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China, 3CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, China, 4GEOMARHelmholtz Centre
for Ocean Research Kiel, Kiel, Germany, 5Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research,
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Abstract Quaternary East Asian winter monsoon (EAWM) evolution has long been attributed to
high‐latitude Northern Hemisphere climate change. However, it cannot explain the distinct relationships of
the EAWM in the northern and southern East Asian marginal sea in paleoclimatic records. Here we present
an EAWM record of the northern East China Sea over the past 300 ka and a transient climate simulation
with the Kiel Climate Model through the Holocene. Both proxy record and simulation suggest anticorrelated
long‐term EAWM evolution between the northern East China Sea and the South China Sea. We suggest
that this spatial discrepancy of EAWM can be interpreted as El Niño–Southern Oscillation (ENSO)‐like
controlling, which generates cyclonic/anticyclonic wind anomalies in the northern/southern East Asian
marginal sea. This research explains much of the controversy in nonorbital scale variability of Quaternary
EAWM records in the East Asian marginal sea and supports a potent role of tropical forcing in East Asian
winter climate change.

Plain Language Summary The modern East Asian winter monsoon (EAWM) is influenced by
the combined effects of both the high‐latitude Northern Hemisphere (e.g., Siberian High) and the
low‐latitude Western Pacific (e.g., El Niño–Southern Oscillation) and plays a major role in regulating
atmospheric energy of East Asia and even the Northern Hemisphere. Its anomalies may cause extremely
cold/warm winter weather or climate events, which result in profound societal and economic influences on
the densely populated region of East Asia. Especially, some studies found the EAWM displays spatial
discrepancies in northern and southern East Asia and can result in a colder/warmer north corresponding to
a warmer/colder south. Our study shows anticorrelations of EAWM evolution between the northern East
Asian marginal sea and the South China Sea since the late Quaternary. We suggest that such spatial
discrepancies of EAWM evolution were controlled by El Niño–Southern Oscillation‐like processes in the
tropical Pacific. During El Niño‐like conditions, the anomalous northwesterlies in the northern East Asian
marginal sea led to a strengthened EAWM in this region. In contrast, anomalous southwesterlies in the
South China Sea favored the occurrence of a weakened EAWM. The opposite situation occurred under La
Niña‐like conditions.

1. Introduction

The East Asian winter monsoon (EAWM), characterized by cold and dry northwesterlies over the eastern
marginal sea of the Asian continent and northeasterlies over the South China Sea, is a specific feature of
the East Asian monsoon and could be influenced by the combined effect from both the high‐latitude
Northern Hemisphere and the low‐latitude Western Pacific (Figure 1; Liu & Ding, 1998; Wang et al.,
2000). The EAWManomalies may cause extremely cold/warmwinter weather or climate events, which have
profound societal and economic influences on this densely populated region of East Asia (Gao et al., 2008;
Wang et al., 2011).

Over the past several decades, the EAWM intensity during the Quaternary has been reconstructedmainly on
the basis of loess (Hao et al., 2012; Liu & Ding, 1998; Sun et al., 2006) and marine sediment records (Li et al.,
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2017; Yamamoto et al., 2013). These studies have commonly suggested an intensified glacial EAWM
compared to interglacial periods. However, EAWM evolution remains under debate for its long‐term
trend in the late Quaternary (Huang, 2015) and the variations at multimillennial scales (Hao et al., 2017;
Steinke et al., 2011). In particular, paleoclimate proxies have suggested inconsistent EAWM patterns
between the northern and southern East Asian regions since the middle Pleistocene (Hao et al., 2017;
Huang, 2015; Steinke et al., 2011), suggesting that the EAWM complexity involves regional
heterogeneities. Studies have linked solar insolation and the resultant variations in atmospheric
circulation over the East Asian continent and Pacific to the EAWM system (Kutzbach, 1981; Wen et al.,
2016). Moreover, Northern Hemisphere ice volume may enhance the Siberian High and EAWM on
orbital scales by regulating the ice and snow accumulation in northern high latitudes (Hao et al., 2012).
Furthermore, Atlantic meridional overturning circulation has also been identified as a driver of abrupt
changes in the EAWM on the millennial scale (Sun et al., 2011). Nevertheless, both the orbital and
northern high‐latitude forcings cannot fully explain the regional difference in nonorbital‐scale variability
in the Quaternary EAWM.

