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Abstract Spring melt pond fraction (fp) has been shown to influence September sea ice extent and, with a
growing need to improve melt pond physics in climate and forecast models, observations at large spatial
scales are needed. We present a novel technique for estimating fp on sea ice at high spatial resolution from
the Sentinel-1 satellite during the winter period leading up to spring melt. A strong correlation (r = �0.85) is
found between winter radar backscatter and fp from first-year and multiyear sea ice data collected in the
Canadian Arctic Archipelago (CAA) in 2015. Observations made in the CAA in 2016 are used to validate a fp
retrieval algorithm, and a fp prediction for the CAA in 2017 is made. The method is effective using the
horizontal transmit and receive polarization channel only and shows promise for providing seasonal,
pan-Arctic, fp maps for improved understanding of melt pond distributions and forecast model skill.

Plain Language Summary Recent and well-documented changes in Arctic sea ice have introduced
the need for timely and accurate seasonal forecasts of ice conditions. Seasonal forecasts of ice conditions will
reduce the risks to humans and help preserve the fragile Arctic ecosystem by preventing accidents and spills.
Recent studies have shown a link between the amount of surface meltwater flooding that occurs on sea ice
in the spring, termed melt pond fraction, and the extent of sea ice that remains at the end of summer.
This link is due to the ability of surface meltwater to absorb more sunlight compared to bare ice and snow.
This study provides a new way to estimate the amount of surface meltwater flooding expected to occur on
the sea ice in spring, using satellite data collected during the winter period. The results presented here
provide a key link between winter and late summer sea ice conditions that will enhance the ability of
forecasters to make accurate seasonal predictions several months in advance of the active summer period.

1. Introduction

The new Arctic sea ice regime is characterized by large declines summer ice extent in recent decades that
have resulted in a shift from predominantly thicker multiyear sea ice (MYI) to thinner, seasonally decaying,
first-year sea ice (FYI) (Maslanik et al., 2011; Meier et al., 2014; Stroeve et al., 2014). As sea ice acts as a barrier
between the atmosphere and ocean, less (or thinner) ice is linked to increased radiative forcing, longer melt
seasons, atmosphere and ocean effects, ecosystem changes, and threats to livelihoods of indigenous com-
munities (Laxon et al., 2003; Markus et al., 2009; Perovich, Light, et al., 2007; Perovich & Polashenski, 2012;
Pistone et al., 2014). Uncertainties regarding impacts of these changes in the Arctic under future warming
scenarios, as well as increased economic interest in the region and commensurate risks to humans and the
fragile Arctic ecosystem, have motivated efforts to improve sea ice predictions on seasonal to decadal time-
scales (Eicken, 2013; Stroeve & Notz, 2015).

A critical component of the annual sea ice cycle and key feature required for skillful predictions of ice condi-
tions is the formation of surface melt ponds in spring. Melt ponds form on the impermeable sea ice surface,
reducing the areal albedo and enhancing heat uptake and melting rates (Fetterer & Untersteiner, 1998;
Langleben, 1969; Maykut & Perovich, 1987). Melt ponds also allow light to penetrate the sea ice by 2–3 times,
stimulating under ice productivity and further promoting melt (Arrigo et al., 2012; Inoue et al., 2008; Light
et al., 2008; Morassutti & LeDrew, 1996). The physics of melt pond formation and evolution are well studied
at the in situ scale (Eicken et al., 2002; Polashenski et al., 2012) but poorly understood at larger scales due to
limitations on their detectability. For example, optical remote sensing techniques are limited by cloud cover

SCHARIEN ET AL. MELT POND FRACTION PREDICTION FROM SAR 1

PUBLICATIONS
Geophysical Research Letters

RESEARCH LETTER
10.1002/2017GL075547

Special Section:
The Arctic: An AGU Joint
Special Collection

Key Points:
• A novel approach to estimate spring
melt pond fraction from winter
Sentinel-1 backscatter is developed

• The correlation between backscatter
and melt pond fraction is strong at
r = �0.85

• Large-scale maps of predicted spring
melt pond fraction months in advance
are possible

Supporting Information:
• Supporting Information S1
• Data Set S1
• Data Set S2
• Data Set S3

