DWD Offenbach, September 25, 2017

Ensemble Data Assimilation

with the Parallel Data Assimilation Framework PDAF

Lars Nerger

Alfred Wegener Institute for Polar and Marine Research Bremerhaven, Germany

Acknowledgments to: Svetlana Losa, Paul Kirchgessner, Jens Schröter, Wolfgang Hiller, Himansu Pradhan, Michael Goodliff, Qi Tang

- Implementation of data assimilation:
 - Parallel Data Assimilation Framework PDAF
- Application examples:
 - Regional ocean and ocean-biogeochemical data assimilation in the North and Baltic Seas
 - Coupled atmosphere-ocean model

Data Assimilation

Combine Models and Observations

Lars Nerger

Motivation

Losa, S.N. et al. J. Marine Syst. 105 (2012) 152-162

Combine model with real data

- Optimal estimation of system state:
 - initial conditions (for weather/ocean forecasts, ...)
 - state trajectory (temperature, concentrations, ...)
 - parameters (ice strength, plankton growth, ...)
 - fluxes (heat, primary production, ...)
 - boundary conditions and 'forcing' (wind stress, ...)
- More advanced: Improvement of model formulation
 - Detect systematic errors (bias)
 - Revise parameterizations based on parameter estimates

Implement Ensemble Data Assimilation

Parallel Data Assimilation Framework (PDAF)

Computational and Practical Issues

- Running a whole model ensemble is costly
- Ensemble propagation is naturally parallel (all independent)
- Ensemble data assimilation methods need tuning
- No need to go into model numerics (just model forecasts)
- Filter step of assimilation only needs to know:
 - Values of model fields an their location
 - Observed values, their location and uncertainty

Ensemble data assimilation can be implemented in form of a generic code

+ case-specific routines

DAF Parallel Data Assimilation Framework

- PDAF Parallel Data Assimilation Framework
 - a program library for ensemble data assimilation
 - provide support for parallel ensemble forecasts
 - provide fully-implemented & parallelized filters and smoothers (EnKF, LETKF, NETF, EWPF ... easy to add more)
 - easily useable with (probably) any numerical model (applied with NEMO, MITgcm, FESOM, HBM, TerrSysMP, …)
 - run from laptops to supercomputers (Fortran, MPI & OpenMP)
 - first public release in 2004; continued development
 - ~250 registered users; community contributions

Open source: Code, documentation & tutorials at

http://pdaf.awi.de

Offline coupling – separate programs

- Integrate ۲
- Write restart files •

- Compute analysis step ۲
- Write new restart files •

Online-Coupling

Explicit interface

← - - - → Indirect exchange (module/common)

Nerger, L., Hiller, W. Software for Ensemble-based DA Systems – Lars Ner Implementation and Scalability. Computers and Geosciences 55 (2013) 110-118

Extending a Model for Data Assimilation

Parallel Data Assimilation Framework

PDA

2-level Parallelism

- 1. Multiple concurrent model tasks
- 2. Each model task can be parallelized
- Analysis step is also parallelized

Ensemble Filter Analysis Step

Parallel Data Assimilation Framework

- Model und observation specific operations
- Elementary subroutines implemented in model context
- Called by PDAF routines though a defined interface
 - initialize model fields from state vector
 - initialize state vector from model fields
 - application of observation operator **H** to some vector
 - initialization of vector of observations
 - multiplication with observation error covariance matrix

Framework solution with generic filter implementation

PDAF: Design

- Separate model developments from developments in data assimilation methods
- Efficiency:
 - direct online coupling of model and data assimilation method avoids frequent writing of ensembles to files
 - complete parallelism in model, filter, and ensemble integrations
- Simplified implementation:
 - minimal changes to model code when combining model with PDAF (extend model for data assimilation)
 - model not required to be a subroutine
 - control of assimilation program coming from model
 - simple switching between different filters and data sets
- Allows "users" to focus on their application

DAF Parallel Data Assimilation Framework

Assumption: Users know their model

→ let users implement DA system in model context

For users, model is not just a forward operator

→ let users extend they model for data assimilation

Keep simple things simple:

