Observations of snow cover processes on Antarctic sea ice from in-situ and model studies.

Leonard Rossmann¹, **Marcel Nicolaus¹**, Stefanie Arndt¹, Margaux Couttet², Lars Kaleschke⁴, Michael Lehning^{2,3}, Nina Maaß⁴, Nander Wever³, Christian Haas¹

 ¹ Alfred-Wegener-Institut Helmholtz-Zentrum f
ür Polar- und Meeresforschung(AWI), ² École polytechnique federal de Lausanne (EPFL),³ WSL Institute for Snow and Avalanche Research (SLF),
 ⁴ Universität Hamburg, Institut f
ür Meereskunde

Q.W

Introduction: Snow on Antarctic sea ice

- Snow rules sea ice conditions (albedo, thermal insulation, ...) (e.g. Lytle et al., 2000)
- Snow contributes to sea ice mass balance (e.g. Jeffries et al., 2001)
- Snow depth heavily affects results from satellite remote sensing (e.g. Ricker et al., 2015, Arndt et al., 2016)

• Snow thickness in-situ measurements are sparse (in time and space)

=> Strong need for Antarctic wide snow thickness product

The SCASI Project

• German / Swiss Project (DFG & SNF funded)

Universität Hamburg

Quantify the amount and distribution of snow on Antarctic sea ice, its physical properties and their evolution over time.

Snow Buoy Overview

54°S

60°51

ଚ୍ଚତ୍ର

200

200% M 00%

ELMHOLTZ

ASSOCIATION

SNOWPACK: Sea ice component

Air temperature from buoy Initial snow and ice thickness Snow accumulation

SNOWPACK adaptation for sea ice

- ECMWF Era-Interim
 - Radiation
 - Wind etc.
 - Precipitation
- Prescribed salinity
- Prescribed ocean heat flux
 - Sinus between 5-15 Wm⁻²

Main Outputs:

- Temperature
- Snow/Ice thickness
- Grain types

SNOWPACK:

- Well established numerical snow model (Bartel and Lehning, 2002)
- Recently developed sea ice branch:
 - 1D thermodynamic sea ice model including snow cover processes
- We combined the Snow Buoy with the new SNOWPACK branch

Snow and ice temperature from Ice Mass-balance Buoy

SNOWPACK: Exemplary result

- Capable of modelling different snow types
- Results plotted corresponding to Snow Buoy measurements

SNOWPACK: Ocean heat flux

Ocean heat flux 5 to 15 W/m²

Ocean heat flux: 7 to 22 W/m²

Ocean heat flux is still an essential concern

SNOWPACK: Snow melting in sea ice marginal zone

SNOWPACK: Snow ice formation

AMSR2 satellite snow product - comparison

- In SNOWPACK a new sea ice model branch has been introduced
- It is capable of modelling snow on sea ice conditions
- Ocean heat flux is still a concern

- Flooding and snow ice formation are present in the model and fit well with other observations (Maksym & Markus, 2008)
- Flooding and snow ice formation explain the difference between space borne observations and in-situ observations

Outlook

Further study regarding grain type evolution and snow ice formation

Comparison to co-deployed Ice Mass-balance Buoy

Compare SMOS snow thickness retrieval to new results

Up-scaling to a Weddell Sea wide snow thickness product.

