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Abstract 24	  

Northeastern India experiences extraordinarily pronounced seasonal climate, 25	  

governed by the Indian Summer Monsoon (ISM). The vulnerability of this region to 26	  

floods and droughts calls for detailed and highly resolved paleoclimate 27	  

reconstructions in order to assess the recurrence rate and driving factors of ISM 28	  

changes. We use stable oxygen and carbon isotope ratios (δ18O and δ13C) from 29	  

stalagmite MAW-6 from Mawmluh Cave to infer climate and environmental 30	  

conditions in northeastern India over the last deglaciation (16-6 kyr BP). We interpret 31	  

stalagmite δ18O as reflecting ISM strength, while δ13C appears to be driven by local 32	  

hydroclimate conditions. Pronounced shifts in ISM strength over the deglaciation are 33	  

apparent from the δ18O record, similarly to other records from monsoonal Asia. The 34	  

ISM is weaker during the late glacial and the Younger Dryas, and stronger during the 35	  

Bølling-Allerød and Holocene. Local conditions inferred from the δ13C record appear 36	  

to have changed less substantially over time, possibly related to the masking effect of 37	  

changing precipitation seasonality. Time series analysis of the δ18O record reveals 38	  

more chaotic conditions during the late glacial, and higher predictability during the 39	  
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Holocene, likely related to the strengthening of the seasonal recurrence of the ISM 40	  

with the onset of the Holocene. 41	  

 42	  

INTRODUCTION 43	  

The Asian Monsoon (AM) is characterized by the seasonal reversal of circulation 44	  

between ocean and landmasses throughout South-East Asia, resulting in pronounced 45	  

hydroclimate seasonality in the affected regions. Stalagmite oxygen isotope ratio 46	  

(δ18O) records from the AM realm have provided crucial information on past climate 47	  

conditions in this densely populated region (e.g., Wang et al., 2005; Cheng et al., 48	  

2016a; Eroglu et al., 2016). Pronounced glacial-interglacial variations in AM strength 49	  

are found to be strongly influenced by Northern Hemisphere Summer Insolation 50	  

(NHSI) (Cheng et al., 2009, 2016a; Kathayat et al., 2016), and closely related to 51	  

changes in the North Atlantic (Wang et al., 2001; Yuan et al., 2004). The AM is 52	  

therefore a highly dynamic system susceptible to external and internal forcings, 53	  

calling for precise paleoclimate reconstructions throughout monsoonal Asia to infer 54	  

on future developments under climate change scenarios. 55	  

 56	  

The majority of precisely dated high-resolution reconstructions of past glacial-57	  

interglacial AM variation stem from Chinese caves, providing unprecedented insight 58	  

in monsoonal dynamics over the past 640,000 years (Cheng et al., 2016a). 59	  

Information from the Indian subcontinent, particularly at high temporal resolution and 60	  

chronological precision, is still relatively scarce over these timescales (e.g., Sinha et 61	  

al., 2005; Govil and Divakar Naidu, 2011; Zhisheng et al., 2011; Menzel et al., 2014; 62	  

Kathayat et al., 2016). The Indian Summer Monsoon (ISM), the branch of the AM 63	  

that delivers moisture from the Arabian Sea and Indian Ocean to the Indian 64	  

subcontinent, as well as to the Arabian peninsula (Burns et al., 2002; Fleitmann et al., 65	  

2007), and China (Zhisheng et al., 2011; Baker et al., 2015), delivers ~80% of the 66	  

annual rainfall of these regions, and dominates their hydrological cycle (Sinha et al., 67	  

2007, Breitenbach et al. 2010) (Fig. 1A).  68	  

 69	  

Stalagmite δ18O is a widely applied proxy for monsoonal strength in Asia, and is 70	  

interpreted as reflecting the δ18O of precipitation (Breitenbach et al. 2010, 2015; 71	  

Pausata et al., 2011; Cheng et al., 2016b; Eroglu et al., 2016). As the δ18O signal is 72	  
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governed by a multitude of factors, their relative importance at a specific location 73	  

needs to be carefully assessed in order to correctly interpret paleoclimatic data. 74	  

Isotopic composition of the moisture source, transport length, and the amount of 75	  

precipitation at the site can all affect precipitation δ18O in monsoonal regions, and 76	  

taken together they provide information on monsoonal strength (Breitenbach et al., 77	  

2010; Baker et al., 2015; Eroglu et al., 2016). Cave monitoring efforts and 78	  

simultaneous study of different stalagmite geochemical proxies in parallel often allow 79	  

to more clearly determine the controls on local climate conditions, leading to more 80	  

accurate paleoclimate reconstructions (Baldini, 2010; Oster et al., 2012; Breitenbach 81	  

et al., 2015; Baldini et al., 2016; Cheng et al., 2016b). Stable carbon isotope ratios 82	  

(δ13C) are routinely measured together with δ18O, but have so far rarely been reported 83	  

for records from monsoonal Asia. This is partly due to the more complicated and site-84	  

specific interpretation of stalagmite δ13C, which necessitates thorough understanding 85	  

of the local conditions; δ13C can be influenced by vegetation composition (i.e., C3 vs. 86	  

C4 plants), soil processes, open vs. closed conditions in the karst during carbonate 87	  

dissolution, and isotope fractionation in or above the cave (Fairchild and Baker, 88	  

2012). However, carefully evaluated stalagmite δ13C time series can provide 89	  

important climate information to supplement and extend the interpretation of δ18O 90	  

records, often resulting in a more in-depth understanding of past climate conditions  91	  

(Genty et al., 2003; Cosford et al., 2009; Ridley et al., 2015; Cheng et al., 2016b). 92	  