- Define subroutine interfaces to separate model and assimilation based on arrays
- No object-oriented programming (most models don't use it; most model developers don't know it; not many objects would be involved)
- Users directly implement observation specific routines (no indirect description of e.g. observation layout)

Application examples run with PDAF

- FESOM: Global ocean state estimation (Janjic et al., 2011, 2012)
- NASA Ocean Biogeochemical Model: Chlorophyll assimilation (Nerger & Gregg, 2007, 2008)
- HBM: Coastal assimilation of SST, in situ and ocean color (S. Losa et al. 2013, 2014)
- MITgcm: sea-ice assimilation (Q. Yang et al., 2014-17, NMEFIG Beijing)
- MITgcm-REcoM: ocean color assimilation
- AWI-CM: coupled atmos.-ocean assimilation
- + external applications & users, e.g.
- Geodynamo (IPGP Paris, A. Fournier)
- TerrSysMP-PDAF (hydrology, FZ5).85
- MPI-ESM (coupled ESM, IFM Hamburg, S. Brune)
- CMEMS BAL-MFC (Copernicus Marine Service Baltic Sea)
- CFSv2 (J. Liu, IAP-CAS Beijing)

Parallel Performance (FESOM-PDAF)

Use between 64 and 4096 processor cores of SGI Altix ICE cluster (HLRN-II)

94-99% of computing time in model integrations

Speedup: Increase number of processes for each model task, fixed ensemble size

- factor 6 for 8x processes/model task
- one reason: time stepping solver needs more iterations

Scalability: Increase ensemble size, fixed number of processes per model task

- increase by ~7% from 512 to 4096 processes (8x ensemble size)
- one reason: more communication on the network

Very big test case

DAF Assimilation Framework

- Simulate a "model"
- Choose an ensemble
 - state vector per processor: 10⁷
 - observations per processor: 2.10⁵
 - Ensemble size: 25
 - 2GB memory per processor
- Apply analysis step for different processor numbers
 - 12 120 1200 12000

- Timing of global SEIK analysis step 3.9 → N=50 → N=25 3.3 3.2 120 1200. 12000 12 State dimension: 1.2e11 Observation dimension: 2.4e9
- Very small increase in analysis time (~1%)
- Didn't try to run a real ensemble of largest state size (no model yet)

Application Example

Assimilation in the North and Baltic Seas

Operational BSH Model – BSHcmod, now HBM

Observations

- sea surface temperature
 from NOAA satellites
- 12-hour composites
- Interpolated to both model grids
- Observation error: 0.8 °C

Configuration for BSHcmod data assimilation

Local SEIK

	Filter	
N	—	

- Ensemble size
- Forecast length

Assumed data errors

Ensemble Inflation

Localization

Initial ensemble

8 members (trial and error) 12 hours forecast/analysis cycles 0.8°C (trial and error) 5% (trial and error) Update single vertical columns Exponential weight on data errors (e-folding & cut-off at 100km)

best initial estimate from model variability from model run

Same configuration successful in pre-operational tests

Deviation from NOAA Satellite Data

Lars Nerger

Improvement of long forecasts

Lars Nerger

Ensemble Data Assimilation with PDAF

Validation data

- In situ data from MARNET network
- Fixed stations measuring atmosphere and various depths from surface to bottom
- Limited spatial coverage

Lars Nerger

Validation of forecasts with independent data

Losa, S.N. et al. *J. Marine Syst.* 105 (2012) 152-162

HBM and ERGOM models

- HBM is operational at BSH and DMI,
 ERGOM at BSH (currently no data assimilation)
- Model adapted for coastal grids: storage of model fields in vectors of water points (no land mask)
- HBM also used for European Copernicus marine service Baltic Sea (with 4 nested grids; same assimilation framework in testing phase)
- We assimilate into both nested meshes for physics and biogeochemistry

Biogeochemistry: ERGOM model

Grid nesting and data assimilation

Localization in nested grids

Resolution: Coarse Grid = 3 nm Fine Grid = 0.5 nmm Interaction between two different grids at the boundary.

