at P100 is in 4.4 km depth, while the basement at P150
lies at 4.0 km. The difference in water depth is therefore caused by
variations in the sedimentary cover. Drilling at the eastern Walvis
Ridge (DSDP Leg 40, Site 363, Fig. 2) revealed shallow water com-
ponents in the lowermost layer indicating that this part of the
ridge was emplaced subaerially or in shallow water (Bolli et al.,
1978). Phreatic eruptions under such conditions produce volcani-
clastic material, which likely accumulated in moats between the

buried seamounts along line P100. As such materials appear from
the seismic data to be absent along profile P150, the different bathy-
metric appearance of the ridge might be explained by a contrasting
eruption style that is related to water depth: deeper submarine
eruptions along P150 might have generated a less pronounced bathy-
metric feature. Beneath the sedimentary cover, the crustal thickness
only differs slightly outside the model uncertainty: 21 km ±2 km
at 9◦ E (P100, Fromm et al., 2015) and 18 km ±2 km at 6◦ E
(this study). Jokat and Reents (2017) observed a more pronounced
decrease in crustal thickness, to 13 km in the western guyot province
at 3◦ W, ∼1800 km further SW. This crustal thinning is consistent
with a proposed general decline in the hotspot activity (Gallagher
and Hawkesworth, 1994).

A comparison of the crustal velocity-depth function at Walvis
Ridge with other hotspot trails reveals strong differences in crustal
thickness and seismic velocities, but a common shape, with a steep
velocity gradient in the upper crust and a shallow gradient in the
lower crust (Fig. 13). This is similar to the crustal structure of normal
oceanic crust. The steep upper crustal gradient relates to the pillow
basalt layer, where compaction with depth causes increasing veloci-
ties, whereas the shallow lower crustal gradient reflects the presence
of more compact gabbros (White et al., 1992). The increased crustal
thickness of the Walvis Ridge is achieved by thickening in both
the upper and lower crust. In contrast, other hotspot trails (namely
the Ninetyeast Ridge and the Cocos Ridge Grevemeyer et al., 2001;
Sallarès et al., 2003) only reveal a thickened lower crust beneath an
upper crust of normal thickness.

5.2. Lower crustal structure

Another significant difference between the individual hotspot
trails is the presence or absence of high seismic velocities in the
lower crust. The seismic velocity and thickness of lower crustal zones
in igneous settings allows conclusions to be drawn about mantle
potential temperature and melt composition (Holbrook et al., 2001).
Unusually thick crust requires unusually high melt production in the
mantle. If this is caused by abnormally hot mantle, the melts pro-
duced will be rich in MgO and will crystallize abundant olivine and
pyroxene to form crust with higher average velocities than at normal
upper mantle temperatures (Farnetani et al., 1996). However, thick
igneous crust can be produced by other means (hydrous mantle,
enhanced convection) and high seismic velocities are not ubiquitous
at hotspot trails. For example, HVLC is absent at the Galapagos trail
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(Cocos and Carnegie Ridge) and the Iceland-Faroe Ridge, whereas
the Ninetyeast Ridge and Hawaii are both underlain by high veloc-
ity lower crustal bodies (Sallarès et al., 2003; Sallarès et al., 2005;
Grevemeyer et al., 2001; Watts and ten Brink, 1989). Importantly,
the production of HVLC can also be related to the depth of initial
melting and thus to the lithospheric thickness and age at the time of
its interaction with the hotspot. (Richards et al., 2013) showed that
high-pressure melting under thick and old lithosphere promotes the
formation of dense ultramafic melts that pond and crystallize at the
Moho with Vp= 7.4 to 8.0 km/s), whereas melts produced under thin
and young lithosphere produce gabbroic rocks with velocities of 6.8
to 7.5 km/s.

The Walvis Ridge in general seems not to be characterized by
exceptionally high seismic velocities in the lower crust (this study,
P100 west, Kessling, 2008). HVLC at the Walvis Ridge has only
been found close to the continental margin in association with the
Etendeka flood basalt province and probably formed during the con-
tinental breakup (P100, P3, Fromm et al., 2015; Planert et al., 2017).
The ages of the Walvis Ridge and oceanic lithosphere east of 6◦ E are
not well constrained, but plate kinematic reconstructions and dating
of dredge samples suggests that the ridge has been emplaced on ∼6–
12 Ma old lithosphere (Pérez-Díaz and Eagles, 2014; Bolli et al., 1978;
Hay and Sibuet, 1984). The absence of lower crust with velocities
higher than 7.5 km/s at this part of the ridge is consistent with rel-
atively young lithosphere age. The slightly higher velocities north of
the FFZ might also be explained by the age difference of oceanic crust.
As discussed in the next section, the volcanic edifice north of the FFZ
is most likely a product of late stage volcanism emplaced fully or
partly ∼30 Ma years after the formation of the Walvis Ridge and the,
at that later time, more mature oceanic crust might have promoted
higher velocities in the lower crust.

