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Abstract: Yedoma—extremely ice-rich permafrost with massive ice wedges formed during the Late
Pleistocene—is vulnerable to thawing and degradation under climate warming. Thawing of ice-rich
Yedoma results in lowering of surface elevations. Quantitative knowledge about surface elevation
changes helps us to understand the freeze-thaw processes of the active layer and the potential
degradation of Yedoma deposits. In this study, we use C-band Sentinel-1 InSAR measurements
to map the elevation changes over ice-rich Yedoma uplands on Sobo-Sise Island, Lena Delta with
frequent revisit observations (as short as six or 12 days). We observe significant seasonal thaw
subsidence during summer months and heterogeneous inter-annual elevation changes from 2016–17.
We also observe interesting patterns of stronger seasonal thaw subsidence on elevated flat Yedoma
uplands by comparing to the surrounding Yedoma slopes. Inter-annual analyses from 2016–17 suggest
that our observed positive surface elevation changes are likely caused by the delayed progression of
the thaw season in 2017, associated with mean annual air temperature fluctuations.

Keywords: Sentinel-1 InSAR; Yedoma uplands; Sobo-Sise Island; summer heave; permafrost thaw
subsidence; active layer

1. Introduction

Yedoma—extremely ice-rich permafrost with massive ice wedges formed in extensive regions
in northern Siberia, Alaska, and northwest Canada during the Late Pleistocene [1,2]—is vulnerable
to thawing and degradation under climate warming. The thawing of ice-rich permafrost results
in widespread thermokarst development, reshaping the landscape into Yedoma uplands and
interconnected drained thermokarst lake [3,4]. Due to its syngenetic formation history, Yedoma deposits
store large amounts of organic carbon which are vulnerable to mobilization upon thaw [5,6]. Therefore,
Yedoma degradation contributes to climate warming through the release of greenhouse gases from
microbial decomposition of thawed organic carbon [7,8].
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Thermokarst and associated thaw subsidence are key land surface indicators for permafrost
degradation processes [9]. To study surface elevation changes over ice-rich Yedoma, associated with the
freeze and thaw cycling processes, is of importance to understand the response of Yedoma uplands to
surface disturbance and/or climatic changes. Generally, the ground surface subsides/uplifts seasonally
as a result of the volumetric contraction/expansion due to the moisture phase transition between the
frozen and unfrozen soil in the active layer. In addition, upon surface disturbance, such as massive
snowfall or precipitation, the volumetric ice content exceeds the total soil pore volume in freeze
season, i.e., the formation of excess ground ice [10]. If the excess meltwater upon the thawing of excess
ground ice in the uppermost permafrost layer is well drained, the ground experiences additional
secular subsidence. Otherwise, the excess meltwater pools up and thus trigger the formation of the
thermokarst landforms. The dynamic processes between the active layer and underlying ice-rich
Yedoma deposits further affect soil moisture content and vegetation growth, leading to changes in
ground thermal regime and the energy exchanges between the land surface and the atmosphere [11].
These interactions potentially provide further feedbacks to surface elevation changes.

Interferometric Synthetic Aperture Radar (InSAR) is a technique to quantify surface elevation
changes independent of weather and light conditions, which is an ideal precondition for such studies
in Arctic permafrost regions. The basic principle of InSAR for measuring deformation is to compare
the phase of two complex Synthetic Aperture Radar (SAR) signals that were acquired from slightly
different positions at different times. The phase differences are used to measure the displacements
along the line of sight (LOS) between the repeat SAR acquisitions. InSAR measurements have been
frequently used to measure ground surface subsidence for geophysical researches, such as deformation
of volcanoes, earthquake-generated displacements, landslides, and urban studies [12–16].

The Sentinel-1A/B constellation is a new generation of two C-band SAR satellites, launched on
3 April 2014 and 25 April 2016, respectively. The main advancement of Sentinel-1 is the new
imaging technique, i.e., the Terrain Observation by Progressive Scans (TOPS) [17]. This technique
allows the Sentinel-1 SAR images to cover large footprints (about 250 km across the orbit track)
by three overlapping sub-swaths. Sentinel-1 measurements characterize with frequent revisit time
(regular revisit time is 12 days; shortest is six days if both Sentinel-1A and -1B images are acquired).
Furthermore, the orbit configuration of Sentinel-1 results in a spatial baseline for InSAR of about
150 m [18]. The European Space Agency (ESA), operated Global Monitoring for Environment and
Security (GMES) space component program, provides all the Sentinel-1A/B archives at no cost to
all users.