El Niño–Southern Oscillation (ENSO) can physically govern the convective activities over the western equa-
torial Pacific, leading to different wind anomalies occurring in the lower troposphere of the western Pacific
and northeastern East Asia and consequently causing distinct EAWM intensities on the decadal scale (Sun &
Yang, 2005). Simulations based on the observation data have shown that the El Niño mode can result in an
enhanced EAWM in northern East Asia but a subdued EAWM in southern East Asia, leading to a colder
northern but warmer southern East Asia (Sun & Yang, 2005). In contrast, scenarios with extremely frigid
temperatures in southern China induced by strengthened EAWM often occur in a strong La Niña mode
(e.g., 2008 Chinese winter storms; Gao et al., 2008). Overall, the ENSO processes have significant impacts
on the EAWM in the modern climate, while its role in changing the EAWM long‐term variations during
the late Quaternary remains unclear.

The climate records in the northern East Asian marginal sea could be ideal candidates for the reconstruction
of the EAWM evolution. Satellite observation and paleorecord studies have all demonstrated that the trans-
port of sediments from the East Asian continent to the Yellow Sea and Okinawa Trough was mainly forced
by the EAWM (Figure S1 in the supporting information; Hao et al., 2017; Pang et al., 2016; Yuan et al., 2008;
Zheng et al., 2014). The modern suspended sediment concentration in the Yellow Sea suggests strong seaso-
nal variation (Figure S2), with differences of 40 mg/L in the old Yellow River mouth and 10 mg/L in the

Figure 1. Locations of IODP Site U1429 and referenced sites with surface circulation over Asia and the western Pacific in winter. Data on monthly surface
vector winds (black arrows) and sea level pressure in January 2016 are from NCEP/NCAR Reanalysis 1. White and black boxes indicate the Kiel Climate Model
domains of the northern East Asian marginal sea (30–40 °N, 120–140 °E) and the South China Sea (10–25 °N, 110–130 °E), respectively, for calculating the
averaged 10‐mmeridional wind vector of the EAWM. The averaged wind is multiplied by −1 to derive a positive East Asian winter monsoon index. IODIntegrated
Ocean Drilling Program.
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southeastern Yellow Sea between winter and summer (Pang et al., 2010). In addition, suspended sediment
concentration is highly correlated with winter monsoon speed over the Yellow Sea on seasonal and inter-
annual scales (Figure S2). Here we present a high‐resolution sediment record using clay mineral and terri-
genous material flux at the Integrated Ocean Drilling Program (IODP) Site U1429 in the northern Okinawa
Trough in the East China Sea to create a continuous reconstruction of EAWM evolution in the northern
region of the East Asian marginal sea over the last 300 ka (Figure 1). In addition, EAWM intensities in
the northern East Asian marginal sea and South China Sea through the Holocene have also been investi-
gated by a long‐term transient model simulation. In our results, variations in the EAWM in the northern
East Asian marginal sea are anticorrelated with those over the South China Sea not only on a long‐term
trend over the past 300 ka but also on multimillennial scales during the Holocene. Moreover, high coheren-
cies between EAWM in these two areas and the tropical Pacific sea surface temperature (SST) gradient sug-
gest that the ENSO‐like process has been a critical factor in regulating the distinct EAWM evolution in the
northern and southern East Asia marginal sea during the late Quaternary.

