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ABSTRACT: Increasing interest in the acquisition of biotic and abiotic
resources from within the deep sea (e.g,, fisheries, oil—gas extraction, and
mining) urgently imposes the development of novel monitoring - — - P — | Contarien
technologies, beyond the traditional vessel-assisted, time-consuming, ’

y.z

high-cost sampling surveys. The implementation of permanent networks 1
o Ventst

of seabed and water-column-cabled (fixed) and docked mobile platforms
is presently enforced, to cooperatively measure biological features and
environmental (physicochemical) parameters. Video and acoustic (i.e.,
optoacoustic) imaging are becoming central approaches for studying

benthic fauna (e.g, quantifying species presence, behavior, and trophic
continued...
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interactions) in a remote, continuous, and prolonged fashion. Imaging is also being complemented by in situ environmental-
DNA sequencing technologies, allowing the traceability of a wide range of organisms (including prokaryotes) beyond the reach
of optoacoustic tools. Here, we describe the different fixed and mobile platforms of those benthic and pelagic monitoring
networks, proposing at the same time an innovative roadmap for the automated computing of hierarchical ecological
information on deep-sea ecosystems (i.e., from single species’ abundance and life traits to community composition, and overall

biodiversity).

1. INTRODUCTION

Throughout the Anthropocene Era' the human footprint on the
ecosystems of the global ocean has been increasing continu-
ously.” Since this footprint is rapidly expanding toward great
depths, the need for a global observing effort in the deep ocean is
crucial.’ Accurate monitoring of our incursive impacts on
marine ecosystems, however, requires the development of novel
and effective technological solutions.

The deep-sea seafloor and overlying waters (below 200 m
depth) form the largest biome on Earth, although it remains
poorly explored.*™® The monitoring of key ecosystem features
and functions has proven difficult, owing to the extreme
environmental conditions associated with these depths (e.g.,
high pressures, low temperatures, corrosiveness, and remote-
ness), coupled with limited sampling capabilities offered by low
numbers of adequately equipped research vessels.”

In order to sustain correct management and protection
actions, a spatiotemporally extended monitoring regime must be
implemented to gather data on species and their communities
across the vast extent of the great global ocean basins.® Clear
examples of shortfalls in current data include the lack of
knowledge on biomass, abundance, reproductive cycles,
population dynamics (ie., growth and mortality), migrations,
and geographic ranges.” Furthermore, community biodiversity,
food web structures and the influence of organic matter transfer
within ecosystem compartments and across boundaries are also
poorly studied in relation to the neighboring shallower and
coastal ecosystems.'’ All these aspects have repercussions on
penetration and propagation of the human footprint into marine
ecosystems (e.g., pollutants and microplastics'").

To fill these knowledge gaps, the efficient integration of
ongoing technological developments into a strategic framework
for deep-sea monitoring is critical (e.g, see ref 12). Such
development should be capable of producing tools for the
spatiotemporal location and quantification of deep-sea organ-
isms across a wide range of body sizes, as well as their activity and
response to changing environmental conditions and anthro-
pogenic stressors.

1.1. Objectives. In this study, we review the status and
development of high-tech, interactive networks of fixed and
mobile platforms, currently used for spatiotemporally flexible
and appropriate monitoring of deep-sea ecosystems. We
propose an innovative roadmap for the hierarchical extraction
of ecosystem indicators related to assemblage structure,
biodiversity, and ecosystem functioning, as obtained from
biological variables encompassing species abundances, demo-
graphic descriptors, and behavior. We center our analysis on
ecosystem indicators extracted from video and acoustic imaging
of marine megafauna (i.e., organisms of size from centimeters
and above), representing the apical ecological complexity
component, that is fundamental in conditioning ecosystem
functioning, services, and health.”?
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2. GROWING HIGH-TECH CABLED OBSERVATORY
NETWORKS

The ongoing technological development in seafloor cabled
observatories is motivated by the growing awareness about the
strategic value of acquiring multidisciplinary biological and
environmental data in a concomitant fashion, in order to derive
putative cause—effect relationships as drivers of ecosystem
changes.'*™'® The successful integration of such platforms
equipped with camera systems, multiparametric bio-geo-
chemical, oceanographic, and biological sensors with seafloor
power and communication cables now allows the remote,
continuous, high-frequency (>1 Hz as real time), long-term (up
to decades) monitoring of the deep-sea biome."” In this highly
integrated monitoring approach, megafauna identification,
tracking, and counting through optoacoustic and new molecular
sensors should be a key focus, in relation to productivity and
services (e.g,, fishery'®).