Particularly interesting is the difference in spatial scale between both proxies: while 93	  

δ18O generally reflects large-scale atmospheric circulation processes (Breitenbach et 94	  

al., 2010; Baker et al., 2015), δ13C is a proxy for local processes and therefore more 95	  

sensitive to changes at local to regional level (Ridley et al., 2015; Cheng et al., 96	  

2016b). 97	  

 98	  

Here we present new sub-decadally resolved δ18O and δ13C data from a stalagmite 99	  

from northeastern (NE) India that covers the interval of the last deglaciation and early 100	  

Holocene (~16-6.5 ky BP). The last deglaciation was a period of rapid and substantial 101	  

global climate change, driven by a ~3.5°C increase in global temperatures (Shakun et 102	  

al., 2012). This resulted in large-scale reorganizations of circulation and weather 103	  

patterns globally, with important repercussions in monsoonal Asia (Dykoski et al., 104	  

2005; Cheng et al., 2009; Ma et al., 2012). This analysis follows long-term studies of 105	  
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the controls on precipitation δ18O (Breitenbach et al., 2010), as well as detailed cave 106	  

microclimate monitoring schemes (Breitenbach et al., 2015), which allow us to 107	  

disentangle local and regional responses to climate change over the last deglaciation.   108	  

 109	  

GEOGRAPHICAL AND CLIMATOLOGICAL SETTING 110	  

Mawmluh Cave is located at 25°15'44''N, 91°52'54''E, 1320 m above sea level on the 111	  

Meghalaya plateau in NE India (Fig. 1). The cave developed in a Tertiary limestone 112	  

butte at the southern fringe of the plateau (Ghosh et al., 2005; Gebauer, 2008), and is 113	  

today mainly covered by grassland. Mean annual air temperature inside the cave 114	  

(18.5°C) is very similar to that recorded at the meteorological station Cherrapunji 115	  

(17.4°C) and in the nearby Mawmluh village (19.1°C). 116	  

 117	  

Hydroclimate in Meghalaya is extremely seasonal, with ~80% of annual precipitation 118	  

falling during the ISM season (June-October; Breitenbach et al., 2010). The 119	  

Meghalaya Plateau is the first morphological barrier for northward-moving moisture 120	  

from the Bay of Bengal (BoB), inducing intense orographic rainfall. Thus, Meghalaya 121	  

is a major water source for the Bangladesh plains, a region frequently flooded during 122	  

summer, e.g., in 1998, when ~60% of the country was inundated (Murata et al., 2008; 123	  

Webster, 2013). Despite having the highest rainfall amount in the world (Prokop and 124	  

Walanus, 2003), low retention capacity, due to the geological conditions on the 125	  

southern Meghalaya Plateau, results in frequent water shortage during the dry season 126	  

(November-May).  127	  

 128	  

MATERIALS AND METHODS 129	  

Stalagmite MAW-6 130	  

The 21 cm long stalagmite MAW-6 was found broken in Mawmluh Cave in 2009 and 131	  

its original position is known only approximately (Fig. 1). The stalagmite displays 132	  

complex brown-grey color variations, with bands up to a few mm wide, but no annual 133	  

laminations. At least three white layers can be discerned which span from the growth 134	  

axis towards the sides of the stalagmite. To verify the mineralogy in MAW-6, three 135	  

samples were analyzed by X-ray diffraction (XRD) using a powder XRD 136	  

diffractometer (Bruker, D8 Advance), equipped with a scintillation counter and an 137	  

automatic sampler at ETH Zurich, Switzerland. 138	  
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 139	  

U-series dating and chronology development 140	  

After cutting the stalagmite lengthwise using a diamond stone saw, 24 U-series 141	  

samples with weights between 88 and 311 mg were milled using an ethanol-cleaned 142	  

stainless steel bit, and subsequently analyzed by multi-collector inductively coupled 143	  

plasma mass spectrometry using a Thermo-Finnigan Neptune in the Minnesota 144	  

isotope laboratory, University of Minnesota. The chemical procedures used to 145	  

separate uranium and thorium for U-series dating are similar to those described in 146	  

Edwards et al. (1987). Uranium and thorium isotopes were analyzed on the multiplier 147	  

behind the retarding potential quadrupole in peak-jumping mode. Instrumental mass 148	  

fractionation was determined by measurements of a 233U/236U spike. The detail 149	  

techniques are similar to those described in (Cheng et al., 2000, 2009) and half-life 150	  

values are those reported in (Cheng et al., 2013). 151	  

 152	  

The age model for MAW-6 was computed for each growth segment by applying a 153	  

cubic interpolation procedure using the COPRA software (Breitenbach et al., 2012). 154	  

COPRA computed 2000 ensemble realizations for both the δ18O and δ13C records, 155	  

from which the median, i.e., the central age for a defined sample depth, was 156	  

calculated. The uncertainty in the age model is defined by the 95% confidence 157	  

intervals, derived using the ±2σ deviation from the median (Breitenbach et al., 2012).  158	  

 159	  

Stable isotope analysis 160	  

1050 samples for stable isotope analysis were milled continuously at 200 μm 161	  

resolution using a semi-automated high-precision drill (Sherline 5400 Deluxe) at ETH 162	  

Zurich. Nine Hendy tests were performed over the length of the stalagmite to look for 163	  

signs of kinetic isotope fractionation effects and, if present, to evaluate potential 164	  

changes in the intensity of kinetic fractionation through time (Suppl. fig. 1). For this, 165	  

carbonate samples were drilled point-wise along a single layer of the stalagmite using 166	  

a 0.3 mm diameter drill bit.  167	  

 168	  

Samples were analyzed for δ18O and δ13C on a Delta V Plus mass spectrometer 169	  

coupled to a ThermoFinnigan GasBench II carbonate preparation device at the 170	  

Geological Institute, ETH Zurich (Breitenbach and Bernasconi, 2011). An in-house 171	  
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carbonate standard (MS2), which is well linked to NBS19 (Breitenbach and 172	  