2. Materials and Methods

IODP Site U1429 (31°37.04′N, 128°59.85′E) is located in the northeastern East China Sea, on the western
continental slope of the northern Okinawa Trough at a water depth of 732 m (Figure 1). The lithology of
the recovered section from IODP Site U1429 is mainly calcareous nannofossil ooze and calcareous
nannofossil‐rich clay (Tada et al., 2014). The age model for IODP Site U1429 was developed by correlating
the δ18O record obtained from benthic foraminifera with the LR04 δ18O stack combined with tephrostrati-
graphy (Sagawa et al., 2018). The linear sedimentation rates varied between 24.0 and 160.8 cm/ka, with
an average value of 53.5 cm/ka (Figure S3). For this study, a total of 1,245 samples were taken at 10‐cm inter-
vals from 21 to 151.1 m at IODP Site U1429 to perform the mineralogical composition analysis of the clay
fraction using X‐ray diffraction and tracing the clay‐sized sediment provenance. To determine the sediment
flux, we also calculated the relative sediment supply and terrigenous mass accumulation rate. Here we com-
bined previous clay results (from the upper 20.99 m of IODP Site U1429; Zhao et al., 2017) and new clay
mineralogical data to reconstruct the EAWM intensity during the last 300 ka with the clay mineral ratio
illite/smectite and the Yellow River terrigenous mass accumulation rate. We also conducted an orbital accel-
erated transient simulation of the Holocene, performed with the Kiel Climate Model (KCM) to investigate
the EAWM evolution during the Holocene in the northern East Asian marginal sea (30–40 °N, 120–140
°E) and South China Sea (10–25 °N, 110–130 °E; Figure 1). In addition, we conducted a cross‐spectral ana-
lysis to examine periodicities and further assess the intrinsic mechanism of EAWM change in the frequency
domain. More detailed information on the analytical methods is provided in the Text S1 and Figures S3–S7
in the supporting information (Beny et al., 2018; Diekmann et al., 2008; Fan et al., 2001; Grant et al., 2014;
Howell et al., 2006; Khon et al., 2018; Kim, 1979; C. Li et al., 2012; Li et al., 2018; Licht et al., 2016; Milliman
& Farnsworth, 2013; Ohtsubo et al., 1995; Pang et al., 2010; Park et al., 2009; Park & Khim, 1990; Rea &
Janecek, 1981; Ren & Shi, 1986; Sagawa et al., 2018; Schneider et al., 2010; Song et al., 2016; Sun et al.,
2015; Wan et al., 2007; Wan et al., 2012; Yang et al., 2003; Yuan et al., 2008; Zhao et al., 2017; Zheng
et al., 2016; Zheng et al., 2014).

3. Results

The reconstructed EAWM suggests weak glacial‐interglacial cycles, with relatively increased winter winds
during MIS 8, 6, early 4, early 2 and 1 and decreased winter winds during MIS 7 and 3, except for abrupt
increases at approximately 220–210 ka and 50–40 ka. Additionally, frequent fluctuations were observed dur-
ing MIS 5 (Figure 2d). Such patterns resemble the EAWM reconstruction based on the records from the
Loess Plateau to some extent, at the scale of glacial‐interglacial cycles (Figures 2c and 2d; Hao et al., 2012;
Sun et al., 2006).

On the long‐term trend, the EAWM in the northern East Asian marginal sea suggests intensification from
~300 to ~160 ka and then gradually weakened from ~160 ka to the present (Figure 2d). The historical
long‐term evolution of EAWM since the last 300 ka in the South China Sea region was reconstructed based
on the records of the south‐north SST gradient (Huang, 2015; Figure 2e). The south‐north SST gradient has
long been adopted as an EAWM proxy in the South China Sea (Huang, 2015; L. Li et al., 2012; Tian et al.,
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2010). For the long‐term evolution, the EAWM records in the South
China Sea suggest an overall inverse trend compared to our records
in the northern East China Sea, indicating a weakened EAWM from
~300 to ~160 ka and a strengthened winter monsoon from ~160 ka to
the present in the South China Sea (Figures 2d and 2e).

On the multimillennial scale, multiple proxies associated with the
EAWM in the northern region of the East Asian marginal sea since
the last 8.5 ka in the Holocene are displayed in Figure 3b. Long‐term
intensified EAWM since the last 8.5 ka is observed based on the
illite/smectite ratio. These results suggest a high coherency with
other EAWM records in the middle Okinawa Trough and central
Yellow Sea surrounding this area (Figure 3b; Hao et al., 2017;
Zheng et al., 2014). The Holocene EAWM in the South China Sea
was reconstructed based on the temperature gradient between sur-
face and thermocline waters by Steinke et al. (2011), as well as the
east‐west SST gradient by Huang et al. (2011) in the South China
Sea. Contrasting variations in the EAWM between the northern
East Asian marginal sea and the South China Sea were observed.
The long‐term intensified EAWM in the northern East Asian mar-
ginal sea was synchronous with a weakened EAWM in the South
China Sea since the last 8.5 ka in the Holocene (Figures 3b and 3d).