Correspondence to:
R. K. Scharien,
randy@uvic.ca

Citation:
Scharien, R. K., Segal, R., Nasonova, S.,
Nandan, V., Howell, S. E. L., & Haas, C.
(2017). Winter Sentinel-1 backscatter as
a predictor of spring Arctic sea ice melt
pond fraction. Geophysical Research
Letters, 44. https://doi.org/10.1002/
2017GL075547

Received 5 SEP 2017
Accepted 19 NOV 2017
Accepted article online 27 NOV 2017

©2017. The Authors.
This is an open access article under the
terms of the Creative Commons
Attribution-NonCommercial-NoDerivs
License, which permits use and distri-
bution in any medium, provided the
original work is properly cited, the use is
non-commercial and no modifications
or adaptations are made.

http://orcid.org/0000-0002-2761-4809
http://orcid.org/0000-0003-3474-6989
http://orcid.org/0000-0002-4848-9867
http://orcid.org/0000-0002-7674-3500
http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007
http://dx.doi.org/10.1002/2017GL075547
http://dx.doi.org/10.1002/2017GL075547
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007/specialsection/ARCTICJOINT
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007/specialsection/ARCTICJOINT
http://dx.doi.org/10.1002/2017GL075547
http://dx.doi.org/10.1002/2017GL075547
http://dx.doi.org/10.1002/2017GL075547
http://dx.doi.org/10.1002/2017GL075547
http://dx.doi.org/10.1002/2017GL075547
http://dx.doi.org/10.1002/2017GL075547
http://dx.doi.org/10.1002/2017GL075547
http://dx.doi.org/10.1002/2017GL075547
http://dx.doi.org/10.1002/2017GL075547
mailto:randy@uvic.ca
https://doi.org/10.1002/2017GL075547
https://doi.org/10.1002/2017GL075547


(Rösel et al., 2012; Tschudi et al., 2008). A link between the spring melt pond fractional coverage, or pond frac-
tion (fp), and the September minimum sea ice extent has been recently demonstrated (Schröder et al., 2014),
prompting the need for better understanding of seasonal and spatial variations in fp and the inclusion of melt
pond physics in climate and forecast models. Consideration of fp as a potential source of initialized predic-
tions that, like sea ice thickness (Day et al., 2014), may lead to longer lead times in accurate seasonal predic-
tions must be given. Regional fp estimates will also help assess the underestimation of sea ice concentration
from passive microwave data.

Sentinel-1 (S1) is an ongoing constellation mission with two satellites, S1A (2014 to present) and S1B (2016 to
present), sharing the same near-polar orbital plane with a 180° orbital phasing difference. S1 provides vir-
tually complete coverage of the Arctic sea ice every 6 days from C-band synthetic aperture radar (SAR)
(Torres et al., 2012). Here we develop a novel approach using S1 backscatter and image texture measure-
ments acquired during late winter conditions to provide a representative seasonal estimate of fp expected
within a few weeks after melt onset, since several feedback processes associated with melt will be initialized
by conditions in this early period. Our approach, which isolates internally coherent, and externally discrete,
zones of sea ice, is used to compare backscatter/texture and fp and to create simple models for estimating
fp in advance of melting conditions. We apply the method over the entire Canadian Arctic Archipelago
(CAA), which is a difficult region for climate models to resolve, providing fp prediction maps for 2016 and
2017, and then discuss limitations of the approach.

2. Data and Methods
2.1. Data Description and Image Processing

Data used for development of fp prediction models were collected from north of the Victoria Strait portion of
the Northwest Passage, approximately 250 km northeast of the community of Cambridge Bay, Nunavut, in
2015 (Figure 1). Data for validating the fp prediction models were collected in the south portion of Victoria
Strait in 2016 (Figure 1). The area normally contains a mixture of thermodynamically grown FYI, deformed
FYI, and MYI that are landfast from winter through the melt stages that lead up to the ice breakup and open
water seasons (Haas & Howell, 2015).