Bernasconi, 2011), was used to evaluate the runs. All values are expressed in permil 173	  

(‰) and referenced to the Vienna PeeDee Belemnite (V-PDB) standard. The external 174	  

standard deviation (1σ) for both, δ18O and δ13C analyses on the carbonate is smaller 175	  

than 0.07‰.  176	  

 177	  

Because the MAW-6 record covers the period of the last deglaciation, the contribution 178	  

of changes in both sea surface temperature (SST) and sea level due to the melting of 179	  

continental ice sheets to stalagmite δ18O must be considered. To estimate this 180	  

contribution, a linear interpolation of seawater δ18O values (δ18Oseawater) reconstructed 181	  

from a sediment core from the BoB (Rashid et al., 2011) was performed to fit the 182	  

MAW-6 data points. The δ18Oseawater record was subsequently subtracted from the 183	  

measured δ18Ocalcite in MAW-6, to yield an ice volume corrected (δ18OIVC) record 184	  

(Suppl. Fig. 2). It should be noted that this procedure can introduce artefacts, as the 185	  

records are irregularly sampled, and the results should be interpreted with care. 186	  

 187	  

Recurrence quantification analysis 188	  

To infer possible changes in the dynamical regime of the ISM between late glacial 189	  

and early Holocene conditions, we performed a statistical analysis considering the 190	  

deterministic nature of the underlying process (the ISM), encoded by the recurrence 191	  

properties of the δ18OIVC record. We use a measure of complexity, called recurrence 192	  

determinism (DET), which is derived from a recurrence plot, a graphical, binary 193	  

representation of pairs of times of similar values (actually states) within the time 194	  

series (see Supplemental information for further details; Marwan et al., 2007; Ozken 195	  

et al., 2015; Eroglu et al., 2016). DET reveals high values for deterministic processes 196	  

and regular (e.g., cyclic, periodic) variations, whereas more stochastic (i.e., random) 197	  

dynamics lead to low DET values. Moreover, the recurrence analysis is combined 198	  

with the pre-processing TACTS technique that allows detrending regularization of 199	  

irregularly sampled time series (see Supplemental information; Ozken et al., 2015). 200	  

 201	  

The δ18OIVC record was divided into two periods, the late glacial (LG, 16-13 kyr BP) 202	  

and the early Holocene (EH, 9-6.5 kyr BP) and the DET measure were calculated for 203	  

both periods separately (Fig. 8). A statistical test based on a bootstrap approach was 204	  
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performed to evaluate the significance of the variations in the DET measure. This test 205	  

provides a cumulative probability distribution of DET measures corresponding to the 206	  

null-hypothesis that there is no change in the dynamics of the underlying climate 207	  

process. From this test distribution the upper 95% confidence limit can be defined.  208	  

 209	  

RESULTS 210	  

Petrography and Mineralogy 211	  

XRD analysis reveals that stalagmite MAW-6 consists of calcite. The white layers 212	  

described above were identified as dirt layers in the stalagmite. They are well visible 213	  

at the fringes of the respective layers, while the stalagmite tip has been washed clean 214	  

by impinging water droplets (Fig. 1C).  The deposition of silty material on the 215	  

stalagmite surface at these depths might indicate burial of MAW-6 by sediment re-216	  

deposition in the cave, inhibiting further growth. Several buried stalagmites have been 217	  

located in the cave (Suppl. Fig. 3) and sediment migration within the cave passage 218	  

appears to be an important process during high-discharge events of the cave stream. 219	  

However, caution must be applied with this interpretation, since dirt layers can also 220	  

originate from other processes, such as aerosol and dust deposition. 221	  

 222	  

Age model 223	  

MAW-6 grew between ~16 and 6.5 kyr BP. The age model is based on 20 U-series 224	  

dates, with analytical errors between ±16 and ±264 years (Fig. 2 and Table 1). Four 225	  

dating samples contained high amounts of detrital thorium and were excluded from 226	  

the final age model (shown in red in Fig. 2). 227	  

 228	  

Three hiatuses were identified in the depth-age relationship, coinciding with the white 229	  

dirt layers in the stalagmite. User-specified hiatus depths of 69.46 mm, 111.86 mm 230	  

and 147.26 mm from the stalagmite top allowed COPRA to split the age model 231	  

construction into independent age models (before and after the hiatuses respectively). 232	  

This procedure yielded a segmented depth-age chronology for the stalagmite, with 233	  

hiatuses at 10.4-9.6 kyr BP, 11.6-10.8 kyr BP and 13-12.4 kyr BP. The details for the 234	  

age modeling procedure can be found in Breitenbach et al. (2012). 235	  

Using the COPRA procedure, the age uncertainties of the MAW-6 record can be 236	  

transferred from the age to the proxy domain (Breitenbach et al., 2012), which results 237	  
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in a 95% confidence interval of possible proxy values at a given point in time. As a 238	  

consequence, it is not possible to determine the high-frequency variations within the 239	  

bounds of the confidence interval (Fig. 3A). Comparative discussions to other 240	  

paleoclimate records from the AM realm are therefore restricted to the median proxy 241	  

values in MAW-6 derived from the COPRA Monte Carlo modeling and to long-term 242	  

centennial changes. We still show the original MAW-6 isotope data for a tentative 243	  

comparison with other available records in Fig. 7, as this kind of uncertainty is 244	  