5.3. Geodynamic framework

Unfortunately, the timing and geometry of the South Atlantic
opening from M0 to C34 (83.0 to 120.6 Ma, Gee and Kent, 2007)
is not as tightly constrained as for later times because of the lack
of magnetic reversal isochrones during the Cretaceous quiet period.
Reconstructions for this period vary considerably, reflecting the dif-
fering weights given to the remaining plate kinematic constraints
(e.g. Seton et al., 2012; Heine et al., 2013; Pérez-Díaz and Eagles,
2014).

During initial opening, the Sao Paolo Plateau (SPP) was still
attached to South Africa and seafloor spreading north of Walvis Ridge

was focussed at a mid-ocean ridge lying west of it (Mohriak et al.,
2010). Remnants of abandoned ridges in this location have been
interpreted from gravity anomalies at the ‘Abimael Ridge’ (Fig. 1,
Mohriak et al., 2010; Sandwell et al., 2014) and from bathymet-
ric and gravity features at the Rio Grande Rise (Pérez-Díaz and
Eagles, 2014). Successive jumps transferred the spreading centre to
locations nearer to the African coast, eventually detaching the SPP
from the African plate (Fig. 14). The following sea floor spreading
shifted the SPP along the transform fault of the FFZ, leaving the
steep northern escarpment at Walvis Ridge and normal oceanic crust
devoid of abnormal volcanism to the north of the fracture zone (P3,
Fromm et al., 2015; Planert et al., 2017). The exact timing for the
ridge jump varies according to the different authors from 95 Ma
(Seton et al., 2012) to 85 Ma (Fig. 14, Pérez-Díaz and Eagles, 2014).

In this study, we do not find evidence for normal oceanic crust
north of the FFZ in the Angola Basin as observed closer to the coast
(Fig. 2, P3, Fromm et al., 2015; Planert et al., 2017). Along line P3,
the thick crust of the Walvis Ridge abruptly thins to normal oceanic
crust (nearly 30 km within 30 km distance). Instead, we observe a
basement high (km 70) underlain by thickened oceanic crust as well
as a thick layer of basaltic material overlying pre-existing oceanic
crust at km 80–140 (Fig. 11).

The influence of the fracture zone is completely different between
the two profiles. At P3, the fracture zone coincides with dramatic
crustal thinning, whereas the fracture zone has only minor influence
on the velocity structure and Moho topography at P150. A possi-
ble explanation for this contrast is the distance between the fracture
zone and the axis of the Walvis Ridge, defined as the position with
maximum crustal thickness. This distance is only 30 km at P3, but
more than 100 km along P150. We suspect that part of the erupted
material of Walvis Ridge at P3 might have been sheared off and
is today preserved on the South American plate at the Sao Paolo
Plateau.

At P150 the fracture zone is not visible in bathymetry or seis-
mic reflection data. There is only a slight velocity decrease in the
lower crust and a local minimum in free air gravity data where the
FFZ crosses P150. Moreover, the seismic data suggest a thick layer
of basaltic material at this position (Figs. 10, 12). From this, it seems
that the “northern edifice” must have formed after the transform
fault became inactive and the SPP was sheared off. Thus, we suggest
a difference in timing of volcanism and transform faulting between
P150 and the eastern Walvis Ridge at P3. At P3, transform faulting
occurred after the emplacement of Walvis Ridge, possibly removing
parts of the volcanic material, creating a steep escarpment and leav-
ing undisturbed oceanic crust north of it. In contrast, at least some

a) 100 Ma

0 1000

km

0 1000

km

0 1000

km

SPPParaná

Etendeka

b) 90 Ma c) 85 Ma

Fig. 14. Reconstruction of the South Atlantic opening (Pérez-Díaz and Eagles, 2014). Flood basalt provinces are marked in orange, red circle denotes the predicted hotspot location
(O’Connor and Duncan, 1990). The location of line P150 is indicated in b) and c).
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volcanic activity occurred after the transform faulting at P150 and
volcanic rocks of the “northern edifice” covered the fracture zone.
Now, the question arises whether this occurred during emplacement
of the main Walvis Ridge or in a later phase of volcanism.