Throughout the past two decades, cabled observatories have
provided relevant data, helping to fill the gaps in knowledge on
species’ presence, behavior, and associated changes in
biodiversity and ecosystem function (Table 1). Unfortunately,
cabled systems are fixed and have limited spatial coverage when
the deep continental margins and ocean basins are considered as
a whole.”'® An attempt to overcome such a limitation has
occurred in some cases through the installation of a local
network of seabed platforms. Good examples are the Ocean
Network Canada (ONC), Deep-Ocean Environmental Long-
Term Observatory System (DELOS), and Lofoten Verlag
Observatory (LoVe) respectively in Juan de Fuca plate (NW
Pacific), off Angola (SE Atlantic), and in Norway.'”~**

The deployment of observatory modules in clusters with
separation distances on the order of hundreds of meters or a few
kilometres is presently envisaged to maximize the ability to
quantify species distributions and habitat associations over
multiple scales (see Table 1). Deploying multiple ecosystem
observatory clusters along environmental or habitat gradients
would be effective in elevating the system from examination of
local habitats to ecosystem level observation. Each node can
acquire imaging and acoustic as well as multiparametric
environmental data in a temporally coordinated fashion.
Accordingly, temporal changes in species’ presence and
abundance in an area of the deep sea can be tracked through
neighboring environments.””**

2.1. Increased Spatial Monitoring Capability with
Permanent Mobile Platforms. Nevertheless, networks of
cabled observatories are not enough to ensure eflicient
monitoring across highly variable benthic seascapes.'® Presently,
there is a drive to integrate mobile platforms through docking
stations into existing cabled observatory infrastructures, to
provide extended coverage at local, regional, and basin-wide
spatial scales, both on the seafloor and within the water column
(Figure 1). Benthic mobile platforms are represented by
crawlers: a new class of internet operated vehicles (IOVs),
tethered to cabled observatories.”® These tracked vehicles are
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Table 1. continued

monitored biological variable or ecosystem

publication

cabled platform

NEPTUNE Cabled Observatory

indicator

hierarchical step

47

(ONC; Barkley Canyon slope; 900—1000 m; NE Pacific)
DELOS observatories (1400 m, SW Atlantic off Angola)

NEPTUNE Cabled Observatory

benthic community composition

20

126

hydrothermal vent fauna community

(ONC; Endeavor; 2200 m; NE Pacific)

VENUS Cabled Observatory

composition

136

benthic community composition

(ONC; Saanich Inlet; 100 m; NE Pacific)

132
67

benthic community dynamics

(ONC; Barkley Canyon shelf-break; 400 m; NE Pacific)

NEPTUNE Cabled Observatory
NEPTUNE Cabled Observatory

seabed bioturbation by benthic megafauna

6. ecosystem functioning (food-web structure, carbon flux, bioturbation/remineralization)

113

(ONC; Barkley Canyon slope; 400—1000 m; NE Pacific)

NEPTUNE Cabled Observatory

zooplankton carbon fluxes

24

(ONC; Barkley Canyon hydrates; 900 m; NE Pacific)

seasonal carbon fluxes
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capable of real-time navigation control and data collection via
simple web browser interfaces operable from anywhere. At the
same time, a new class of rovers, nontethered benthic mobile
crawlers, are entering into active research, capable of automati-
cally returnin% to the docking station for charging, data transfer,
or recovery. ° To complement the seafloor monitoring
capacities of crawler systems, pelagic monitoring is presently
achieved using tethered remotely operated vehicles (ROVs) and
free swimming autonomous underwater vehicles (AUVs), some
of which may also dock with cabled stations for energy recharge
and data transmission.”” These also allow monitoring of the
water column at a hi§h frequency over extended periods and
across depth strata.”**