Two consecutive S1 Extra Wide swath mode (EW) SAR scenes from the same orbit track were acquired on 5
April 2015, during cold, dry snow and ice conditions (Figure 1). The EWmode was designed for maritime use,
particularly for imaging sea ice, with a 400 km wide swath and 20 m by 40 m range by azimuth resolutions
(Torres et al., 2012). EW scenes comprise five subswaths spanning an incidence angle range of 19° to 47°.
Scenes used here were acquired in dual-polarization horizontal transmit and receive polarization + horizontal
transmit and vertical receive polarization (HH + HV) format and had been processed to Level-1 ground range
detected format prior to delivery. Two cloud-free satellite GeoEye-1 (GE) visible-near-infrared image products
of FYI-dominant andMYI-dominant sea ice zones of 72 km2 and 118 km2 size were collected on 25 June 2015,
during the melt season. Each GE image product contained four channels between 450 and 920 nm at 1.7 m
ground sample distance and a panchromatic channel at 0.41 m GSD. GE scenes were centered on an airborne
winter survey track. On 19 April 2015, an airborne laser and electromagnetic (AEM) ice thickness survey was
conducted to characterize late winter ice conditions during the period of maximum thickness and to support
the ice type classifications carried out here (Haas & Howell, 2015; Haas et al., 2009). The profile was 718 km
long and included surveys of Peel Sound, M’Clintock Channel, Victoria Strait, and Queen Maude Gulf.
Measurements were spaced approximately 6 m apart, and two 20 km long sections that spatially coincided
with the GE scenes were used (Figure 1).

In addition to the 2015 data used for the fp prediction model development, collocated S1 and GE images in
the Victoria Strait region were acquired in 2016 for validation of the algorithm. A S1 HH + HV scene was
acquired on 9 April 2016, also during cold, dry snow and ice conditions, and a 100 km2 cloud-free GE scene
was acquired on 21 June 2016, during the melt season (Figure 1).

S1 images were processed by first removing thermal noise using noise estimate values provided in image
annotation data sets. Bands HH and HV were calibrated to gamma nought backscatter, γ0HH and γ0HV, using
the European Space Agency Sentinel-1 Toolbox v1.1.1. Gamma nought was used instead of the more
common sigma nought since it is less sensitive to the undesirable influence of radar incidence angle on
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brightness levels (Small, 2011). This incidence angle effect was still apparent at near- and far-range extremes
in γ0 calibrated scenes, so data imaged at incidence angles below 26° and above 42° were eliminated.
Calibrated γ0HH and γ0HV bands were speckle filtered using the Lee Filter and a 5 by 5 sliding window.
Second-order image texture parameters contrast (CON), entropy (ENT), and correlation (COR) were derived
from γ0HH and γ0HV bands using the gray-level co-occurrence matrix (GLCM) method developed by Haralick
et al. (1973). These texture parameters were chosen since they cover the three major GLCM-based texture
descriptor groups for quantifying spatial variations in gray levels (contrast, orderliness, and GLCM
descriptive statistics) and are gray-level shift invariant (Clausi, 2002) (Text S1 in the supporting
information). Additional sets of log-transformed backscatter and texture parameters were created by
decibel (dB) and common logarithm (log10) transformations, respectively.

Figure 1. (a) Study area map including extents of GeoEye-1 optical satellite image acquisitions of melt pond covered sea ice in Victoria Strait in June 2015 and 2016.
Extents of GeoEye-1 scenes collected in 2015 over predominantly smooth (b) first-year ice and (c) multiyear ice are shown in orange. (d) Extent of the GeoEye-1 scene
collected in 2016 over smooth and deformed first-year ice is shown in blue. The backgrounds of Figures 1b–1d display the corresponding Sentinel-1 HH-channel
backscatter images. Ice thickness data collected in 2015 are also shown in Figures 1a and 1b. The GeoEye-1 extents constrained the areas by which Sentinel-1
backscatter from cold, dry conditions was compared to spring melt pond fraction during model development (2015) and validation (2016) phases.
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GE scenes were pan sharpened using the Gram-Schmidt algorithm, which fused the visible-near-infrared
bands from each scene with their panchromatic image pair to produce a single-color image with a 0.5 m cell
size (Figure 2). A supervised maximum likelihood approach was used to partition each scene into a binary
classified image composed of snow/ice (0) and melt pond (1). The GE scenes from 2015 have overall classifi-
cation accuracies of 98%. The GE scene from 2016 has an overall accuracy of 83% due largely to misclassified
areas where melt ponds had drained, leaving a variegated and optically blue to blue-white ice surface repre-
senting a transition between pond and drained ice (Figure S1).

