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Benthos-Pelagos Interconnectivity: 
Antarctic Shelf Examples
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Abstract
This review focuses on studies dealing with the coupling 
between the benthic and pelagic realms on Antarctic 
shelves and on factors that regulate these processes. Such 
studies in Antarctic waters are scarce, especially on the 
shelves, where flux studies via moorings are highly endan-
gered by drifting icebergs. Nevertheless, such studies are 
essential to understand these processes and functioning of 
the cold water ecosystem and how energy is transported 
through its different compartments. Different abiotic 
(e.g., currents, sea ice, water depth, topography of the sea-
floor, seasonality) and biotic (e.g., composition and struc-
ture of the benthic and pelagic flora and fauna, primary 
production, vertical migrations) factors are presented as 
parameters regulating the coupling between benthos and 
pelagos, here defined as benthos-pelagos interconnectiv-
ity. Regional variability in these parameters may result in 
delayed or even different coupling and/or decoupling of 
these realms. This is exemplarily discussed comparing the 
West Antarctic Peninsula (WAP) and Eastern Weddell Sea 
Shelf (EWSS). While in the WAP both compartments 
appear decoupled, on the EWSS both compartments 
appear tightly connected. The development of the benthos 
in the Larsen embayments after the shelf ice disintegra-
tion is described as an example of  how changes in the 
pelagic realm affect and modify also the benthic realm.
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11.1  Bentho-Pelagic or Pelago-Benthic 
Coupling? A Short Introduction

When thinking of biotic (e.g., diversity, abundance, biomass) 
and abiotic (e.g., particle concentration, sediment grain size) 
parameters of both, benthic and pelagic realms, we start 
noticing lines or processes connecting them. One of the first 
studies on this connectivity was that of Hargrave (1973). He 
pointed out that both realms are connected by the flow of 
matter, especially that of carbon. Since that study, this inter-
connection between benthos and pelagos has been referred to 
as bentho-pelagic or pelago-benthic coupling. While the 
terms bentho-pelagic and pelago-benthic appear exchange-
able, each one alludes to the predominant or driving compo-
nent and direction in the coupling (Renaud et al. 2008). In 
bentho-pelagic coupling, it is the benthos which modifies or 
influences the pelagos. Contrastingly, in pelago-benthic cou-
pling it is the pelagos which influences or modifies the ben-
thos. In some literature bentho-pelagic coupling is referred 
to as “upward” coupling, while pelago-benthic coupling is 
referred to as “downward” coupling (e.g., Smith et al. 2006).

With this review, I aim to exemplify in a concise and sim-
ple way how benthos-pelagos interconnectivity, i.e., upward 
and downward coupling, works in the Southern Ocean with 
special focus on Antarctic shelf ecosystems (Fig. 11.1). My 
second aim is to enable non-experts to get a rough picture of 
the Antarctic benthos-pelagos interconnectivity.

11.1.1  Pelago-benthic Coupling

The first approaches used to describe the coupling between 
pelagos and benthos included measurements of carbon input 
from the water column to calculate how much of this carbon 
was assimilated in the sediment (Hargrave 1973). Currently, 
studies of downward mass flux are still the most common 
type of coupling studies (e.g., Cattaneo-Vietti et  al. 1999; 
Smith et  al. 2006, 2008; Isla et  al. 2006a, b, 2011). Other 
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Fig. 11.1 Map of the 
Antarctic continent including 
locations mentioned in the 
review. (a) Austasen and 
Kapp Norvegia, EWSS; (b) 
Bransfield Strait and tip of the 
Antarctic Peninsula; (c) 
McMurdo Sound, Ross Sea; 
(d) Signy and Orcadas 
Islands; (e) Rothera Point and 
area studied within the frame 
of the Food for Benthos on 
the Antarctic Continental 
Shelf (FOODBANCS) project 
in the West Aantarctic 
Peninsula; and (f) Larsen 
embayments, east coast of the 
Antarctic Peninsula. 
(Modified after Arndt et al. 
(2013))
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approaches to study pelago-benthic coupling include recruit-
ment of benthic organisms via meroplanktonic larvae 
(Bowden 2005), change of sediment characteristics (Collier 
et al. 2000; Hauck et al. 2012; Isla 2016b), pelagic character-
istics and seasonal patterns and how these affect benthic pro-
cesses such as feeding activity (Barnes and Clarke 1995; 
McClintic et  al. 2008; Souster et  al. 2018), reproduction 
(Pearse et al. 1991; Stanwell-Smith et al. 1999; Brockington 
et al. 2001; Galley et al. 2005), growth rates and carbon fixed 
by benthos (Dayton 1989; Brey and Clarke 1993; Clarke 
2003; Barnes et  al. 2006, 2016, 2018; Barnes 2015), and 
benthic distribution patterns (Barry 1988; Barry and Dayton 
1988; Graf 1989; Bathmann et  al. 1991; Gutt et  al. 1998; 
Sumida et al. 2008; Segelken-Voigt et al. 2016; Jansen et al. 
2018).