However, the availability of suitable SAR images for InSAR measurements not only relies on the
revisit time of SAR missions but also highly depends on the interferometric coherence. Interferometric
coherence, the similarity between the two SAR signals, is a key indicator of the quality of InSAR
measurements. Generally, high interferometric coherence indicates that the phase observations contain
useful information and are less affected by noise. The source of decorrelation (loss of coherence)
is mainly related to the variation of geometric configuration between the repeat-pass satellites,
the temporal variation in the physical features of the ground surface, and the thermal noise [19,20].
The geometric decorrelation is related to the satellite configurations (i.e., incident angle, wavelength,
spatial resolution, and satellite to ground distance) and the spatial baseline between repeat satellite
observations. Taking the maximum spatial baseline (about 150 m) as an example, the spatial correlation
term is about 0.96, suggesting that the geometric decorrelation for Sentinel-1 InSAR can be ignored [18].
Hence, the dominant decorrelation source is the temporal decorrelation related to surface processes,
mainly including soil moisture variation, freezing and thawing processes, and vegetation phenology
changes and succession.
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The space-borne X-band, C-band, and L-band repeat-pass SAR missions prior to the Sentinel-1A/B
satellites have been used to monitor seasonal and inter-annual thaw subsidence in permafrost
regions [21–24]. However, these InSAR measurements (C- and L-band) only provide a limited
number of repeat images, and hardly resolve the temporal evolution of seasonal thaw subsidence
and/or inter-annual variabilities. TerraSAR-X, the X-band repeat-pass SAR mission, provides frequent
measurements (regular revisit time is 11 days). TerraSAR-X InSAR measurements have a high
sensitivity to changes at the ground surface [25–27]. Thus, the interferometric coherence of X-band
data drops rapidly through time in tundra lowlands, which limits the suitability of X-band repeat-pass
SAR to detect thaw subsidence [28]. The Sentinel-1 InSAR measurements with relatively high temporal
resolution provide an excellent opportunity to study the suitability of C-band data for permafrost
elevation changes in a detailed manner.

The aim of this study is to demonstrate the capability of Sentinel-1 InSAR measurements to
detect elevation changes over Yedoma uplands in an Arctic permafrost region. We use the InSAR
approach to quantify the seasonal and inter-annual elevation changes over ice-rich Yedoma uplands
on Sobo-Sise Island, Lena Delta. To understand the spatial patterns of seasonal subsidence, we analyze
the correlation between seasonal thaw subsidence and Yedoma elevation. To account for the temporal
evolution of inter-annual elevation changes, we also analyze the relationship between the inter-annual
elevation changes and air temperature.

2. Datasets and Methods

2.1. Study Site

Sobo-Sise Island is located between two Lena River channels (Sardakhskaya and Bykovskaya
channels) in the southeastern Lena River Delta, adjacent to the Laptev Sea (Figure 1a). According to
Reference [3], Sobo-Sise Island belongs to the third geomorphological terrace of the Lena Delta, that is
characterized by remnants of Yedoma deposits with large syngenetic ice wedges and hence high ice
content [29]. This island is largely occupied by Yedoma uplands as well as permafrost degradation
landforms, such as thermokarst lakes, drained thaw lake basins, and thermal erosion gullies [3].
The total area of Sobo-Sise is about 340 km2, accounting for 16% of the Yedoma coverage in the Lena
Delta. Fuchs et al. [30] classified and mapped different landforms (Yedoma uplands, thermokarst
basins, water bodies, etc.) based on RapidEye satellite imagery. As we focus on Yedoma uplands,
we mask out the thermokarst basins and water bodies using this geomorphological classification [30].
Our study domain on Sobo-Sise thus consists of the classes flat undisturbed Yedoma uplands and
partly degraded Yedoma slopes from [30]. The elevation of Yedoma uplands reaches about 35 m above
the sea level (Figure 1b).
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Figure 1. (a) Google Earth Image of Sobo-Sise Island. The red polygon outlines the island. The red
crosses mark the four positions for which we present the results from InSAR time-series analysis.
The three blue polygons are used to calibrate the InSAR measurements. The inset shows the location of
Sobo-Sise Island in the southeastern Lena River Delta. (b) Elevation above the mean sea level over the
Yedoma uplands and slopes. Thermokarst basins and water bodies are masked out.