2.2. Estimating Melt Pond Fraction From S1 EW SAR

We used image objects (i.e., segments) to compare spatially coincident zones if S1 measured winter backscat-
ter and GE estimated fp from data collected in 2015 and to create fp prediction models. First, the study areas,
defined by the GE image extents, were segmented into discrete image objects using a bottom-up, region-
merging, technique applied to the HH bands of S1 scenes (Benz et al., 2004). Several iterations of the segmen-
tation algorithm were executed until the following criteria were met: (i) segments represented pans or floes
of sea ice most likely to have unique dynamic and thermodynamic histories in agreement with the AEM thick-
ness observations and (ii) in a spatial context, segments were internally coherent and externally heteroge-
neous such that they are unique in terms of roughness, backscatter, and most likely represent sea ice
zones with unique spring melt pond formation mechanisms (Eicken et al., 2004; Polashenski et al., 2012).
As sea ice floes are not always distinctly bounded, a hierarchical approach was used to address the indeter-
minacy of between-object boundaries. Three levels of segmentation were created by varying the spatial scale
of segments; the intermediate scale is used here (Figure S2). Segments were labeled as FYI or MYI. Clear dif-
ferences of thicker and more deformed MYI floes are also visible in the respective thickness histograms
(Figure 1). Segments were used to calculate winter γ0HH or γ0HV and texture, and spring fp, statistics and to esti-
mate correlations using the Pearson’s product-moment correlation coefficient (r). Optimized linear regression
models for predicting fp from backscatter and texture were derived using the stepwise, backward elimination,
method (Text S2).

3. Results and Discussion
3.1. Relationship Between Backscatter and Melt Pond Fraction

Backscatter parameters γ0HH (dB) and γ0HV (dB) are significantly negatively correlated with fp at r = �0.85 and
r =�0.86, respectively (Figures 3a and 3b). Texture parameters CON and ENT from both γ0HH and γ0HV channels
are also significantly negatively correlated with fp and log scaling CON increases the strength of correlation
with fp in either case, γ0HH and γ0HV (Table S1). Regression model outputs and three linear regression equations
for predicting fp are given in Table S2. Regression model r2 are all >0.7 and significant at α = 0.01 (p
value = 0.000). Models 1 and 2 use the HH polarization channel only; 2 is a negligible improvement over 1

(a) (b) (c)

Figure 2. True-color representation of GeoEye-1 scenes of melt pond covered sea ice in the Canadian Arctic Archipelago,
on (a) predominantly smooth first-year sea ice in 2015, (b) predominantly multiyear sea ice in 2015, and (c) a mixture of
smooth and deformed first-year sea ice in 2016.
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by way of inclusion of the texture parameter ENT. ENT is a measure of disorder, such that its inclusion is intui-
tive given that areas of smooth FYI are relatively uniform in terms of gray-level (tone) variations in SAR images
compared to areas including deformation and MYI features (Soh & Tsatsoulis, 1999). Model 3 uses the HV
polarization channel which, for S1, has a much smaller signal-to-noise ratio compared to HH and is differen-
tially influenced by system noise across the subswaths that make up the EW product (Nagler et al., 2015).
These system constraints are likely to limit the application of models requiring the HV channel of S1.