11.1.2  Bentho-pelagic Coupling

Less common than pelago-benthic coupling studies are those 
that show an effect from the benthos to the pelagos, i.e., a 
bentho-pelagic coupling. One clear example of this “upward” 
coupling is the regulation of particulate matter flow in the 
benthic boundary layer by means of benthic structures (Graf 
and Rosenberg 1997; Mercuri et al. 2008; Tatián et al. 2008); 
another example of these processes is the increase of abun-
dance and diversity of plankton by the release of meroplank-
tonic larvae from benthic organisms into the water (Bowden 
2005; Schnack-Schiel and Isla 2005). Benthic processes also 
create feeding grounds for birds, seals, and zooplankton 
(Arntz et al. 1994; Ligowski 2000; Schmidt et al. 2011), they 
enhance primary production through export of micronutri-
ents from remineralization and consumption/excretion pro-
cesses of pelagic communities (Doering 1989; Smith et al. 
2006; Schmidt et  al. 2011), and can regulate the chemical 
characteristics of the water column (Doering 1989; Sedwick 
et al. 2000; Tatián et al. 2008).

11.2  Regulating Factors of Benthic 
and Pelagic Processes

In general terms, the interconnectivity between benthos and 
pelagos could be regarded as “weak” or “strong.” This 
alludes to how directly changes in pelagos are reflected in 
benthos and vice versa. When seen as a correlation, it would 
be how strong the correlation between compartments is. The 
strength of the coupling between benthos and pelagos 
depends on seasonality in both compartments, the ecology 
and structure of benthic and pelagic communities, water 
depth, seafloor topography, water circulation (e.g., tides 
and currents), and wind, all affecting the transport of parti-
cles and thus carbon flux from one compartment to the other. 

Around the Antarctic continent, another factor playing a 
major role for the regulation of this coupling between ben-
thos and pelagos is the influence of ice in any of its forms 
(e.g., sea ice and disintegrated shelf ice, i.e., icebergs).

11.2.1  Sea Ice

The Southern Ocean is characterized by its large extension 
of sea ice, which covers up to 20 × 106 km2 during Austral 
winter and 4 × 106 km2 during summer (Fig. 11.2), making 
sea ice-associated ecosystems one of the most dynamic and 
largest ecosystems on Earth (Arrigo et  al. 1997; Thomas 
and Dieckmann 2002; Michels et al. 2008). The retreat of 
sea ice during summer increases the water column stability, 
seeds summer phytoplankton blooms, and works as a 
source for micronutrients such as iron (as well as other par-
ticles), favoring phytoplankton blooms and explaining the 
higher productivity near sea ice edges as compared to open 
waters (Clarke 1988; Sedwick and DiTullio 1997; Sedwick 
et al. 2000; Kang et al. 2001; Donnelly et al. 2006). It has 
been shown that reduction of the sea ice duration also con-
tributes to an increase of carbon drawdown by benthic 
organisms (Barnes 2015).

Sea ice starts growing during March to its enormous 
extension in Austral winter. The high coverage of sea ice and 
snow during winter time diminishes the light entering the 
water column, thus causing a drastic decrease in local pro-
ductivity and particle flux (Scharek et  al. 1994; Isla et  al. 
2006a). However, autotrophic plankton entrapped by sea ice 
during its formation (along with nutrients and consumers) 
continues primary production in winter time, which can be 
four to five times higher than water column production 
(Garrison and Close 1993). While lower than summer pro-
duction, sea ice primary production has been pointed out to 
serve as a possible food source for meroplanktonic larvae 
(Bowden 2005) and various krill life stages (Nicol 2006; 
Kohlbach et  al. 2017; Schaafsma et  al. 2017). These few 
examples show how the sea ice summer/winter cycle regu-
lates primary and secondary production in the water column 
and the particle flux, thus directly influencing the benthos- 
pelagos interconnectivity.