Each of these mobile platforms provides a unique
contribution to the ecosystem observatory, as well as some
task redundancy. The AUV equipped with imaging or acoustic
devices is ideally suited for habitat and biota distribution
mapping’”*" and can be used to conduct transects around the
observatory and between observatories. The AUV provides the
highest mobility and flexibility in sampling design for mapping
with impacts on the benthic habitat by maritime activities (e.g.,
noise, substrate disturbance at different scales, and artificial light
pollution effects). Although the ROV design implies a tether,
such a platform has also a high mobility and it can be used
similarly to AUVs,” with the advantage of having two way real-
time data transmission and manipulator arms to be used for
management and maintenance tasks within the monitoring
infrastructure (e.g., manipulative experiments or for placing
autonomous recorders such as stand-alone autonomous
cameras). In addition, ROVs are the best option for collecting
video data on the development of the fouling community on the
observatory infrastructure and fauna association with the
structure. The major drawback of ROVs is that they must
operate with thrusters, creating high levels of noise and their
limited ability to conduct sampling and observations at specific
locations for extended periods of time.>* Crawlers, on the other
hand, can be used to conduct census observations at specific
locations (in constant transect or stepping-stone fashion) for
extended time periods (minutes to hours). Crawlers can also
share some infrastructure servicing tasks with the ROVs and
carry larger payloads. Drawbacks to crawlers include noise
production but, more importantly, physical disturbance of the
benthic habitat and associated fauna along the movement tracks.

2.2. Benthic Networks Growing in the Pelagic Realm.
The need to monitor energy fluxes between pelagic and benthic
ecosystem compartments (ie., benthopelagic coupling) and
their spatiotemporal changes (e.g.,*"), requires the development
of three-dimensional monitoring networks of platforms, with
cabled nodes and mobile platforms operating in tandem (Figure
2). This ecologically integrated monitoring is presently being
facilitated by incorporating to the benthic data collection,
secondary data streams supplied by fixed (i.e,, moored) water
column and superficial buoys, as well as satellites.”* Satellites are
optimal tools for gathering large-scale physicochemical data
from superficial (i.e., epipelagic) ecosystems, quantifying
relevant biological variables from ocean color (e.g., chlorophyll
content, particulate matter, and so on). Unfortunately, satellite
sensors cannot penetrate much beyond the surface of a global
water mass, and therefore pelagic buoys are more appropriate for
the monitoring of subsurface oceanic strata.

In this scenario, benthopelagic monitoring capabilities are
also being potentiated via data collection from the routine
operations of large astrophysical experimental infrastructures,

DOI: 10.1021/acs.est.9b00409
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Figure 1. Fixed (i.e., cabled) and mobile docked platforms constituting a spatial network for the integrated benthic and pelagic ecosystem monitoring.
(A) Video-cabled multiparametric observatory platform, acting as a docking station for a pelagic remotely operated vehicle (ROV) and a tethered
mobile benthic crawler; (B) rover (MANSIO-VIATOR) similar to crawlers but not tethered, docked to a vessel-assisted repositioning station; (C)
architecture of ANTARES (the Astronomy with a Neutrino Telescope and Abyss environmental RESearch detector) with a line of photomultiplier

tubes (PMTs) and a tethered crawler.

such as underwater neutrino telescopes (see Figure 1C). These
telescopes consist of arrays of vertically moored (up to 700 m),
flexible strings or towers of photon detectors (photomultiplier
tubes; PMTs) for neutrino particle quantification, placed at
different altitudes above the seabed and connected to shore via
power and fiber-optic data cables.”

Although the primary use of these platforms is within the
high-energy astrophysics domain,*® their infrastructure provides
a network of subsea connection points and sensors usable for
marine ecological monitoring. Hydrophones for passive acoustic
listening are connected to the system to monitor the position of
the towers in relation to currents and to simultaneously
triangulate the PMT location with the aid of acoustic beacons,
so that the trajectories of detected neutrinos can be properly
computed. As a byproduct, this real-time acoustic monitoring
produces useful oceanographic flow condition data and
information on anthropogenic marine noise, as well as cetacean
movement, population structure, and communication.”” >’ The
PMT detectors themselves also provide unique high-frequency
and continuous data on bioluminescence, as swimming animals
luminesce when hitting the infrastructures.*” At the time of
writing, real-time and continuous data acquisition from these
telescope infrastructures as a whole is providing important
information on seasonal changes in gravity carbon fluxes and
controlling oceanographic processes (e.g, dense shelf water

cascading and effects on deep-sea bacterial productivity.”>*"**
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3. ROADMAP FOR THE MONITORING OF ECOSYSTEM
INDICATORS