The closest weather station, located at Samoylov Island about 50 km to the southwest of Sobo-Sise
Island, has collected meteorological data since 1998 [31]. The weather is characterized by extremely cold
winters with temperatures around −30 ◦C generally in January and February and highest temperatures
around 10 ◦C in July and August. The mean annual air temperature is about −12.5 ◦C and the annual
precipitation is in a range of 180–200 mm. Snowmelt usually begins in May and lasts until early to
mid-June; by that time, the soil begins to thaw, and the highest thaw rates are recorded in June and July.
The maximum thaw depth is reached in late August to early September and snowfall typically starts
from early to mid-September. The vegetation coverage is sparse and characterized by moist to wet
sedge- and moss-dominated tundra [32]. The vegetation growth period lasts from June to September
and is roughly similar to the thaw season [30]. The maximum active layer thickness ranges from 20 cm
to 50 cm on the Yedoma uplands.

2.2. TanDEM-X Digital Elevation Model

TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) mission provides a global
digital elevation model (DEM) product based on bistatic single-pass InSAR measurements [33].
The absolute vertical height accuracy of the TanDEM-X DEM is less than 10 m, whereas the relative
height accuracy is about 3 m globally [34]. In this study, we utilize the standard DEM product with a
spatial resolution of about 12 m to remove the topographic phase contribution in our InSAR time-series
processing. Figure 1b shows the TanDEM-X DEM over the Yedoma uplands.

2.3. Sentinel-1 InSAR Processing

We selected 14 descending Sentinel-1A/B images (6 scenes in 2016 and 8 scenes in 2017,
interferometric wide swath mode) taken from the thaw seasons (late June–September). There were no
ascending Sentinel-1 images of the same observation mode acquired over this region, therefore none



Remote Sens. 2018, 10, 1152 5 of 16

were used in this study. Snow cover would alter the phase center corresponding to SAR images
acquired in winter seasons and cause severe decorrelation [35], making the interferograms less reliable,
therefore they were not adopted in this study. The acquisition dates and platforms for SAR image
acquisitions are listed in Table 1.

Table 1. The acquisition date and platform of SAR images used in this study.

Acquisition Date (yyyymmdd) Platform

20160722 Sentinel-1A
20160803 Sentinel-1A
20160815 Sentinel-1A
20160827 Sentinel-1A
20160908 Sentinel-1A
20160926 Sentinel-1B
20170617 Sentinel-1B
20170711 Sentinel-1B
20170723 Sentinel-1B
20170804 Sentinel-1B
20170816 Sentinel-1B
20170828 Sentinel-1B
20170909 Sentinel-1B
20170921 Sentinel-1B

We constructed one-season image pairs between any two SAR acquisitions in the thaw season
of 2016 and 2017, separately. We excluded image pairs with time intervals exceeding 48 days to
avoid severe temporal decorrelation. To exploit the inter-annual elevation changes between two thaw
seasons, we also constructed the two-season image pairs with 366 days span. Then, we generated
the interferograms for the selected image pairs using the InSAR Scientific Computing Environment
(ISCE) [36]. We utilized the TanDEM-X DEM product to evaluate and remove the topographic phase
of each interferogram. We further excluded the interferograms with low coherence and/or the ones
accompanied by strong atmospheric artifacts. The perpendicular and temporal baselines of the selected
32 interferograms are presented in Figure 2. The largest spatial baseline is on the order of 150 m. Finally,
we unwrapped the interferograms using the minimum cost flow approach [37].