11.2.2  Depth, Topography, Currents, and Wind

One conspicuous aspect of the Antarctic shelf is its depth. 
While other shelf ecosystems in the world are shallower 
(down to around 200 m depth), the isostatic pressure gener-
ated by the ice cap on the Antarctic continent deepens the 
surrounding shelf down to 400–600  m and even down to 
800–1000 m in some regions (Gallardo 1987; Smith et  al. 
2006; Sumida et al. 2008). Smith et al. (2006) pointed out 
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that the increased depth of the Antarctic shelf with its com-
plex topography and current systems may reduce the strength 
of the coupling by increasing the time particles spent in the 
water column, allowing local characteristics of the benthic 
habitat to mask the pelagic signals on the seafloor. However, 
the effect of depth on particle receding time in the water col-
umn will depend on the nature of the particles, e.g., on their 
flocculation ability, and other environmental factors such as 
wind forcing, which regulates deposition or advection of par-
ticles (biological factors are treated later). For the Eastern 
Weddell Sea Shelf (EWSS; Fig. 11.1a), it has been described 
that particle flux is rather fast. Total mass fluxes measured at 
mid-water and near the seafloor with sediment traps appeared 
to be similar, and it has been noted that particles can reach 
the seafloor within days despite the long 400–600 m depth 
trip from the euphotic zone to the seafloor (Bathmann et al. 
1991; Isla et  al. 2006a, 2009). For the Ross Sea, while 
Dunbar et  al. (1998) recorded mean settling velocities of 
176–245 m d−1 for different types of fecal pellets, DiTullio 
et al. (2000) found aggregates of Phaeocystis antarctica to 
sink at speeds >200 m d−1, i.e., it could take 1–3 days for pel-
lets or Phaeocystis aggregates to reach the seafloor.

The topography of the shelf influences the benthos- 
pelagos interconnectivity as well. Topography affects ben-
thic distribution patterns and the transport and deposition of 
particles suspended in the water column alike. Dorschel 
et  al. (2014) pointed out that topographic features such as 
range hills, mounds, and seamounts modify water current 
pathways and their strength. Their study of the benthos at 

Nachtigaller Hill (Fig.  11.1b) at the tip of the Antarctic 
Peninsula described depth as one main factor explaining 
benthic distribution patterns. They related this to food avail-
ability for the benthos, which could have been enhanced by 
the topography of Nachtigaller Hill. Another topographic 
feature affecting water currents is the width of the shelf. 
Along wider shelves the currents tend to be weaker; stronger 
currents are more usual when the shelf is narrow. Gutt et al. 
(1998) found relatively weaker current regimes on wider 
shelves of the EWSS to be beneficial for particle settling, 
which in turn benefits deposit-feeding organisms. Conversely, 
the narrower areas off Austasen and Kapp Norvegia 
(Fig. 11.1a) on the EWSS generate relatively stronger cur-
rents promoting resuspension of particles and thus being 
favorable for suspension feeder-dominated community types 
(Gutt et al. 1998).

Currents, tides, and advection of water parcels on the 
shelf also play a role in the benthos-pelagos interconnectiv-
ity. In some cases they weaken; in others they mask coupling 
processes between the compartments. An example can be 
drawn from the study of Isla et  al. (2006b) at Johnston’s 
Dock (Fig.  11.1b), where water current induced transport 
and advection of particles from shallower shelf areas enhance 
particle flux to deeper parts (Fig. 11.3). Other studies con-
ducted in waters of the West Antarctic Peninsula (WAP) 
found particle flux on the deeper shelf to be enhanced by 
advected material originating from shallower shelves. This 
allochthonous input weakens the connection between ben-
thic distribution patterns and metabolism of benthic organ-

Fig. 11.2 Examples of sea ice extension during (a) summer (February 2018) and (b) winter (August 2018). (Modified after Fetterer et al. (2018))
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isms with primary production and local input of particles 
(McClintic et al. 2008; Sumida et al. 2008). Another clear 
example of the role of currents in the benthos-pelagos inter-
connectivity can be found in McMurdo Sound (Fig. 11.1c). 
Barry (1988) and Barry and Dayton (1988) found benthic 
distribution patterns to be coupled with primary production 
regimes and water circulation patterns. Circulation on the 
eastern side of McMurdo has a southward direction toward 
the Ross Ice Shelf and transports productive waters, which 
fuel rich benthic communities, whereas on the western side 
of the Sound, where less productive waters arrive from the 
ice shelf, a poorer benthic community is found.

Wind affects directly the benthos-pelagos interconnectiv-
ity by partly regulating sea ice and polynya formation, sea 
ice displacement, and mixed layer depth. While during win-
ter periods, cold winds absorb heat from the water surface 

enhancing sea ice formation, in summer periods strong 
winds push away sea ice forming coastal polynyas (Isla 
2016a). Wind-driven dispersal of the sea ice prior to its melt-
ing can prevent local release of algae trapped in the ice which 
would normally seed a local bloom (Riebesell et al. 1991). 
Furthermore, the strength of wind can also regulate the depth 
of the mixing layer in both a beneficial and prejudicial way. 
Where winds are relatively weaker, a shallower mix layer is 
formed (especially close to the ice edge). This shallower mix 
layer can foster larger blooms than deeper mixed layers 
(Ducklow et al. 2006). Conversely, in areas where winds are 
relatively stronger, a deeper mix layer is found. Deeper 
mixed layers can abruptly interrupt phytoplankton blooms, 
thus inhibiting primary production (Gleitz et  al. 1994; 
Dunbar et al. 1998; Ducklow et al. 2006). While the deepen-
ing of the mix layer by wind action appears prejudicial for 