Reconstructions show that the hotspot was located near P150
at around 100 Ma (O’Connor and Duncan, 1990). At that time the
Angola Basin north of the ridge did not exist and the SPP lay adja-
cent to the north of Walvis Ridge (Fig. 14 a). Contemporaneous
emplacement of the northern edifice with the Walvis Ridge would
require opening of the Angola Basin at that time (100 Ma) but the
most recent reconstruction of the South Atlantic opening predicts
the creation of normal oceanic crust along P150 in the Angola Basin
at around 85 Ma (Fig. 14 c, Pérez-Díaz and Eagles, 2014). There-
fore, the northern edifice would post-date the main eruption by at
least 15 million years. Late stage volcanism is observed at another
hotspot trail, the Ninetyeast Ridge (Grevemeyer et al., 2001). Both
the Ninetyeast Ridge and the Walvis Ridge are aligned with major
transform faults. Reactivation of these fracture zones might have
caused late magmatism in each case. Two seamounts located north
of the FFZ (Fig. 6, km 70) were dredged during the RV Sonne
cruise SO 233 (DR77, DR80; Hoernle et al., 2014). Preliminary results
(Homrighausen, pers.com) indicate that the dredged samples might
have erupted ∼30 Ma after the main eruption phase of Walvis Ridge.

5.4. The influence of the Florianopolis fracture zone

Intraplate stress release at fracture zones above local mantle
inhomogeneities has been suggested as an alternative origin for
linear volcanic chains (Anderson, 2001, 2005). In accordance with
this model, previous studies have proposed the Walvis Ridge as the
site of a failed rift arm or ‘leaky’ fracture zone (Fairhead and Wilson,
2005; Haxel and Dziak, 2005).

Our study revealed parts of the FFZ covered beneath basalts and
an undisturbed crustal root of the Walvis Ridge. Again the exact tim-
ing of events is crucial for its interpretation. The uppermost basaltic
layer is not offset by transform motion and was emplaced after the
active phase of the FFZ in this part of the Walvis Ridge. Fracture zones
are commonly interpreted as weak zones within the crust, which
preferentially become reactivated or focus magmatism. It has been
stated that plumes might utilize existing weak zones as migration
paths to the surface, even if this requires lateral flow over a longer
distance towards the weak zone (Sleep, 2006; O’Connor et al., 2012).

If the FFZ predates emplacement of Walvis Ridge (eliminating
the necessity to invoke late stage volcanism), then it did not focus
magmatism to form the ridge. The decreased seismic velocities and
densities at the FFZ oppose the interpretation of the fracture zone as
a migration path for volcanic material. Furthermore, the crustal root
of the Walvis Ridge lies 100 km distant from the fracture zone and
therefore both, the eruptions at Walvis Ridge and the activation of
the fracture zone, seem to have been localized independently of each
other.

Assuming a different timing of events, the Walvis Ridge might
have been emplaced before the active transform fault, to be followed
by secondary volcanism that obscured the FFZ. In this scenario, the
reactivation of the transform fault might have triggered the late stage
volcanism north of Walvis Ridge.

6. Conclusion

We present a model of the deep crustal structure of Walvis
Ridge at 6◦ E based on a seismic refraction experiment and gravity
modelling. The model shows that the Walvis Ridge consists of
thickened oceanic crust composed of basaltic layers, pillow basalts
and sheeted dikes in the upper crust and gabbroic rocks in the lower
crust. The maximum crustal thickness at Walvis Ridge is 18±2 km

compared with 7±1 km thick oceanic crust of the Angola and Cape
Basins at the opposite ends of the seismic line. Our results show
additional volcanic structures north of Walvis Ridge: a basement
high underlain by 12 km thick igneous crust and basaltic layers cov-
ering old oceanic crust and the Florianopolis Fracture Zone. The
extent of the Walvis Ridge and the area affected by related magma-
tism is therefore larger than previously estimated. The upper crustal
velocities at the ridge crest indicate basaltic rocks with a low degree
of fractionation and suggest that this part of the ridge was emplaced
in a deep marine environment. In the lower crust, we observe no
massive high velocity material similar to findings close to the Namib-
ian coast. The lack of high velocity lower crust is 6◦ E is attributed to
the younger and thinner lithosphere and lower pressure of melting
compared to the continental margin. The finding of magmatic mate-
rial north of the ridge indicates that extensive volcanism occurred
after the Sao Paolo Plateau sheared off the Walvis Ridge along the
FFZ. The basaltic layers cover and obscure the FFZ. Therefore they
might have been emplaced after the active phase of the transform
fault. Recent dredge samples ( Hoernle et al., 2014 ; Homrighausen,
pers.com) indicate that a reactivation of the transform fault might
have triggered a massive late stage volcanism, opening new path-
ways for hotspot melt trapped beneath the lithosphere. This magma-
tism might have overprinted the older crustal fabric. Oceanic crust
(6–7 km thickness) typical for the Angola Basin might only be
present at the very beginning of the line (km 0–20). In general, our
data support a hotspot origin of the ridge and reject a major role of
the fracture zone model in the emplacement of the Walvis Ridge.
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