common to all paleoclimate records.  245	  

 246	  

The MAW-6 δ18O and δ13C records 247	  

The δ18O profile varies from -8.3‰ to -2.8‰ (Fig. 3A), with heavier values found in 248	  

the oldest part of the record (end of the last glacial), and lighter values in the youngest 249	  

part (the Holocene). Both, the Bølling-Allerød (B-A) interstadial, beginning at ~14.5 250	  

kyr BP with -1.5‰ shift, and the Younger Dryas (YD), between 12.6 and 11.6 kyr BP 251	  

and featuring the heaviest values of the entire record (~-3.5‰), are clearly 252	  

demarcated. However, the exact beginning and the end of the YD in MAW-6 cannot 253	  

be defined, since the interval is bracketed by two hiatuses. The 850-year long hiatus 254	  

that masks the end of the YD is followed by a substantial 4.5‰ decrease in δ18O, 255	  

marking the transition into the Holocene (~9.6 kyr BP). This decrease occurs in two 256	  

rapid stages, characterized by hiatuses, interrupted by an interval (~10.8 - 10.2 kyr 257	  

BP) of relatively constant intermediate values (~-6.5‰). Lowest δ18O values (~-8‰) 258	  

are found during the early Holocene (~9.6 kyr BP), slightly increasing towards the 259	  

youngest part of the record. Our sea-level corrected δ18OIVC record shows that ice 260	  

volume and SST changes affect the isotope signature mainly before the YD, with only 261	  

minor impacts during the Holocene, accounting for ~1/4 (1‰) of the shift between 262	  

deglaciation and Holocene (Fig. 3A). We are therefore confident that the larger part 263	  

(3‰) of the variation in δ18O during the deglaciation is attributable to changes in ISM 264	  

strength. For the following discussion, only the δ18OIVC record is considered. 265	  

 266	  

Compared to the δ18O profile, the δ13C profile is much more uniform, with variations 267	  

ranging between -1.2 and -6.6‰ and without clear trends over time. The heaviest 268	  

values are found during the early part of the record (late glacial-B-A, average -4‰). 269	  

In contrast to δ18O, the YD period is characterized by slightly lighter values than 270	  
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during the late glacial-B-A section (average -4.3‰), whereas the transition into the 271	  

Holocene leads to the most negative values (average -5.2‰ post ~9.6 kyr BP). The 272	  

high-frequency variations in δ18O and δ13C are remarkably similar, but shifts in δ13C 273	  

are generally much more pronounced than in δ18O. The similarity between the two 274	  

records is also reflected by their high correlation (during all periods r > 0.55, Fig. 3B).  275	  

 276	  

A crossplot of δ13C vs. δ18OIVC reveals four distinct clusters (Fig. 4). These clusters 277	  

are mainly influenced by the average δ18OIVC during the different periods, therefore 278	  

we distinguish a Holocene, intermediate (10.8-10.2 kyr BP), YD, and B-A/late glacial 279	  

cluster. The boxplot representation of the datasets in Fig. 4B allows the quantification 280	  

of temporal and proxy-related differences. While a clear distinction of the different 281	  

time periods is apparent in the δ18OIVC dataset, a much larger spread in δ13C values is 282	  

found (Fig. 4B). The YD cluster is characterized by the heaviest δ18OIVC values of the 283	  

entire record, while δ13C is slightly lighter than during the late glacial. A trend 284	  

towards progressively lighter δ18OIVC values is found between the YD, intermediate, 285	  

and Holocene clusters, while intermediate δ13C values are slightly heavier than during 286	  

the YD (Fig. 4B).  287	  

 288	  

The Hendy tests carried out throughout MAW-6 show evidence for kinetic 289	  

fractionation during the YD and late glacial, while (near-)equilibrium conditions seem 290	  

to have prevailed during the B-A and the Holocene (Suppl. Fig. 1). Kinetic effects are 291	  

identified by strong correlations between δ18O and δ13C, as well as enrichment in the 292	  

heavy isotopes with increasing distance from the growth axis (Hendy, 1971). 293	  

 294	  

Determinism of the δ18O record 295	  

The analysis reveals distinctly different DET measures for the LG (DET=0.663 and 296	  

inside the confidence interval) and the EH (DET=0.736, and outside the confidence 297	  

interval) (Fig. 8). A high DET measure indicates a more predictable, i.e., a less 298	  

chaotic, regime, while the opposite holds true for low DET measures. 299	  

 300	  

DISCUSSION 301	  

The influence of karst processes on stalagmite stable isotopes in Mawmluh Cave 302	  
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Karst processes at Mawmluh Cave are driven by the seasonal cycle in regional 303	  

hydrology (Fig. 5). Precipitation δ18O becomes increasingly lighter during the ISM 304	  

months, and reaches the most negative values during the late and post ISM (August-305	  

October) (Breitenbach et al., 2010). A direct amount effect can therefore be ruled out, 306	  

as maximum precipitation occurs earlier in the ISM season (July-August). Instead, 307	  

precipitation δ18O in Meghalaya is controlled by: i) the travel distance of the air 308	  

masses, which increases throughout the ISM season, promoting stronger Rayleigh 309	  

fractionation during transport and lighter δ18O at the site (Breitenbach et al., 2010), ii) 310	  

stronger contribution from isotopically depleted freshwater delivered to the BoB 311	  

during the late ISM (Sengupta and Sarkar, 2006; Singh et al., 2007; Breitenbach et al., 312	  

2010), and iii) isotopic depletion of rainwater during large rainstorms (amount effect 313	  

sensu Dansgaard, 1964) (Lawrence et al., 2004; Breitenbach et al., 2010; Baker et al., 314	  

2015). These mechanisms all drive precipitation δ18O in the same direction, resulting 315	  

in lighter δ18O during and after the ISM, and heavier values during dry season months 316	  