Adjacent deeper shelf

Annual primary production

Organic matter oxidation

Focussing

Biogenic silica dissolution

~ 60 g C m-2

~ 120 g BSi m-2

Midwater annual flux

Near seabed annual flux

~ 4 g m-2

~ 0.34 g C m-2

~ 0.88 g BSi m-2

~ 17 g C m-2
~ 1254 g m-2

~ 201 g BSi m-2

Near seabed annual flux

~ 16 g m-2
~ 3325 g m-2

~ 75 g BSi m-2

Shallower shelf influenced
by a glacier

Fig. 11.3 Main particle fluxes at mooring sites around Johnston’s 
Glacier (Johnston’s Dock) studied by Isla et al. (2006b). Approximate 
annual total mass (g m−2), organic carbon (g C m−2), and biogenic silica 
(g BSi m−2) values are given. The sketch shows that most particles pro-
duced offshore over the deep shelf (polygons) do not reach mid-water; 
the material settling in the shallower shelf feeds the deeper shelf via 

advection. Glacier and floating icebergs deliver coarse and fine sedi-
ments (dense clusters and circles, respectively) onto shallow areas, but 
mostly the latter reaches the deeper shelf. Near the seabed, resuspen-
sion of sediments is represented by curved arrows. (Modified after Isla 
et al. (2006b) with permission from Springer)
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the coupling between pelagos and benthos by reducing pri-
mary production and thus its related particle flux, a deepen-
ing of the mix layer due to strong stormy winds has been 
pointed out to increase total downward particle flux. By 
means of sediment traps, Isla et al. (2009) found that strong 
stormy winds enhanced the transport of organic matter to the 
seabed. In their study, the flux resulting from a storm event 
which lasted a few days represented 53% of the total mass 
flux collected at mid-water during a period of 30 days.

11.2.3  Seasonality and Particle Flux

It is commonly accepted that the Antarctic benthic realm can 
be considered as a rather stable system with little variation in 
environmental parameters such as temperature, salinity, and 
water currents, whereas the pelagic realm is considered as 
highly seasonal with distinct summer/winter cycles, espe-
cially in primary production and sea ice extension (Gallardo 
1987; Clarke 1988; Bathmann et  al. 1991; Scharek et  al. 
1994; Arntz et al. 1994; Arrigo et al. 1998; Palanques et al. 
2002; Smith et al. 2006; Isla et al. 2009, 2011; Rossi et al. 
2013; Flores et al. 2014; Isla 2016b). While the stability of 
the benthos and instability of the pelagos are commonly 
accepted, the intrinsic biotic and abiotic factors of both are 
highly dependent on local water mass properties and circula-
tion, as well as  wind, sea ice, and topographic conditions 
(e.g., Barry and Dayton 1988; Barthel and Gutt 1992; Gleitz 
et  al. 1994; Dunbar et  al. 1998; Ducklow et  al. 2006; Isla 
et al. 2009; Hauck et al. 2010; Barnes 2015).

11.2.3.1  Pelagic Realm
Primary production in the water column is key in regulating 
the flux of particles. Most of the primary production is pro-
posed to be generated within the seasonal sea ice zone, espe-
cially in waters close to the retreating sea ice edge, where 
water column stability and nutrient concentrations are high. 
Driven by melting of sea ice, these locations also act as seed-
ing grounds for primary production in the euphotic zone, 
enabled by released sea ice algae and enhanced input of 
nutrients (Scharek et al. 1994; Sedwick and DiTullio 1997; 
Sedwick et al. 2000; Arrigo et al. 2008; Bertolin and Schloss 
2009; Isla et al. 2009; Isla 2016b). The primary production in 
the seasonal sea ice zone was estimated to be 1300 Tg C y−1, 
of which 420 Tg C y−1 are generated in the marginal sea ice 
zone and roughly 5% of production of the seasonal sea ice 
zone is produced by sea ice algae (Lizotte 2001). The impor-
tance of primary production regulating particle fluxes 
matches with zooplankton activities, because zooplankton 
quickly reacts to phytoplankton blooms (Flores et al. 2014). 
Grazing pressure is one of the main regulators of phyto-
plankton blooms. Fecal pellets resulting from this grazing 
largely contribute and regulate particle fluxes (Bathmann 

et al. 1991; Palanques et al. 2002; Isla et al. 2009; Rossi et al. 
2013) and change the chemical composition of these fluxes 
and their size structure (Isla 2016b). Summer primary pro-
duction and zooplanktonic grazing amount for >95% of the 
yearly total mass flux. This particle flux provides carbon to 
the benthos, which equals between <1 up to 18% of the 
annual primary production of a region (Bathmann et  al. 
1991; Palanques et al. 2002; Isla et al. 2006a, 2009). Although 
the proportion of carbon reaching the seafloor appears negli-
gible to low, it is still enough to support biomass-rich benthic 
communities and to form “food banks” (Gutt et  al. 1998; 
Smith et al. 2006; Isla et al. 2009, 2011), as observed, e.g., 
on the EWSS, where benthic biomass is high and communi-
ties are mainly constituted by sessile suspension feeders 
(Gerdes et al. 1992; Gutt and Starmans 1998).