In addition, the simulated EAWM suggests a long‐term intensified
EAWM from early to late Holocene in the northern East Asian mar-
ginal sea and weakened EAWM in the South China Sea, consistent
with our proxy evidence (Figures 3b–3e). The EAWM over the
South China Sea is also consistent with a previous simulation of
southern China based on the Community Climate SystemModel ver-
sion 3 (CCSM3; Wen et al., 2016; Figure 3e). Here both our modeling
simulation and proxy evidence suggest opposite Holocene EAWM
trends over the northern East Asian marginal sea and the South
China Sea.

4. Discussion

To examine periodicities and further assess the intrinsic mechanism
of EAWM change in the frequency domain, cross‐spectral analysis
was conducted on clay mineral record in the northern East China
Sea in this study, south‐north SST gradient in the South China Sea
(Huang, 2015) and loess grain size (Sun et al., 2006) with tropical
Pacific ENSO proxy (Jia et al., 2018) and North American ice volumes
(Bintanja et al., 2005), respectively.

Both the clay mineral and South China Sea SST records suggest a
similar cycle of 50 ka along with the ENSO‐like record, with a strong
coherency power at the 50‐ka band for the SST record and a relatively
weaker power for the clay record (Figure S6). However, no similar
cycles were found with statistical robustness between the loess grain
size record and ENSO proxy (Figure S7a). It has been suggested that
ENSO exhibits a precession periodicity of 23 ka during the
Quaternary (Clement et al., 1999). A nonlinear mechanism with pre-
cession as the primary forcing (i.e., bundling of precession cycles) can
probably explain the observed spectral features of 50 ka in ENSO (Liu
et al., 2008). In addition, modeling studies have demonstrated that
ENSO can oscillate at any rational numbers (subharmonics and

Figure 2. Comparison of proxy records of EAWM from northern East Asianmar-
ginal sea, Loess Plateau and South China Sea with global paleoenvironmental
records during the last 300 ka. (a) Northern Hemisphere insolation at 20 °N and
35 °N in January; (b) North American ice volume (Bintanja et al., 2005);
(c) EAWM records including stacked mean grain size (Sun et al., 2006) and grain
size content (Hao et al., 2012) on the Loess Plateau; (d) U1429 clay mineral
ratio and Yellow River terrigenous mass accumulation rate; (e) EAWM records in
the South China Sea based on south‐north SST gradients, orange line:
MD97‐2142‐ODP1146 and green line: ODP1143‐ODP1146 (Huang, 2015); (f) El
Niño–Southern Oscillation‐like proxies based on west‐east Pacific SST gradient
(MD97‐2140‐ODP846; de Garidel‐Thoron et al., 2005) and west‐east Pacific
zonal SST gradient anomaly (Jia et al., 2018). Thick lines are polynomial fits
shown to highlight general long‐term trends in the original data sets. The EAWM
records are subdivided into two time intervals by the vertical black dotted line.
EAWM = East Asian winter monsoon; IODIntegrated Ocean Drilling Program;
SST = sea surface temperature.
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fractional subharmonics) of the annual cycle, created by nonlinear reso-
nances with the annual cycle (Tziperman et al., 1994). Therefore, nonli-
nearities in the ENSO climate may be responsible for the periodicity of
50 ka in the late Quaternary. The coherence between the EAWM records
with the ENSO proxy suggests that ENSO has a strong influence on
EAWM evolution in the northern East Asian marginal sea and the
South China Sea. The absence of the 50‐ka cycle in the loess record indi-
cates that the EAWM over the Loess Plateau region is beyond the control
of ENSO processes.