Observation location defines influence radius

Assimilation experiments

- Assimilate only SST
- Ensemble size: 20
- March 1 31, 2012
- Analysis update every 12 hours
- Filter: LESTKF
- Generate ensemble from model variability over 1 month
- Assimilation experiments
 - weakly coupled: correct only physics; let biogeochemical field react dynamically
 - **strongly coupled**: correct physics and biogeochemistry
- For strongly coupled DA
 - treat biogeochemistry in log-concentrations (common practice with chlorophyll)

Comparison with assimilated SST data

- Preliminary results
- RMS deviation from SST observations reduced by ~0.2-0.3 °C

Coarse grid:

- little variation over time
- Increasing error-reductions compared to free ensemble run

Fine grid:

- much stronger variability
- partly larger improvement than in coarse grid
- Forecast errors sometimes reach
 free ensemble run errors

Assimilation Influence on Phytoplankton

- very small changes in weakly-coupled DA case
- strong increase of concentration with strongly-coupled DA

Assimilation Influence on Nutrients

- Very small influence of weakly coupled DA
- Strongly-coupled DA increases concentrations at other locations than Diatoms

Comparison with validation data

- In situ data from DOD and ICES
- Only surface points; 1 month

Nitrate and Ammonium

Nitrate, Ammonium: micro-mole m⁻³

Lars Nerger

Application Example

Implementation of PDAF for coupled atmosphere-ocean data assimilation

Example: TerrSysMP-PDAF (Kurtz et al. 2016)

TerrSysMP model

- Atmosphere: COSMO
- Land surface: CLM
- Subsurface: ParFlow
- coupled with PDAF using wrapper
- single executable
- driver controls program
- Tested using 65536 processor cores

_L W. Kurtz et al., Geosci. Model Dev. 9 (2016) 1341

Example: ECHAM6-FESOM (AWI-CM)

D. Sidorenko et al., Clim. Dyn. 44 (2015) 757

2 compartment system – strongly coupled DA

Configure Parallelization – weakly coupled DA

Logical decomposition:

- Communicator for each
 - Coupled model task
 - Compartment in each task (init by coupler)
 - (Coupler *might want to split* MPI_COMM_WORLD)
 - Filter for each compartment
 - Connection for collecting
 ensembles for filtering
- Different compartments
 - Initialize distinct
 assimilation parameters
 - Use distinct user routines

Example: ECHAM6-FESOM

1.852 executables ECHAM and FESOM – do all coding twice

- add subroutine call into both models
- adapt model communicator (distinct names in the models)
- replace MPI_COMM_WORLD in communication routines for fluxes

In OASIS-MCT library

- Replace MPI_COMM_WORLD in OASIS coupler
- Let each model task write files with interpolation information

Strongly coupled: Parallelization of analysis step

We need innovation: **d** = **Hx** - **y**

Observation operator links different compartments

- Compute part of **d** on process 'owning' the observation
- 2. Communicate **d** to processes for which observation is within localization radius

Execution times (weakly-coupled, DA only into ocean)

- Increasing integration time with growing ensemble size (Factor 4 for 12-fold ensemble size)
- Large variability in integration time over ensemble tasks
- Likely caused by MPI-communication (e.g. no optimal distribution of programs over compute nodes/racks)

cores

Summary

- Unified framework PDAF simplifies implementation and application of data assimilation with existing models
- Application in North & Baltic Seas: Improvement of forecast skill aimed for operational use – assimilation into physical and biogeochemical model components
 - Surface temperature DA successful
 - Strongly coupled DA of temperature deteriorated biogeochemical variables
- Coupled atmosphere-ocean DA with AWI-CM
 - Implementation ready to be used

Thank you!

Lars.Nerger@awi.de

http://pdaf.awi.de

References

- http://pdaf.awi.de
- Nerger, L., Hiller, W. Software for Ensemble-based DA Systems – Implementation and Scalability. Computers and Geosciences 55 (2013) 110-118
- Nerger, L., Hiller, W., Schröter, J.(2005). PDAF The Parallel Data Assimilation Framework: Experiences with Kalman Filtering, Proceedings of the Eleventh ECMWF Workshop on the Use of High Performance Computing in Meteorology, Reading, UK, 25 - 29 October 2004, pp. 63-83.