We calibrated our interferograms by selecting three regions that we knew from field studies
or high-resolution imagery where dominated by sandy deposits. The locations of the three sites are
outlined by blue polygons in Figure 1a. We expect that these sites contain a low ground ice content and
are well drained, and thus experience no or very limited elevation changes during 2016–17. We then
averaged the interferometric phase for these sites, serving as the reference value, and subtracted it
from each individual interferogram. Therefore, reported elevation changes in our study were relative
to the reference value. We noted that the estimated elevation changes were along the slant LOS
direction. Because the Yedoma uplands were flat, we assumed that vertical movement dominates the
deformation. Therefore, LOS deformation rates were converted to the vertical direction by simply
dividing by the cosine of the incidence angle.
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Figure 2. The connections between 12 Sentinel-1A/B SAR images with the perpendicular and
temporal baselines.

We retrieved time series of elevation changes for each coherent pixel based on the small baseline
approach. The small baseline approach was proposed to derive the independent deformation with
respect to each acquisition time from a set of redundant interferograms [38]. The well-developed
Generic InSAR Analysis Toolbox (GIAnT) [39] was used to derive the time series of surface elevation
changes in our study. We removed the possible orbital ramps prior to the time-series analysis, using the
network de-ramping approach [40]. With each SAR acquisition time, we obtained the elevation changes
relative to the first SAR acquisition.

According to the air temperature records, we determined the thawing and freezing onset as
13 June and 7 September in 2017, respectively. Then, we calculated the elevation changes between
17 June and 9 September to account for accumulated seasonal thaw subsidence in 2017. The thawing
onset began on 28 May in 2016, which was about half a month earlier than in 2017. Due to no available
Sentinel-1 SAR images between 28 May and 22 July in 2016, we could not obtain the maximum seasonal
thaw subsidence in 2016. To evaluate the inter-annual elevation changes, we calculated the averaged
elevation changes between the five inter-annual image pairs with 366-days interval from the thaw
season of 2016 and 2017.

3. Results

3.1. Accumulated Subsidence in the Thaw Season of 2017

The InSAR measurements show that all the Yedoma uplands undergo ground subsidence in the
thaw season of 2017. The accumulated subsidence between 17 June and 9 September in 2017 of up to
2–3 cm is most pronounced on top of flat Yedoma uplands (Figure 3). The eastern regions, as well as the
outer boundaries of the Yedoma uplands with lower elevation, experience less subsidence (0.5–1.0 cm).
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Figure 3. Surface elevation changes over the Yedoma uplands on Sobo-Sise Island from 23 June to
9 September in 2017. Minus values denote ground subsidence.

To further exploit the relationship between Yedoma elevation and seasonal subsidence,
we averaged subsidence magnitudes in each 5 m elevation interval (Figure 4). The seasonal subsidence
in different Yedoma height bins reveals exclusively negative changes over time. Stronger subsidence
signals on top of Yedoma uplands and less pronounced subsidence are found on upland-surrounding
slopes. According to the range of subsidence magnitudes at each elevation bin, the variability of height
changes is less pronounced at elevations larger than 25 m.
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Figure 4. Box plot (minimum, first quartile, median, third quartile, maximum) for seasonal subsidence
at different Yedoma elevations during the thaw season of 2017.

3.2. Inter-Annual Elevation Changes

The averaged inter-annual elevation changes show almost exclusively positive values in most
of the Yedoma uplands (Figure 5). This suggested the averaged ground subsidence during the thaw
season of 2017 is less intense when compared with the preceding year 2016 and results mostly in an
overall positive net inter-annual elevation changes of up to 1 cm from late thaw season 2016–17.
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Figure 5. Averaged inter-annual elevation changes between the late thaw seasons of 2016 and 2017.

To characterize the temporal evolution of the net inter-annual uplift, we calculated the
corresponding elevation changes from six individual image pairs with 366 days interval
between 2016 and 2017 (Figure 6). The net inter-annual uplift reaches its maximum values of up
to 2 cm at the beginning of August comparing to the preceding 2016. The relative uplift drops rapidly
and becomes zero or turns even into subsidence at about −0.5 cm on 9 September 2017 compared to
8 September 2016. Then, the uplift appeared again on 21 September 2017 compared to 26 September 2016.
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Figure 6. Inter-annual elevation changes between image pairs (a) 20160722–20170723
(b) 20160803–20170804; (c) 20160815–20170816; (d) 20160827–20170828; (e) 20160908–20170909 and
(f) 20160926–20170921.