Loess grain‐sized record suggests the same cycles and strong coherency
power at orbital bands with North American ice volume, whereas the clay
record shows a similar cycle (23 ka) but a weak coherence with the ice
volume (Figures S7b and S7d). Such coherences indicate that the North
Hemisphere ice volume strongly regulated EAWM on the Loess Plateau
(Hao et al., 2012) but was relatively weaker in the northern East Asian
marginal sea and thus induced weak glacial‐interglacial cycles in the
EAWM evolution in this area. Besides, similar cycle has not been found
between the South China Sea SST record and North American ice volume
(Figure S7c), probably suggesting the weak influence of northern high‐
latitude climate change on South China Sea EAWM (Huang, 2015).

Long‐term variations in the EAWM over the northern East Asian mar-
ginal sea, as recorded in the illite/smectite ratio in the IODP Site U1429
sediments, display strong anticorrelations with the EAWM over the
South China Sea. Variations in the single factor of insolation or
Northern Hemisphere ice volume cannot explain the distinct evolution
of EAWM in these two regions (Figures 2a–2b and 3a–3b). However, both
the EAWM in the northern East Asian marginal sea and the South China
Sea coevolve with zonal SST gradients (de Garidel‐Thoron et al., 2005) and
zonal SST gradient anomalies (Jia et al., 2018) in the tropical Pacific
(Figures 2d–2f). These equatorial Pacific SST gradients and gradient
anomalies exhibit an overall decreasing trend from ~300 to 160 ka. This
suggests that the tropical Pacific was dominated by a transition from La
Niña‐like to El Niño‐like conditions during this period (de Garidel‐
Thoron et al., 2005; Jia et al., 2018). This ENSO‐like evolution is associated
with the reinforcement of the EAWM in the northern region of the East
Asian marginal sea and a weakened EAWM in the South China Sea.
After ~160 ka, increases in the zonal SST gradient records and gradient
anomalies imply the relative intensification resembling La Niña‐like con-
ditions. This time interval is also associated with a gradually weakened
EAWM in the study region, and a strengthened EAWM in the South
China Sea. On multimillennial scales during the Holocene, such connec-
tions between the EAWM in the northern East Asian marginal sea and
South China Sea and the ENSO‐like record (Conroy et al., 2008;
Koutavas & Joanides, 2012; Moy et al., 2002) can also be
observed (Figure 3b–f).

A model for the response of the global atmosphere to the monthly varying
tropical Pacific SST gradient during 1948–1999 with CCSM3 argued that a
mature phase of El Niño in winter would lead to a strengthened EAWM
over the north of East Asia but a weakened one over the south (Sun &

Yang, 2005). During the El Niño phase, anomalously negative geopotential height centered over the north-
eastern part of East Asia and the surrounding sea, including Northeast China, the Korean Peninsula, the
northern region of the East Asian marginal sea, and part of the Japan Sea (East Sea). In contrast, an anom-
alously positive geopotential height center occurred over southern East Asia (Figure S8a). Meanwhile,