(Breitenbach et al., 2015; Myers et al., 2015). At Mawmluh Cave, infiltration is 317	  

strongly skewed towards the summer months, and consequently dripwater δ18O is 318	  

biased towards the ISM season (Fig. 5). Still, a clear seasonal cycle in dripwater δ18O 319	  

is observed, with the lightest values occurring during the late ISM months, indicating 320	  

rapid (<1 month) fluid transfer into the cave (Breitenbach et al., 2015) (Fig. 5). 321	  

Dripwater (and stalagmite) δ18O at Mawmluh Cave can therefore be used as a reliable 322	  

ISM strength proxy. 323	  

 324	  

Dripwater δ13C can be influenced by changes in vegetation type above the cave (C3 325	  

vs. C4 plants; Denniston et al., 2001), soil activity (Genty et al., 2006; Scholz et al., 326	  

2012), bedrock dissolution and open vs. closed system conditions in the karst (Genty 327	  

et al., 2001), and prior calcite precipitation (PCP) and fractionation processes in the 328	  

cave (Griffiths et al., 2012; Ridley et al., 2015). At Mawmluh Cave, precipitation and 329	  

consequently vegetation and soil activity (microbial activity and root respiration) are 330	  

at a maximum during the summer months (June-October), resulting in highest relative 331	  

humidity and soil pCO2 during this period. The extremely high amounts of rainfall 332	  

delivered at Mawmluh Cave during the ISM season (max. 13,472 mm between June 333	  

and September; Breitenbach et al., 2015) lead to waterlogging of the soil and karst 334	  

overlying the cave (Breitenbach et al., 2015), most likely resulting in more closed 335	  
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system conditions. Therefore, prior carbonate precipitation (PCP) in epikarst and cave 336	  

is minimized (or even completely absent) during the ISM season. Strong seasonal 337	  

variations in cave air pCO2 are observed as a consequence of seasonal ventilation 338	  

changes (Breitenbach et al., 2015) (Fig. 5). During the dry season months, low cave 339	  

air pCO2 due to strongly reduced rainfall amount above the cave and intensified 340	  

ventilation, leads to enhanced degassing of CO2 from the solution, enriching 341	  

dripwater in 13C (Breitenbach et al., 2015). Moreover, open system conditions prevail 342	  

in the overlying soil and karst, due to seasonal aridity, resulting in low soil activity 343	  

(less input of isotopically light organic carbon to soil water) and promoting PCP (Fig. 344	  

5). All factors taken together, conditions during the dry season result in heavier 345	  

dripwater δ13C in Mawmluh Cave, whereas the opposite holds true for the ISM 346	  

months. Dripwater and stalagmite δ13C is therefore strongly influenced by effective 347	  

infiltration in the soil and tightly connected to local climate conditions.  348	  

 349	  

Interpretation of the MAW-6 isotope records  350	  

We find large variations in δ18OIVC in stalagmite MAW-6 over the period of the last 351	  

deglaciation, with the heaviest values recorded during the late glacial and YD (Fig. 3). 352	  

Considering the controls on precipitation and dripwater δ18OIVC at Mawmluh Cave, we 353	  

interpret the late glacial and YD portions of the record as periods of weaker/shorter 354	  

ISM, accompanied by changes in the circulation regime (i.e., a more proximal 355	  

moisture source), whereas stronger ISM and longer moisture transport paths prevailed 356	  

during the B-A and the Holocene. Changes in both sea surface temperature (SST) and 357	  

sea level due to the melting of the continental ice sheets during the last deglaciation 358	  

resulted in substantial alteration of the isotopic composition of the surface ocean 359	  

water, as well as affecting evaporation and convection from the sea surface (Gadgil, 360	  

2003). The changes in the moisture source affect precipitation and stalagmite δ18O. In 361	  

the BoB, the moisture source for the ISM, a ~3.2-3.5°C increase in SST between the 362	  

Last Glacial Maximum and the Holocene, and a +1.4°C SST shift between the YD 363	  

and the Holocene, have been documented (Rashid et al., 2007, 2011; Govil et al., 364	  

2011). In this region, additional depletion of seawater 18O occurred most likely due to 365	  

freshening of the BoB by increased runoff from precipitation and glacier melt in the 366	  

Himalaya and Tibet.  367	  

 368	  
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The millennial-scale average in MAW-6 δ13C shows much lower variability than 369	  

δ18OIVC over the last deglaciation, but the centennial-scale variations are remarkably 370	  

similar (Fig. 3). It is likely that changes in vegetation density and composition 371	  

occurred between cold/dry glacial and warm/humid interglacial periods. However, 372	  

vegetation changes above the cave as the primary cause for the high frequency 373	  

variation in δ13C can probably be ruled out, as these would require longer time 374	  

periods and would likely be more gradual than the rapid decadal-scale shifts we find 375	  

in MAW-6. Karst processes, namely PCP and kinetic fractionation in the cave, can 376	  

best explain the observed variation in MAW-6 δ13C. We find heavier δ13C values 377	  

during weak ISM periods, as identified in the δ18OIVC record, indicating enhanced PCP 378	  

and kinetic fractionation stemming from drier summer and/or longer winter seasons. 379	  

