Retrieval of phytoplankton pigments from underway spectrophotometry in the Fram Strait, Arctic Ocean

Yangyang Liu^{*}, Emmanuel Boss, Alison Chase, Hongyan Xi, Rüdiger Röttgers, Yanqun Pan, Astrid Bracher * Yangyang.Liu@awi.de (Unpublished work!)

- Introduction

Phytoplankton pigment databases have been extensively used in developing, validating or refining bio-optical algorithms for estimating phytoplankton biomass and functional types.
Here, we investigate the performances of two approaches, i.e. Gaussian decomposition and singuar value decomposition combined with non-negative least squares (SVD-NNLS) in determining the concentrations of either individual pigments or pigment groups from *a*_p(λ) obtained from underway AC-S flow-

Data Collection & Processing (Liu et al., 2018, and references therein) PS93.2 PS99.2 PS107 **Underway AC-S flow-through system** AC-S valve seawater__ debubble controller c tube AC-S data processing to derive $a_{ph}(\lambda)$ $a_{p}(\Lambda)\&c_{p}(\Lambda)$ calculation Spikes TS correction 1-min bin removal ר<u></u> 10⁻ ב

- through system in the Fram Strait.
- ✓ The effect of package effect on the retrieval accuracy was assessed by including a normalization term in $a_{ph}(\lambda)$ (see below).

Gaussian Decomposition

(Chase et al., 2013)

- ✓ $a_p(\lambda)$ was decomposed into 12 Gaussian functions + 1 NAP power law function.
- ✓ Gaussian amplitudes were related to the concentrations of TChla, TChl-b, Chl-c1/2, PSC and PPC.

✓ $a_{ph}(\lambda)$ normalized by package effect: $\stackrel{\land}{a_{ph}}(\lambda) = a_{ph}(\lambda) \frac{0.033 \times TChl - a}{a_{ph}(675)}$

Statistics (leave-one-out cross validation)

✓ relative percentage different (RPD). $RPD = \frac{1}{n} \sum_{i=1}^{n} \frac{C_i^{esti} - C_i^{meas}}{C_i^{meas}} \times 100\%$

✓ **bold**: pigments with better retrieval accuracy after applying the package effect

normalization to $a_{\rm ph}(\lambda)$.

Pigments	Gaussian Decomposition		SVD-NNLS-5		SVD-NNLS-18	
	non-normalized $a_{ph}(\lambda)$	normalized $a_{ph}(\lambda)$	non-normalized $a_{ph}(\lambda)$	normalized $a_{ph}(\lambda)$	non-normalized $a_{ph}(\lambda)$	normalized a _{ph} (λ)
TChl-a	11.9%	2.3%	6%	-0.4%	7.2%	-0.2%
TChl-b	15.3%	12.0%	53.3%	39.1%	93.8%	88.8%
Chlc_1/2	39.8%	33.6%	59.1%	63.1%	163.5%	170.5%
PSC	49.6%	27.6%	34.8%	44.5%	-	-
PPC	33.8%	15.2%	42.2%	37.5%	-	-
Chl_c3	-	-	-	-	280.2%	202.6%
Allo	-	-	-	-	28.2%	37.2%
a_Caro	-	-	-	-	102.0%	71.2%
β_Caro	-	-	-	-	51.0%	48.5%
Diadino	-	-	-	-	41.5%	47.3%
Diato	-	-	-	-	37.1%	60.2%
Fuco	-	-	-	-	56.0%	49.8%
Hex	-	-	-	-	67.1%	51.5%
But	-	-	-	-	249.1%	97.2%
Neo	-	-	-	-	14.8%	12.3%
Lut	-	-	-	-	29.4%	36.2%
Peri	-	-	-	-	64.1%	97.6%
Prasino	-	-	-	-	6.0%	4.4%
Viola	-	-	-	-	56.9%	71.0%
Zea	-	-	-	-	39.2%	39.7%
Others	-	-	49.5%	26.9%	-	-

Conclusion

 Gaussian decomposition was capable of estimating TChl-a, TChl-b, Chl-c1/2, PPC and PSC with a prediction error of less than 50% and outperformed SVD-NNLS in retrieving TChl-b, Chl-c1/2 and PPC.

 ✓ SVD-NNLS enabled the retrieval of a series of phytoplankton pigments with defined

uncertainty (RPD ranges 6-280%).

✓ Lower uncertainties for the retrieval of all the five pigments using Gaussian decomposition and of 9 types of pigments using SVD-NNLS were obtained with the combined use of observed $a_{ph}(\lambda)$ and TChl-a concentration that partially accounts for the package effect across the whole absorption spectra.

References

Bricaud, A., Claustre, H., Ras, J. and Oubelkheir, K., 2004. Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations. Journal of Geophysical Research: Oceans, 109(C11).

Chase, A., Boss, E., Zaneveld, R., Bricaud, A., Claustre, H., Ras, J., Dall'Olmo, G. and Westberry, T.K., 2013. Decomposition of in situ particulate absorption spectra. Methods in Oceanography, 7, pp.110-124.

Hoepffner, N. and Sathyendranath, S., 1991. Effect of pigment composition on absorption properties of phytoplankton. Mar. Ecol. Prog. Ser, 73(1), pp.I-23.

Liu, Y., Röttgers, R., Ramírez-Pérez, M., Dinter, T., Steinmetz, F., Nöthig, E.M., Hellmann, S., Wiegmann, S. and Bracher, A., 2018. Underway spectrophotometry in the Fram Strait (European Arctic Ocean): a highly resolved chlorophyll a data source for complementing satellite ocean color. *Optics Express, 26*(14), pp.A678-A696.

Moisan, J.R., Moisan, T.A. and Linkswiler, M.A., 2011. An inverse modeling approach to estimating phytoplankton pigment concentrations from phytoplankton absorption spectra. Journal of Geophysical Research: Oceans, 116(C9).

Slade, W.H., Boss, E., Dall'Olmo, G., Langner, M.R., Loftin, J., Behrenfeld, M.J., Roesler, C. and Westberry, T.K., 2010. Underway and moored methods for improving accuracy in measurement of spectral particulate absorption and attenuation. Journal of Atmospheric and Oceanic Technology, 27(10), pp.1733-1746.

Sullivan, J.M., Twardowski, M.S., Zaneveld, J.R.V., Moore, C.M., Barnard, A.H., Donaghay, P.L. and Rhoades, B., 2006. Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range. Applied Optics, 45(21), pp. 5294-5309.

Zaneveld, J.R.V., Kitchen, J.C. and Moore, C.C., 1994, October. Scattering error correction of reflecting-tube absorption meters. In Ocean Optics XII (Vol. 2258, pp. 44-56). International Society for Optics and Photonics.