Figure 3. Comparison of proxy records of EAWM from northern East Asian
marginal sea and South China Sea with global paleoenvironmental records
during the last 8.5 ka. (a) Northern Hemisphere insolation at 20 °N and 35
°N in January and North American ice volume; (b) EAWM proxies in
northern East Asian marginal sea including clay mineral ratio, grain size
index in the middle Okinawa Trough (Zheng et al., 2014), and lignin record
(Hao et al., 2017) in the central Yellow Sea; (c) simulated EAWM speed in
northern East Asian marginal sea with KCM; (d) EAWM proxies in South
China Sea including SST gradient betweenwest and east (Huang et al., 2011)
and between surface and thermocline waters (Steinke et al., 2011); (e)
simulated EAWM speed in South China Sea with KCM and EAWM wind
index in southern China (20–30 °N, 110–130 °E) simulated by CCSM3 (Wen
et al., 2016); (f) zonal SST gradient between the west and east Pacific
(Koutavas & Joanides, 2012) and El Niño variability from lakes Pallcacocha,
Ecuador (Moy et al., 2002), and El Junco, Galapagos (Conroy et al., 2008).
Thick lines are polynomial fits shown to highlight general long‐term trends
from the original data sets. EAWM = East Asian winter monsoon;
KCM = Kiel Climate Model; SST = sea surface temperature.
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anomalous cyclones and anticyclones developed over the northeastern part of East Asia and the western
Pacific, respectively (Figure S8b). Such cyclones can lead to the occurrence of anomalous northwesterlies
over the northern East Asian marginal sea and, consequently, a strengthened EAWM in this region. In con-
trast, the anticyclone over the southern East Asia results in anomalous southwesterlies over the South China
Sea and, thus, a weakened EAWM in this area (Figure S8b). In addition, the comparison of the Niño 3.4
index (December–February) and observed winter wind speeds (December–February) in the northern East
Asian marginal sea (the Yellow Sea) and South China Sea from 1982 to 2016 also suggests antiphased winter
wind speeds in these two regions on the decadal scale (Figure S9). More importantly, both of them show
good coherence with the Niño 3.4 index, suggesting that the El Niño conditions correspond to the decreased
winter wind speeds in the South China Sea but the increased winter wind speeds in the Yellow Sea. The
opposite situation occurred under the La Niña conditions (Figure S9). Therefore, based on the spectral ana-
lysis and evolutionary trend comparison, we invoke a similar mechanism with the modern simulation and
observation results to explain the observed antiphasing of EAWM evolution between the northern East
Asian marginal sea and the South China Sea during the last 300 ka and through the Holocene. During the
El Niño‐like intervals, the anomalous northwesterlies in the northern East Asian marginal sea led to the
strengthened EAWM prevailing in this region (Figure 4a). In contrast, anomalous southwesterlies in the
South China Sea favored the occurrence of a weakened EAWM (Figure 4a). The opposite situation occurred
under La Niña‐like conditions (Figure 4b).

The comparison between EAWM records obtained at IODP Site U1429 and SST gradients in the South China
Sea, together with the simulated results reveals, for the first time, a strong north‐south spatial discrepancy in
the EAWM evolution in East Asian marginal sea. The results of this study support the teleconnection
between East Asia and ENSO‐like processes during the late Quaternary. Variations in the ENSO‐like climate
could have significantly regulated the long‐term strength of the EAWM in the northern East Asian marginal
sea and South China Sea. In the context of global warming, an increased frequency of extreme El Niño and
La Niña events (Cai et al., 2014; Cai et al., 2015) will very likely enlarge the spatial discrepancies in EAWM
intensities and lead to higher frequencies of extremely cold/warm winters in this region. Our findings

Figure 4. El Niño–Southern Oscillation forcing on the spatially variable evolution of the East Asian winter monsoon dur-
ing the late Quaternary. (a) El Niño‐like state; (b) La Niña‐like state. Global SST data of El Niño‐like and La Niña‐like
states are plotted based on a typical El Niño–Southern Oscillation process in November 1997 and November 1998,
respectively. The SST data are from COBE‐SST2 data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA,
from their website (https://www.esrl.noaa.gov/psd/).
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highlight the role of tropical forcing in East Asian climate change through ocean‐atmosphere interactions
and have important implications for future projections of winter climate in this densely populated region.

5. Conclusions

Based on the sediment input from the East Asian continent to the northern East Asian marginal sea, we
reconstruct the history of the EAWM over the northern East Asian marginal sea since the last 300 ka. The
long‐term evolution of the EAWM in this region intensified from ~300 to ~160 ka and then gradually wea-
kened from ~160 ka to the present, displaying strong anticorrelations with the EAWM over the South China
Sea. Both our EAWM proxy and KCM simulated results suggest opposite Holocene EAWM trends over the
northern East Asian marginal sea and the South China Sea.

We attribute this spatial discrepancy in EAWM evolution to an ENSO‐like control, which generates
cyclonic/anticyclonic wind anomalies in the northern/southern East Asian marginal sea. The development
of dominant El Niño‐like conditions corresponds to a strengthened winter monsoon over the northern East
Asianmarginal sea and a weakened winter monsoon over the South China Sea. In contrast, the development
of dominant La Niña‐like conditions is associated with a weakened winter monsoon over the northern East
Asian marginal sea and an intensified winter monsoon over the South China Sea.
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