Periods of strong ISM, on the other hand, are characterized by lighter δ13C values, 380	  

which is in line with more closed system conditions during the wet summers, higher 381	  

cave air pCO2, which subdues kinetic fractionation, and more active vegetation and 382	  

soil.  383	  

 384	  

It is possible that kinetic processes affect stalagmite δ18O as well, precluding 385	  

quantitative rainfall reconstructions, but still allowing qualitative interpretation of 386	  

monsoon strength. In fact, kinetic fractionation would drive stalagmite δ18O towards 387	  

more positive values, as prolonged degassing and possibly evaporation enrich the 388	  

precipitating solution in the heavy isotope, thus increasing the sensitivity of the 389	  

speleothem to record dry periods. Modern dripwater δ18O values directly reflect 390	  

precipitation δ18O values at the site, lending additional confidence to the interpretation 391	  

of stalagmite δ18O as a monsoon strength proxy. Periods of enhanced kinetic 392	  

fractionation in the past can be detected using the Hendy tests. Evidence for kinetic 393	  

fractionation is observed during the YD and the late glacial, periods that we interpret 394	  

as drier, while (near-)equilibrium conditions seem to have prevailed during the B-A 395	  

and the Holocene, when conditions were wetter (Suppl. Fig. 1). These results have to 396	  

be interpreted with care, however, as sampling along a single growth layer is 397	  

extremely difficult when no annual laminae are present. 398	  

 399	  

We can use the complementary information of δ18OIVC and δ13C in stalagmite MAW-6 400	  

to interpret climate variations on supra-regional as well as local scale over the last 401	  
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deglaciation. Clear shifts in average δ18OIVC are apparent during different time periods 402	  

(clusters in Fig. 4), indicating changing ISM strength, related to the moisture source 403	  

and composition upstream of the study site. While shifts in δ13C are less strongly 404	  

expressed, it is still possible to distinguish periods of local aridity/humidity related to 405	  

the amount of effective infiltration in the karst and cave ventilation dynamics. 406	  

Positive correlation between δ18OIVC and δ13C indicates that in general, weaker ISM 407	  

conditions are reflected as locally drier conditions at the study site, either due to 408	  

reduced summer rainfall, or a prolonged dry season (Fig. 4). “Weak-ISM” periods 409	  

(late glacial, YD) are also characterized by a tendency towards heavier δ13C, 410	  

suggesting drier conditions at the cave site, whereas Holocene δ18OIVC and δ13C 411	  

clearly cluster at lighter values for both proxies, indicating strong ISM and humid 412	  

conditions at the study site.  413	  

 414	  

However, a detailed analysis of the relationship between δ18OIVC and δ13C suggests 415	  

that the connection between local climate and large-scale ISM dynamics might be 416	  

more complex. The YD is clearly defined as the cluster with heaviest δ18OIVC values, 417	  

suggesting a more proximal moisture source with little freshwater influence from 418	  

riverine runoff, and an overall weakened ISM circulation (Fig. 4B). Local 419	  

hydroclimate conditions (indicated by δ13C), on the other hand, appear to have been 420	  

rather similar to those during the preceding B-A, but more arid than during the 421	  

succeeding Holocene. This apparent inconsistency (weaker ISM, without increased 422	  

aridity at local level) reflects the different controls on δ18OIVC and δ13C, where 423	  

changes in the moisture source and composition do not necessarily always influence 424	  

local infiltration directly (Cheng et al., 2016b). While δ18OIVC is influenced primarily 425	  

by the ISM during summer months, δ13C is more sensitive to dry conditions, i.e., the 426	  

arid winter months. However, the dry season months in Meghalaya are characterized 427	  

by very dry conditions at present, and it is unlikely that conditions during the YD 428	  

were much different (as drier than dry is impossible). It is thus likely that a change in 429	  

precipitation seasonality during the YD led to a weaker ISM with a more proximal 430	  

rainfall source during the summer months (i.e., heavier δ18OIVC), and at the same time 431	  

a more even distribution of rainfall over the year, resulting in reduced seasonality and 432	  

little effective change in karst processes (i.e., lighter δ13C).  433	  

 434	  
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Comparison to other records from Mawmluh Cave 435	  

To test if MAW-6 indeed reflects climate variations and not just local effects we 436	  

compare the MAW-6 δ18OIVC record to the KM-A record (Berkelhammer et al., 2012) 437	  

and the MWS-1 record (Dutt et al., 2015) from the same cave (Fig. 6). We find good 438	  

visual replication between the three records on centennial time scale when 439	  

recalculating the age models for KM-A and MWS-1 using COPRA (Fig. 6). The 440	  

absolute difference in δ18O values, especially pronounced between MAW-6 and 441	  

MWS-1, is likely related to varying degrees of isotopic fractionation at different drip 442	  

sites in the cave (similar to e.g., Stoll et al., 2015). For more quantitative information, 443	  

the three time series were interpolated to annual resolution and low-pass filtered in 444	  

order to only consider centennial time scale variations. Correlations were then 445	  

calculated by downsampling the data to 50-year resolution. With this approach, we 446	  

find high positive correlations between MAW-6 and KM-A during the period 6.9-9 447	  

kyr BP (r = 0.93), as well as between 9-12.4 kyr BP (r = 0.78, discarding the time 448	  

periods corresponding to hiatuses in MAW-6). Similarly, correlation between MAW-449	  

6 and MWS-1 is positive (r = 0.89). All relationships are highly significant (p < 10−9). 450	  

Overall, this comparison corroborates our interpretation that variations in δ18OIVC in 451	  

MAW-6 are driven by climate. The high resolution and the precise chronology of our 452	  

record could significantly improve the available data from the ISM realm. 453	  

 454	  

Comparison to other AM records 455	  

We chose three high-resolution and precisely dated records from Chinese caves 456	  

(Dongge, Dykoski et al., 2005; Yamen, Yang et al., 2010; Kulishu, Ma et al., 2012), 457	  

the MWS-1 record from Mawmluh Cave, and the NGRIP ice core record from 458	  

Greenland (Andersen et al., 2004) to compare with our MAW-6 δ18OIVC record (Fig. 459	  