Figure 3c shows the predicted and observed fp obtained by applyingmodel 2 (Table S2) to the validation data
set collected in 2016, as well as to the 2015 data set in a hindcast mode. Model 2 in hindcast mode performs
as expected from Table S2; the RMSE is 0.08, and there is negligible bias. The RMSE of the validation data set is
0.09, and a positive bias of 0.05 is apparent as overestimation of fp in areas ranging from approximately 0.10
to 0.35. This bias is likely due to the difference in sea ice conditions in 2016. The validation data set comprises
several ridges, whereas the original data set comprises discrete FYI and MYI floes. During winter, ridged ice
and MYI both have bright and overlapping signatures in SAR imagery. It is possible that the spring fp on
MYI floes is higher than it is for ridged FYI since the lateral distribution of surface meltwater is even more lim-
ited by ridged features than it is by the weathered hummocks and old melt ponds on MYI. Overall, the data in
Figure 3c indicate a tendency for the model to underestimate fp in areas roughly 0.6 and above. This under-
estimation points to possible lower limit in the sensitivity of γ0HH to variations in the winter ice surface features
that determine fp on smooth FYI. The influence of snow thickness on fp variations for smooth FYI areas with
similar topographical and C-band backscattering characteristics is not captured by the model.

3.2. Spatial Distribution of Melt Pond Fraction

Sea ice fp mapping during the later winter period provides a critical link between the winter ice cover and
conditions during spring/summer periods. Several energy and mass exchange process occurring at the
atmosphere-ice-ocean interface are enhanced by the presence of melt ponds, with rates tied closely to the
magnitude of fp. Predictions of fp provide a measure of the preconditioning of the sea ice cover for energy
uptake, light transmittance, upper ocean productivity, and gas and contaminant uptake driven by air-pond
interaction mechanisms during spring. Furthermore, the ability to make accurate seasonal forecasts of the
September minimum sea ice extent should be improved by fp predictions in the winter leading up to spring.

Predictions of fp in the CAA in 2016 and 2017, derived from S1 EW mode images collected during cold, dry
snow and ice conditions and by applying model 1 (Table S2), are shown along with corresponding ice charts
produced by the Canadian Ice Service (Figure 4). Small portions of the 2016 map, which required data col-
lected when only S1A was operational and coverage more limited, were filled using data outside the inci-
dence angle limit of our algorithm (26° to 42°). This inclusion resulted in a striping effect related to swath
seams, apparent north of Banks and Victoria Islands in the western portion of the CAA. In 2017 S1A and
S1B were both operational, so that the incidence angle criterion was met and no striping occurred. The high
spatial resolution of S1 reveals complex patterns in fp associated with variable distributions of ice types within
the CAA, as well as year-to-year variations at local to regional scales. The overall fp for the CAA decreased from

Figure 3. Correlations (a) between winter γ0HH and spring fp and (b) between winter γ0HV and spring fp. Each sample in
Figures 3a and 3b was derived from a spatially coincident image segment of winter Sentinel-1 image backscatter and
spring GeoEye-1 fp, labeled first-year ice (FYI) or multiyear ice (MYI). (c) Predicted against measured fp for the 2015 data set
operating in hindcast mode and for the 2016 validation data set. Each marker in Figure 3c represents an individual image
segment composed of estimated fp, from a Sentinel-1 image using model 2, compared to measured fp, from a classified
GeoEye-1 image.
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0.43 in 2016 to 0.40 in 2017 (Figure 5a). The apparent decrease in predicted fp is likely from the presence of
more MYI in the region in 2017, notably in portions of the Northwest Passage sea route compared to 2016
(Figure 4b). A 3% overall decrease in fp can lead to a profound change in the energy deposited in the ice-
ocean system (Perovich, Nghiem, et al., 2007). Moreover, Figure 5b shows areas within the CAA where fp
varies by as much as 40% between 2016 and 2017, indicating that much different fp-driven atmosphere-
ice-ocean exchanges were occurring in these areas from year to year.

One caveat concerning this approach is that it does not account for temporal dynamics in fp. It is well known
that fp is not static; rather, it evolves as a function of competing melt rate-driven meltwater inputs, surface
topography-driven hydraulic gradients driving meltwater flow, and drainage processes related to the perme-
ability of the ice (Eicken et al., 2002). The fp evolves differently over time on FYI than it does on MYI. The fp is
generally higher on FYI throughout the ponding season, as meltwater is less topographically constrained and
ponds spread rapidly over larger areas (Grenfell & Perovich, 2004). This is captured by the model presented