3.3. Time-Series Analysis of Elevation Changes

We selected four points to demonstrate the time series of elevation changes and their spatial
variations derived from InSAR. The ground undergoes limited negative elevation changes between
early August and the end of thaw season in 2016 (Figure 7). The ground shows stronger subsidence in
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2017 comparing to the same period in 2016. However, the ground begins to uplift around 0.5–1 cm
during the early thaw season in 2017. Then, the ground turns to subside around 23 July 2017 and this
seasonal subsidence period ends around 9 September 2017. Finally, ground uplift is detected again on
21 September 2017.
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InSAR time series. The locations of the four points are shown in Figure 1.

4. Discussion

4.1. The Capability of Sentinel-1 InSAR over Permafrost Regions

Sentinel-1 InSAR measurements are capable of capturing both the seasonal thaw subsidence,
as well as the inter-annual elevation changes in a permafrost environment. This study benefits from
the availability of more InSAR measurements with sufficient coherence in one thaw season and
across two thaw seasons. Sentinel-1 InSAR measurements provide an excellent opportunity to
identify permafrost-related elevation changes in a detailed manner and therefore help towards a
better understanding of the dynamic land surface processes in an ice-rich permafrost region.

The interferometric coherence for all the possible image pairs in 2017 over the Yedoma uplands is
shown in Figure A1 (in Appendix A). The 12-days interferograms present relatively low coherence
at the beginning (image pair 20170716–20170729) and the ending of the thaw season (image pair
20170909–20170921), whereas the 12-days interferograms in July and August present relatively higher
coherence. Antonova et al. [25,28] utilized X-band TerraSAR images to detect elevation changes over
Kurungnakh-Sise Island, around 50 km away from Sobo-Sise Island. The Yedoma deposits there
are of the same origin as at our study site. In contrast to our study, they observed a relatively high
coherence at the beginning and ending of the thaw season based on 11-days interferograms acquired
from TerraSAR-X images. This might be related to the different sensitivity of X-band and C-band to
the thawing and freezing processes. Furthermore, the X-band interferograms with time intervals of
more than 22 days show severe decorrelation, when our Sentinel-1 interferograms present moderate
coherence even for 48-days intervals or more (Figure 8). Better coherence, especially with relatively
long temporal baseline, makes the C-band Sentinel-1 InSAR prevail over X-band InSAR in capturing
surface elevation changes in permafrost regions.
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4.2. Correlation between Yedoma Elevation and Seasonal Thaw Subsidence

We find that the highest flat Yedoma uplands, i.e., the undisturbed regions, present the highest
seasonal thaw subsidence in 2017. Typically, the water/ice content in the active layer predominantly
accounts for the seasonal elevation changes. The active layer thickness does not significantly vary
among the Yedoma uplands [30]. Thus, the highest subsidence amplitudes over the top of Yedoma
uplands suggest higher water/ice contents than in lower regions. While the soil organic layer acts
as a protective layer slowing the thaw and degradation of underlying permafrost, the thickness of
such insulating organic layers is generally rather small (<10 cm) on Yedoma uplands. However,
radiocarbon dating of four Yedoma upland cores by Reference [30] demonstrated that even at a depth
of 233 cm ice complex Yedoma deposits in a narrower sense were still overlain by the Holocene soil
cover. This suggests that even on top of the Yedoma uplands very ice-rich deposits were reached only
at greater depth, but with volumetric ice contents of 61.5 ± 15%, the Holocene cover was still prone to
thaw and degradation and thus subsequent thaw subsidence processes. However, strong exposure to
wind removes snow from uplands and thus limits winter insulation by snow, effectively cooling and
preserving near-surface permafrost on Yedoma uplands. A key parameter for upland degradation and
thaw subsidence potential seems to be availability and size of flat areas with poor drainage conditions,
where subsidence and subsequent positive feedbacks such as water ponding and increases in snow
thickness may happen, leading to thermokarst.