7). Comparison of the MAW-6 δ18OIVC record to these reconstructions reveals very 460	  

similar centennial-millennial scale trends over the last deglaciation, further 461	  

corroborating our interpretation of the record as a proxy for ISM strength (Fig. 7). 462	  

However, more subtle differences are apparent as well. For example, whereas the 463	  

other AM reconstructions indicate the weakest summer monsoons during the last 464	  

glacial (until ~14.5 kyr BP), reflecting the pattern found in Greenland ice cores, 465	  

MAW-6 records weakest ISM conditions during the YD (Fig. 7). This is partly related 466	  

to the adopted correction for ice volume and SST, which results in lighter δ18OIVC 467	  
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during the last glacial, but the pattern is also apparent in the original δ18O record (Fig. 468	  

3). This is possibly a reflection of changes in regional seasonality in NE India, with a 469	  

less vigorous ISM fed from proximal moisture sources, together with a wider spread 470	  

of precipitation over the entire year during the YD. Testing this hypothesis requires 471	  

seasonally resolved time series with highly robust chronologies. 472	  

 473	  

In addition, differences appear when comparing the B-A interstadial in MAW-6 to 474	  

other records. Whereas the AM records considered here all show a relatively rapid 475	  

transition at the beginning and the end of the interval, with a plateau of lighter δ18O 476	  

values during the B-A (attributed to increasing insolation; Ma et al., 2012), MAW-6 477	  

shows a pattern of rapid isotopic depletion at ~14.5 kyr BP followed by a gradual 478	  

increase towards YD values that is more similar to the transition recorded in 479	  

Greenland ice cores (Fig. 7). This might hint towards a close connection between NE 480	  

India and the North Atlantic realm, driven by the Westerlies. Evidence from 481	  

paleoclimate records from Central Asia suggests that the AM and Westerly climates 482	  

are tightly connected over glacial-interglacial cycles (Cheng et al., 2016b). Mawmluh 483	  

Cave is located close to the Tibetan Plateau, with frequent influence of dry air masses 484	  

from the Tibetan High during the winter season, and a closer connection to the 485	  

Westerly climate than found at the Chinese cave sites is thus plausible. However, this 486	  

interpretation needs to be cautiously evaluated, due to limited replication with the 487	  

other δ18O record from Mawmluh Cave covering the B-A interval (MWS-1; Dutt et 488	  

al., 2015), possibly related to chronological uncertainties in both records at this time. 489	  

 490	  

The transition into the Holocene in MAW-6, although interrupted by a hiatus, shows 491	  

substantially lighter δ18O values and thus ISM strengthening over time, similar to the 492	  

record from Yamen Cave (Yang et al., 2010) and well-replicated in MWS-1. 493	  

Conversely to the gradually lighter δ18O values found in the Yamen and Dongge cave 494	  

records, however, both reconstructions from Mawmluh Cave show a short plateau of 495	  

intermediate values between ~10.2 and 10.8 kyrs BP. In MAW-6, this interval is 496	  

demarcated by two hiatuses, and therefore direct comparison to other records is 497	  

difficult. This feature in the δ18O records could reflect slow retreat or even a short-498	  

lived advance of the Himalayan glaciers, related to the increase in moisture and 499	  

precipitation (strengthening ISM) at the onset of the Holocene (Meyer et al., 2009). 500	  
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The glaciation in the mountain range and related cold air outflow from the Himalaya 501	  

mountain range would have hampered the intrusion of the ISM somewhat longer in 502	  

NE India. This explanation remains hypothetical however, especially due to the 503	  

scarcity of data from the region. 504	  

 505	  

Dynamical changes in the ISM 506	  

Dynamical regime changes in the ISM between late glacial and early Holocene were 507	  

investigated using recurrence quantification analysis (Ozken et al., 2015; Eroglu et al., 508	  

2016). We find a significant regime transition between LG and EH ISM, with more 509	  

chaotic conditions during the LG, but higher predictability during the EH (Fig. 8). 510	  

Disruption and weakening of the ISM during the LG, with frequent influence from 511	  

Westerly air masses and the Tibetan High, very likely result in less predictable 512	  

conditions. This is similar to findings from complex network analysis of the AM, 513	  

where weaker supra-regional links were found during the cold/dry Little Ice Age 514	  

(100-400 yr BP), suggesting that a weaker ISM is less predictable on a regional scale 515	  

(Rehfeld et al., 2012). During the EH, on the other hand, the strong seasonality 516	  

induced by the ISM would lead to more regular annual cycles in precipitation, and to 517	  

a higher predictability.  518	  

 519	  

CONCLUSIONS 520	  

Stalagmite MAW-6 provides new paleoclimate data from Mawmluh Cave in NE 521	  

India, covering the last deglaciation. We combine decadal-scale δ18O and δ13C 522	  

measurements on MAW-6 to unravel climate change at regional and local scale over 523	  

this period. A substantial post-glacial shift towards more negative δ18O values is 524	  

interpreted as strengthening of the ISM, with maximum expression during the early 525	  

Holocene. This pattern is in agreement with other reconstructions from Mawmluh 526	  

Cave and the AM realm. Both the B-A and YD periods are clearly demarcated in the 527	  

record as stronger and weaker ISM, respectively. δ13C is interpreted as reflecting local 528	  

hydroclimatic conditions, and is generally similar to δ18O, suggesting that a 529	  

weak/strong ISM results in drier/wetter conditions at the study site. An intriguing 530	  

exception to this rule is the YD, where combined δ18O and δ13C analysis suggests a 531	  

reduction in precipitation seasonality, together with weakening of the ISM. Statistical 532	  

time series analysis of the δ18O record reveals a significant regime transition over the 533	  
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last deglaciation, with less predictable ISM during the late glacial, and higher 534	  

predictability during the Holocene, which we relate to the build-up of strong 535	  

precipitation seasonality induced by the ISM. 536	  
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 804	  