Vertical migration by zooplankton, fish, or diving verte-
brates is regarded as a common feature of aquatic environ-
ments, and on an individual level, these provide a trade-off 
between nutrition and survival (Schmidt et al. 2011). In the 
context of this review, vertical migration refers to any causal 
vertical movement (e.g., foraging expeditions and avoid-
ance of predators). The benthic realm works as feeding 
ground for various vertebrates, thus promoting vertical 
migrations. Arntz et  al. (1994) pointed out that seals and 
penguins often dive deep to feed on benthic invertebrates. 
Antarctic krill Euphausia superba has also been found to 
migrate down to 3000 m depth either to feed on the seabed 
or as a result of being satiated (Ligowski 2000; Tarling and 
Johnson 2006; Schmidt et al. 2011). While migrating, swim-
ming organisms release carbon and nutrients in form of 
feces. Release of feces near the benthos could mean an extra 
input of available food for benthic organisms. Conversely, 
excretion of a mix of benthic organic material and litho-
genic particles in the upper water column would increase 
the concentration of labile iron which could enhance pri-
mary production (Schmidt et al. 2011).

11.2.3.2  Deposition and Resuspension
Specific particle composition and flux rates in a region are 
not just a question of primary production and associated 
zooplanktonic activity. They also are affected by local depo-
sition and resuspension processes. Water currents, espe-
cially near the seabed, are one key environmental factor 
regulating deposition and resuspension. Another key envi-
ronmental factor are icebergs. Iceberg scours change the 
seabed topography, affect the near seabed current regime, 
and modify the deposition regime in the area by trapping 
particles in the scours mark (working as a sort of “sediment 
trap”). Iceberg scour marks can be 10s to 100s meters wide, 
several meters deep, and 10s of meters or even kilometers 
long (Gutt 2001; Gerdes et al. 2003). On the other hand, ice-
berg scours can also enhance resuspension by generating  
an upward particle flux (Gutt 2001; Barnes et  al. 2018).  
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A recent study on the effect of icebergs and sea ice on “blue 
carbon” (carbon in organisms) pointed out that in March 
2017, 47 giant icebergs larger than 30  km2 occurred in 
Antarctica, 6 of which exceeded 1000 km2 in area (Barnes 
et  al. 2018). Initially, any iceberg scour would resuspend 
already fixed blue carbon and increase the open water area 
by breaking and displacing sea ice. The combination of 
additional resuspended material and open water area would 
result in an increase of primary production, which in turn 
would promote benthic growth. As a result, deposition 
would be increased not only by the enhanced primary pro-
duction but also by the proportional increase of benthic sus-
pension feeder biomass (Barnes et al. 2018).

The studies of Mercuri et al. (2008), Tatián et al. (2008), 
and Barnes et al. (2016, 2018) are examples of how benthic 
organisms affect deposition and resuspension. Micro-, 
macro-, and megafauna as well as marine flora directly 
affect the sediment erodibility and regulate sediment mix-
ing, which greatly affects the benthos-pelagos interconnec-
tivity (Orvain et  al. 2012; Queirós et  al. 2015). Benthic 
organisms may decrease sediment roughness by mucus, 
bacterial mats, or diatom film production, thus reducing the 
resuspension ability of sediments (de Jonge and van den 
Bergs 1987; Grant and Bathmann 1987; Paterson 1989; 
Self et al. 1989; Delgado et al. 1991; Dade et al. 1992; de 
Jonge and van Beusekom 1995). In Antarctic benthos, 
hexactinellid sponges exemplify how organisms can reduce 
resuspension and enhance deposition. These sponges 
cement and consolidate sediments, enhance biodiversity by 
promoting the immigration of other sponge species, pro-
vide refuges to other taxa, and generate spicule mats 
(Fig.  11.4), which work as silicon traps (Barthel 1992; 
Barthel and Gutt 1992; Gutt et  al. 2013a). Sponges and 
other filter feeders collect particles from the water column, 
thus enhancing the downward flux of particles and their 
deposition (Barthel 1992; Mercuri et al. 2008; Tatián et al. 
2008). This biodeposition effect is enhanced by the increase 
of biodiversity provided by sponges. Furthermore, spicule 
mats reduce resuspension by covering the sediment, thus 
reducing its erodibility. Other structures that enhance depo-
sition are tube formations (Fig. 11.4). High density of poly-
chaete tubes could generate an attracting effect equal to 
that of baffles in sediment traps, albeit in a reduced area 
(Frithsen and Doering 1986). Contrastingly, other activities 
of benthic organisms such as pellet production and biotur-
bation with formation of mounds, pits, tubes, and tracks 
can change the sediment structure and enhance particle 
resuspension (Eckman et  al. 1981; Eckman and Nowell 
1984; Luckenbach 1986; Davis 1993). Resuspended mate-
rial tends to be rich in nutrients and contains also micronu-
trients such as iron, which could, in shallower shelf areas 
with upwelling or those shelf areas where deep mixing 
occur, enhance summer primary production (Doering 1989; 
Sedwick et al. 2000).