4.3. Temporal Evolution of Elevation Changes

The net inter-annual uplift from late season 2016–17 observed was possibly caused by delayed
thawing associated with differences in summer air temperatures. We downloaded the air temperature
and snow cover records from a meteorological station located on Stolb Island, about 40 km west of
Sobo-Sise Island (https://rp5.ru/Weather_in_the_world). According to the air temperature records,
degree days of thawing ( days) in 2016 were 812, and in 2017 only 667. We also observed a shift
of the warmest month from typically July to August (Figure 9). Mean air temperature in July 2016
was 7.8 ◦C and in August was 7.3 ◦C. In 2017, July temperature was only 7.2 ◦C, while August
was warmer at 8.3 ◦C. Even more pronounced were differences between September 2016 and 2017
(164 vs. 63 degree days of thawing). These support our observation of higher surface elevations in 2017
compared to those at the same time in 2016. However, the 20160908–20170909 image pair in Figure 6
suggests that elevation changes turn into inter-annual thaw subsidence later at the end of the 2017 thaw

https://rp5.ru/Weather_in_the_world
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season. The apparent pseudo-uplift between the thaw seasons in 2016 and 2017, therefore, reflects a
delay in progression of the thaw season and implies that seasonal thaw settlement may not develop
simultaneously when compared to the preceding year. This also suggests that it is not appropriate to
estimate the inter-annual subsidence by simply averaging the elevation changes. A detailed assessment
of meteorological and permafrost conditions for the analyzed years should be necessary to interpret
the actual evolution of elevation change dynamics.
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lines denote the dates of the inter-annual SAR acquisition pairs.

The InSAR-derived elevation changes show obvious uplift in the early thaw season of 2017.
This might be due to the so-called summer heave. In early thaw season, excess water (for instance,
rain, snowmelt, and groundwater flow) could penetrate into the underlying frozen active layer and
even the adjacent permafrost and refreeze. Mackay et al. [41] observed summer frost heave up to 1 cm
at Garry Island, Canada, from five years of field measurements. According to the relatively thicker
snow accumulation in the winter season between 2016 and 2017, the excess snowmelt water makes the
ground more prone to undergo summer heave. Furthermore, the downward water movement makes
the frozen ground saturated or oversaturated and thus needs more heat flux to thaw, which further
supports the likely delay of thaw season in 2017. However, Zwieback et al. [42] reported that the
post-snowmelt drying processes would potentially change the dielectric property of the ground
surface and thus contribute to the uplift-like signal in L-band InSAR. Because the sensitivity of C-band
Sentinel-1 InSAR to changes of dielectric properties is still not well determined and no in situ soil
moisture measurements were conducted in our study area, so at this point we cannot determine if
the uplift is spurious. Evidence of ice and snow suggests that penetration depth depends on carrier
frequency, physical and electrical characteristics which may vary according to climate conditions [43].
To account for the observed uplift within one thaw season, further efforts should focus on the question
to what extent the soil moisture variations affects InSAR observations.

5. Conclusions

We explored and successfully tested the capability of Sentinel-1 InSAR measurements for
quantifying both permafrost thaw subsidence during one thaw season and the inter-annual elevation
changes between two thaw seasons. Compared with X-band InSAR in Yedoma uplands, the C-band
Sentinel-1 InSAR shows higher coherence, even for the interferograms between the years. We found
that the flat tops of Yedoma uplands exhibit the highest seasonal elevation changes. Benefitting from
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the Sentinel-1 InSAR measurements with short time intervals (12 days in this case), we found that
delayed thawing associated with air temperature fluctuations affects inter-annual elevation changes.
We also observed an uplift in the early season of 2017, which may relate to effects of early summer heave
or soil moisture impacts. To discriminate these and to better interpret the InSAR-derived elevation
changes, further research should focus on impacts of soil moisture variation on InSAR measurements.
Our study suggests that the Sentinel-1 InSAR measurements with high temporal resolution are capable
of detecting permafrost-related elevation changes in a detailed manner and therefore help to better
understand the land surface dynamics in an ice-rich permafrost region.
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