Tables 805	  

Table 1: U-series dating results for stalagmite MAW-6. The errors given are 2σ. 806	  
*δ234U = ([234U/238U]activity -1)×1000. **δ234Uinitial was calculated based on 230Th age (T), 807	  

i.e., δ234Uinitial = δ234Umeasured × eλ234xT. Corrected 230Th ages assume the initial 230Th/232Th 808	  

atomic ratio of 4.4±2.2 × 10-6. Those are the values for a material at secular 809	  

equilibrium, with the bulk earth 232Th/238U value of 3.8. The errors are arbitrarily 810	  

assumed to be 50%. ***B.P. stands for “Before Present” where the “Present” is defined 811	  

as the year 1950 A.D. Values are indicated at one decimal place more than significant, 812	  

to avoid rounding errors. Ages excluded from the final chronology are shown in 813	  

italics. 814	  

 815	  

Figures 816	  

 817	  

Figure 1: A) Map with summer climatological conditions in the broader study area. 818	  

The location of Mawmluh Cave in NE India is indicated by the black dot. Other 819	  

discussed cave locations are indicated by the grey dots and arrows (D: Dongge Cave, 820	  

Y: Yamen Cave, K: Kulishu Cave). The dashed line indicates maximum northward 821	  

extent of the Intertropical Convergence Zone (ITCZ), which drives monsoonal 822	  

circulation. Brown arrows delineate dominant ISM circulation patterns, Asian 823	  

Summer Monsoon (ASM) winds are shown in green. B) Map of Mawmluh Cave. 824	  

Stalagmite MAW-6 was found broken in the West Stream (map courtesy of Daniel 825	  

Gebauer). C) Scan of cut and polished stalagmite MAW-6. 826	  

 827	  

 828	  

Figure 2: Age-model of MAW-6 (constructed using cubic interpolation in COPRA). 829	  

The median of the age model is shown in blue, with the 95% confidence intervals in 830	  
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light grey. The U-series ages used to construct the age model are shown in black, 831	  

while the excluded ages are in red. Hiatuses are indicated by dashed black lines. 832	  

 833	  

 834	  

Figure 3: A) δ18O and δ13C records with median and 95% confidence intervals. The 835	  

time periods discussed in this study are indicated at the bottom of the figure (IM: 836	  

Intermediate period, 10.8-10.2 kyr BP, YD: Younger Dryas, B-A: Bølling-Allerød, 837	  

LG: late glacial). Major controls on δ18O (ISM strength) and δ13C (amount of in-cave 838	  

fractionation due to cave air pCO2 and drip rate) are indicated by the bars.  839	  

B) Cross-correlation between δ18O and δ18OIVC vs. δ13C, estimated using kernel-based 840	  

cross correlation analysis (Rehfeld and Kurths, 2014) with the toolbox NESTool 841	  

(http://tocsy.pik-potsdam.de/nest.php).  842	  

 843	  

 844	  

Figure 4: A) δ13C vs. ice volume corrected δ18O (δ18OIVC) relationship in stalagmite 845	  

MAW-6. The record can be subdivided into clusters corresponding to different time 846	  

periods: Holocene (Hol), Intermediate (IM), YD, and B-A and late glacial (B-A/LG). 847	  

All clusters show high degrees of correlation between δ13C and δ18OIVC, indicated by 848	  

the corresponding r values (same values as in Fig. 3B). Arrows indicate the direction 849	  

of the main forcings (dry season aridity and ISM strength). B) Boxplots for δ18OIVC 850	  

and δ13C (top and bottom panel respectively). Boxes are defined by the median (red 851	  

line) and delimited by the 1st and 3rd quartile. Whiskers define the lowest and highest 852	  

value within 1.5 times the inter quartile range of the cluster. Outliers are indicated by 853	  

red crosses.  854	  

	  855	  
	  856	  
Figure 5: Schematic of the factors influencing isotope signals at Mawmluh Cave. Data 857	  

is derived from monitoring studies at the cave site (Breitenbach et al., 2015), and 858	  

precipitation data is from the Indian Meteorological Department Station Cherrapunji. 859	  

	  860	  
 861	  

Figure 6: Comparison of stalagmite δ18O records MAW-6 (blue), MWS-1 (orange, 862	  

Dutt et al., 2015) and KM-A (purple, Berkelhammer et al., 2012). Proxy uncertainties 863	  

(95% confidence intervals), as calculated by COPRA, are shown in light shading. 864	  
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 865	  

 866	  

Figure 7: Comparison of MAW-6 δ18OIVC to δ18O records from the ISM and broader 867	  

AM regions, as well as to the NGRIP Greenland ice core record. MAW-6 reflects and 868	  

corroborates previous reconstructions from the Asian monsoon region showing the 869	  

weakest ISM after the deglaciation occurring during the Younger Dryas, and stronger 870	  

ISM during the preceding Bølling-Allerød, as well as during the Holocene.  871	  

 872	  

 873	  

Figure 8: Results of the TACTS analysis on MAW-6 δ18O. The cumulative 874	  

probability distribution established through 5000 random realizations of DET measure 875	  

is shown by the blue line, with gray shading indicating the 95% confidence interval. 876	  

The late glacial (LG) and early Holocene (EH) are characterized by distinct DET 877	  

measures (0.663 and 0.736, respectively). While the LG is within the 95% confidence 878	  

interval, the EH is outside, highlighting the high predictability of the ISM during this 879	  

period.  880	  
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