Fig. 11.4 Examples of benthic structures which modify particle resus-
pension and deposition: (a) a three-dimensional structure provided by 
sponges and associated organisms; (b) a spicule mat covering part of 
the seabed; and C) a cluster of polychaete tubes. Images (a) and (c) 
were modified after Piepenburg (2016). Image (b) was kindly provided 
by D. Gerdes and modified
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11.2.3.3  Benthic Realm
The marked seasonal differences in the pelagic realm, espe-
cially the reduction of carbon flux in winter (see Sects. 11.2.1 
and 11.2.3.1), has been thought to directly regulate benthic 
processes such as reproduction, growth, feeding activity, 
sexual development, recruitment of juveniles, and also ben-
thic distribution patterns. However, studies on bentho-pelagic 
and pelago-benthic coupling in Antarctic waters have shown 
differences between benthic and pelagic seasonality to be 
less important in regulating benthic processes and that both 
compartments could be less coupled than thought, partly due 
to the effect of currents, lateral advection, and tides (see Sect. 
11.2.2). Stanwell-Smith et al. (1999) studied meroplanktonic 
larvae released by benthic organisms and described these lar-
vae to be present throughout the year. In some cases, the lar-
val peak was clearly decoupled from the summer bloom, and 
the recruitment of benthic organisms was described to occur 
year-round or with a tendency to happen during winter 
months (Bowden 2005; Galley et  al. 2005). Similarly, 
Sumida et  al. (2008) found recruitment of holothurians to 
occur during winter, but these deposit feeders were actively 
feeding throughout the whole year. Measurements of meta-
bolic activity via thorium (Th) isotopes made by McClintic 
et  al. (2008) confirmed benthos to be metabolically active 
year-round. Results from the studies of Sumida et al. (2008) 
and McClintic et  al. (2008) conducted in the WAP agreed 
with earlier findings made by Barnes and Clarke (1995), who 
recorded feeding activities of bryozoans, holothurians, poly-
chaetes, and hydroids at Signy Island (Fig. 11.1d). However, 
Barnes and Clarke (1995) did not find any feeding activity 
during short periods of time during winter. Similarly, a study 
conducted at Rothera Point (Fig.  11.1e) by Brockington 
et al. (2001) on the feeding activity and nutritional status of 
the sea urchin, Sterechinus neumayeri, found this species to 
completely stop feeding during winter. In a recent study, 
Souster et  al. (2018) measured the seasonality of oxygen 
consumption of five benthic invertebrates and found the oxy-
gen consumption of suspension and deposit feeders to be 
independent from the input provided by the local summer 
flux. It has been proposed that benthic organisms can feed or 
be metabolically active year-round by changing their feeding 
mechanism, as is known for some sponges, polychaetes, 
bivalves, and cnidarians (Cattaneo-Vietti et al. 1999; Orejas 
et al. 2001).

11.3  Regional Patterns in Coupling 
Processes

The interaction between biotic and abiotic factors regulating 
the benthos-pelagos interconnectivity will have direct impli-
cations on how “strong” or “weak” the coupling between 

realms is and how changes in one of the compartments may 
affect its counterpart. When comparing different Antarctic 
regions, we observe differences in flux regulators and in the 
structure of the respective benthic communities. These dif-
ferences reflect how variable the strength of the coupling 
between benthos and pelagos is. To exemplify how coupled 
or decoupled systems appear, I compared data obtained in 
WAP and EWSS waters. Furthermore, I include the example 
of the Larsen area (Fig. 11.1f) to exemplify how changes in 
the pelagos affect and modify the benthos.