Figure 4. Canadian ice service produced ice charts for the Canadian Arctic Archipelago in (a) 2016 and (b) 2017. Predicted
fp for the Canadian Arctic Archipelago in (c) 2016 and (d) 2017, derived from Sentinel-1 images acquired during cold, dry
snow and ice conditions (February to April). Black arrows in the 2016 map indicate locations where the striping effect
caused by portions of swaths falling outside the required Sentinel-1 incidence angle range is apparent.
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here. However, measurements of fp made on undeformed FYI at Barrow, Alaska, and Resolute Bay, Nunavut,
have shown that competing meltwater inputs and outflows on thinner FYI lead to variations in fp by 20 to
50% after the initial formation stage (Eicken et al., 2004; Landy et al., 2014; Polashenski et al., 2012).
Furthermore, melt ponds can completely drain from FYI prior to complete decay or disintegration as
hydraulic connectivity with the ocean is achieved while the hydraulic head is positive. Melt pond water is
more likely to be retained on MYI throughout the ponding season and fluctuations in fp are less dramatic
than for FYI.

Examination of ancillary optical remote sensing data sets illustrated that melt ponds formed 12–14 days prior
to the collection of GE scenes in 2015 used to create the fp prediction model (not shown). In the acquired GE
scenes, we observed fp on FYI to be consistently high and up to 0.73, with no visual evidence of pond drai-
nage. Accordingly, our algorithm applies to the stage of the seasonal melt pond cycle that falls close to
the seasonal peak in fp, where flooding is determined by rapid surface snowmelt combined with meltwater
retention by relatively cold, impermeable ice, and contrasts in fp between FYI andMYI are mainly due to topo-
graphy (Eicken et al., 2002). This is an important period for determining the fate of the ice, as the initial phase
of fp plays a pivotal role in determining local variations in rates of heat uptake, ice microstructure evolution
and vertical water transport, and further stages of pond evolution.

4. Conclusions

A novel approach for estimating the spring melt pond fraction on sea ice during the late preceding winter
period is presented in this study. The approach uses backscatter information collected by the Sentinel-1 mis-
sion, a two-satellite constellation of near-polar-orbiting SARs that provide regular and complete coverage of
the Arctic region at high spatial resolution (40 m pixel spacing). The results of this study demonstrate that the
spring sea ice melt pond fraction can be predicted on a seasonal basis using a forecast method based on the
correlation between winter radar backscatter and spring pond fraction. The simplest model, using calibrated
backscatter from the HH polarization channel only, demonstrated an RMSE of 0.09. This is reasonable consid-
ering that it is in proximity to error bounds of direct estimates of spring melt pond fraction using optical and
radar data (Istomina et al., 2015; Rösel et al., 2012; Scharien et al., 2014). Using data aggregated according to
sea ice segments representing unique zones of sea ice, deriving the relationship between winter backscatter
and spring melt pond fraction was made possible. Predictions of melt pond fraction can be made during the
thermodynamically stable winter period, well in advance of melting conditions and several months prior to
the annual minimum extent. These predictions will lead to enhancements in seasonal forecasts of sea ice con-
ditions by providing a critical link between the winter sea ice cover and its thermodynamic condition during
spring melt. We observed a lower fp in the landfast ice of the CAA in 2017 compared to 2016, which suggests
that this region is more resistant to melt in 2017 and may contribute to a higher summer minimum sea ice
extent compared to 2016. Regional forecasts of pond fraction for pack ice will have to consider the influence
of ice dynamics.

Figure 5. (a) Predicted melt pond fraction distributions for the Canadian Arctic Archipelago in 2016 and 2017 and (b) a dif-
ference map indicating a large amount of spatial variability.
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Sentinel-1 operates in C-band frequency, making it part of a long series of SARs providing sea ice information
used in operational ice charting and mapping studies. Owing to its legacy in sea ice applications, data con-
tinuity including the constellation format is expected beyond the timeline of Sentinel-1, beginning with
the launch of Canada’s RADARSAT Constellation Mission in 2018. Further work will enable a complete assess-
ment of model skill and model refinement by inclusion of more sea ice regimes, particularly the sea ice pack
outside of the Canadian Arctic Archipelago. Implementation of these predictions into seasonal sea ice fore-
casts and outlooks is forthcoming.
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