11.3.1  West Antarctic Peninsula

To describe the benthos-pelagos interconnectivity on the 
WAP shelf, I focused on studies from the Bransfield Strait 
(Palanques et  al. 2002; Isla et  al. 2006b), Rothera Point 
(Souster et al. 2018), and those conducted within the frame 
of the “Food for Benthos on the Antarctic Continental Shelf” 
project (FOODBANCS; e.g., Smith et  al. 2006; McClintic 
et al. 2008; Sumida et al. 2008). All locations are marked in 
Fig.  11.1b, e. According to these studies, the coupling 
between the pelagic primary production and benthic biologi-
cal processes in these areas appears “weak.” As already 
stated, the study of McClintic et al. (2008) with Th isotopes 
not only showed benthos to be metabolically active the whole 
year; it also showed that the delivery of this isotope to the 
sediment was not related to local downward flux, suggesting 
more influence from advected material than from local pro-
duction. Investigation of the shelf fauna via video recordings 
(Sumida et  al. 2008, 2014) also shows proof of a “weak” 
local coupling. They found holothurians to recruit during 
winter, i.e., independently from local food input. Sumida 
et al. (2008, 2014) also recorded feces of holothurian year- 
round, but with hints to higher feeding rates during summer, 
which appears to be the result of better food quality in this 
season (Sumida et  al. 2014). The study of Souster et  al. 
(2018) found results partly different to those of Sumida et al. 
(2008, 2014). Souster et al. (2018) described primary con-
sumers (suspension and deposit feeders) to maintain a rather 
stable metabolic activity year-round, regardless of food 
input, while secondary consumers (scavengers and preda-
tors) showed higher metabolic activity during summer than 
winter. These authors attributed the seasonal metabolic dif-
ferences of secondary consumers to be related to better qual-
ity of food items rather than to their quantity.

Studies conducted in the WAP evidence advection of 
material to be more important than locally produced particle 
fluxes. Palanques et al. (2002) found a high amount of the 
sediments captured by their traps located in the deeper 
Bransfield Strait (BS; Fig. 11.1b) to originate from shallower 
areas of the BS.  The sediment fluxes near the bottom 
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accounted for 18% of the annual primary production, and 
these fluxes included benthic organisms and particles resus-
pended and laterally transported from shallower adjacent 
areas. The study of Isla et al. (2006b) found that sedimenta-
tion generated by the Johnson’s Glacier (Johnson’s Dock, 
Fig. 11.1b) was comprised mostly of fine sediment. These 
particles were rich in organic matter, and near-bottom lateral 
transport of this resuspended matter was the main source of 
carbon flux into deeper basins (Isla et al. 2006b). These evi-
dences suggest the shallow coastal areas of the WAP to be 
highly nutritive. Via advection from these shallower areas, 
the adjacent deeper basins are provided with organic matter. 
This material is accumulated and forms green mats or “food 
banks.” These green mats ensure the presence of food for 
benthos during the low production autumn and winter sea-
sons (Smith et al. 2006). The formation of these “food banks” 
via advected material and a dominance of deposit feeders 
might explain the restricted meaning of locally generated 
particle fluxes between pelagic and benthic realms in the 
WAP (McClintic et  al. 2008; Sumida et  al. 2008; Souster 
et al. 2018).

11.3.2  Eastern Weddell Sea Shelf

The “weak” interconnectivity in the WAP appears to be con-
nected to how particle fluxes are mainly regulated by advec-
tion processes from shallower shelves to deeper basins, 
where “food banks” are formed (Isla et  al. 2006b; Smith 
et al. 2006; McClintic et al. 2008; Sumida et al. 2008). On 
the EWSS, downward particle transport off Austasen and 
Kapp Norvegia (Fig.  11.1a) has been described to be fast 
(Bathmann et al. 1991; Isla et al. 2009), despite the relatively 
stronger currents caused by the narrow shelf. This “fast” 
downward flux is evidenced by (a) how sediments quickly 
reflect the local bloom and its associated characteristics 
(Bathmann et al. 1991; Isla et al. 2009) and (b) how bottom 
sediments are especially nutritive during summer/autumn 
(Isla et al. 2011). The efficient transport of carbon from the 
pelagic to the benthic realm in combination with the resus-

pension of particles could explain the benthic community 
characteristic on the EWSS.  Benthic communities in this 
region have been described as rich in sessile suspension 
feeders, especially glass sponges, which not only increase 
diversity by creating three-dimensional structures with space 
for many other species but also explain the high biomass of 
the EWSS benthos, which is higher than that of other 
 subregions in the Weddell Sea including the tip of the 
Antarctic Peninsula (Table 11.1; Barthel 1992; Barthel and 
Gutt 1992; Gerdes et al. 1992; Arntz et al. 1994; Gutt and 
Starmans 1998; Sañé et  al. 2012; Gerdes 2014a, b; 
S.E.A. Pineda-Metz unpublished data). This high biomass of 
suspension feeders also influences deposition and sediment 
chemistry. It seems feasible that suspended particles are 
largely consumed by suspension feeders, thus transforming 
the chemical composition of these particles and reducing the 
amount of organic carbon remaining for incorporation into 
the sediment. The efficient local flux patterns in combination 
with particle resuspension and high biomass of suspension 
feeders which benefit from these conditions might explain 
the “stronger” coupling between benthic and pelagic realms 
on the EWSS contrarily to what was found in the WAP 
region.

11.3.3  The Changing Situation of Larsen

The Larsen embayments on the eastern coast of the Antarctic 
Peninsula (Fig.  11.1f) may serve as an example of how 
changes in the pelagic system influence benthos. Studies in 
the embayments formerly covered by the Larsen A and B ice 
shelves reflected a shift from an oligotrophic system to one 
with enhanced production and flux rates (Sañé et al. 2011). 
Before the disintegration of the shelf ice in 1995 and 2002, 
respectively, the shelf benthos appeared impoverished and in 
an early developmental stage as compared to the 
EWSS.  Sessile suspension feeders showed low biomasses, 
and several deep-sea species on the shelf reflected the oligo-
trophic conditions resembling the deep sea (Gutt et al. 2011; 
Sañé et  al. 2012; Gerdes 2014a, b). The disintegration of 
shelf ice created new space offshore for enhanced local pri-
mary production, shifting toward a more eutrophic and pro-
ductive pelagic realm (Bertolin and Schloss 2009). Within a 
relatively short time, this enhanced pelagic production led to 
a shift also in the composition of the benthos (Fillinger et al. 
2013; Gutt et al. 2013b). Benthos shifted from an ascidian 
dominated to a sponge- and ophiuroid-dominated fauna. 
Suspension-feeding ophiuroids were replaced by a more 
abundant deposit-feeding ophiuroid fauna, and sponges 
increased two- to threefold in terms of abundance and bio-
mass (Fillinger et al. 2013; Gutt et al. 2013b).

Table 11.1 Depth ranges and wet weight biomass data (gww m−2) from 
multi-box corer samples collected in four subregions of the Weddell 
Sea: Tip of the Antarctic Peninsula (TAP), Larsen embayments (LA), 
Filchner Region (FR), and Eastern Weddell Sea Shelf (EWSS) 
(S.E.A. Pineda-Metz, unpublished data)

Subregion Depth range (m) Biomass (gww m−2)
Range Mean Median

TAP 187–934 30–3485 423 223
LA 202–850 2–786 78 16
FR 254–1217 1–335 51 24
EWSS 248–1486 1–103,235 4811 134
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11.4  Outlook

Studies on the coupling between the benthic and pelagic 
realms are difficult approaches with complex sampling pro-
grams, which require similar temporal and spatial scales for 
drawing accurate conclusions about coupling processes and 
their meaning for both compartments (Raffaelli et al. 2003; 
Renaud et al. 2008). This review on benthos-pelagos inter-
connectivity includes attempts to describe regulating factors 
that connect the benthic and pelagic both realms.

Based on “real data”, I draw assumptions to distinguish 
between specific coupling processes in different Antarctic 
regions. These assumptions are made on only few studies, 
which were not all intended to study the benthos-pelagos 
interconnectivity per se but aimed to study processes indi-
vidually. This implies that my hypothetical assumptions 
need further testing. This shows also that many gaps remain 
and filling them will be of paramount importance to better 
understand how both realms are connected and how carbon 
cycling works on Antarctic shelves.

There have been a series of attempts to connect the 
Antarctic benthic and pelagic realms, reflected (but not 
restricted) to the works of Barry (1988) Barry and Dayton 
(1988), Dayton (1989), Ligowski (2000), Schnack-Schiel 
and Isla (2005), Barnes et al. (2006, 2016, 2018), Isla et al. 
(2006a; b), Smith et al. (2006, 2008), McClintic et al. (2008), 
Mercuri et  al. (2008), Tatián et  al. (2008), Schimdt et  al. 
(2011), Sañé et al. (2011, 2012), Barnes (2015), Jansen et al. 
(2018), and Souster et al. (2018). Promising attempts to fill 
regional gaps have also been made. The FOODBANCS proj-
ect (Smith et al. 2006, 2008) gives a clear hint of how the 
coupling (or decoupling) between benthos and pelagos 
works in shelves of the WAP. In this modern age, modelling 
has gained great importance. Models on how pelagic parti-
cles are distributed and are related to benthic distribution pat-
terns are starting to be developed (e.g., Jansen et al. 2018). 
While promising, attempts on modelling and correlating 
benthic and pelagic processes are still in early stages. Other 
Antarctic areas with a long history of studies such as the 
Weddell Sea need the available data to be reviewed, sorted, 
and used to start drawing lines between benthic and pelagic 
realms, as attempted in this review. This first step will help to 
set the course of future studies and point out a red line on 
how benthos-pelagos interactions could be investigated in 
different Antarctic regions, which in turn will provide an 
excellent tool to understand how the ongoing and predicted 
climate change will affect the Antarctic shelves.
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