The development of efficient deep-sea ecosystem monitoring is
currently based on the successful extraction and quantification of
key ecosystem characteristics (e.g., biogeochemistry, animal
presence, abundance and behavior, local and regional
biodiversity, and ecosystem functioning; see Table 1). This
monitoring development is being based on the combined use of
optoacoustic and molecular biological sensors which are being
implemented in the framework of cabled observatories. The
capability to acquire a temporally related time series of
multiparametric habitat and biological data allows researchers
to envision aspects such as benthic primary production via
chemosynthesis, deep-sea species ecological niches, and food
web structure.*’ ™" These data sets can be used to feed new
numerical-based ecology approaches centered on multivariate
statistics, time series analysis and ecosystem modeling (e.g., see
refs 24 and 46—48), in order to estimate the level of significance
for putative cause—effect relationships (i.e., environmental
control versus species and communities response) and provide
an immediate vision of complex ecological processes at a local
scale (e.g, species tolerance to the variation of key habitat
drivers). This approach allows a transition from a still too
descriptive deep-water and deep-sea ecology into a more
quantitative one, as occurs in more directly accessible coastal
areas and land.

To optimize the outcome quality from a highly integrated
deep-sea monitoring strategy of this type, protocols for data
collection and analysis should be implemented to efficiently
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Figure 2. Illustration of a variety of cabled observatories providing the sea bed infrastructure to control and coordinate mobile benthic and pelagic
platforms such as docked crawlers, rovers, and AUVs. Platform monitoring is assisted by vessels and satellite-based technologies. Neutrino telescope is
an array of vertical moored lines of PMTs deployed in the deep sea. Seabed infrastructures providing power and data transfer may be aided by
connection with industrial or telecommunication cables, as reliable low-cost means for network deployment into vast abyssal areas.®

characterize local biodiversity along with those processes that
sustain it and determine the overall ecosystem functioning and
health status.*”*° From an operational point of view, a bottom-
up scheme of monitoring should be conceived with cabled
observatories and docked mobile platforms producing video and
acoustic imaging information on fauna within a wide range of
sizes (e.g., from macro-zooplankton to megafauna classification
and counting, morphometric description, and quantification of
intra- and interspecific interactions). Then, acquired baseline
biological data can be directly related to multiparametric
environmental information obtained via the concomitant
collection of geochemical and oceanographic data.'”'®>'

3.1. Central Role of Optoacoustic Technologies for
Monitoring. High-definition still and video image data (e.g.,
2D, 3D, and hyperspectral) and active acoustic imaging (i.e.,
multibeam cameras””) to date represent key approaches for the
optoacoustic monitoring of remote deep—sea.8 Outputs of
optoacoustic monitoring provide relevant data for management
in key human activities, as for example fisheries or jellyfish
blooms.”*~® Moreover, species distribution and habitat use can
be studied over extended spatial scales by mosaicking high-
resolution imagery, captured by mobile platforms operating in
the regions surrounding the cabled infrastructure stations™ or
by integrating laser-scanning systems into the mobile platforms,
to create high-resolution 3D full-color surface models.”” Further
development of similar methods that expand the spatial coverage
of (stereo)imaging data, can help with the quantification of
other biological components and fauna sizes of high ecological
relevance which are more difficult to quantify remotely over
extensive areas of the deep sea. Fixed cameras'' and mobile
platforms®® can be used to assess epibenthic bacterial mat
coverage in combination with customized molecular and
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chemical microsensors, providing in situ analysis of microbial

communities (see section 3.3), a proxy for chemosynthetic

prodgcti;)n at reducing sites (e.g., cold-seeps and hydrothermal
5,59,

Video imaging at depth requires continuous illumination
which carries a poorléy understood potential for harmful effects
on deep-sea fauna.*”®" However, digital still time-lapse cameras
may collect in situ images with triggered flash illumination,
limiting the exposure to light of these perpetually dark deep-sea
ecosystems. At the same time, red or infrared lighting, at
wavelengths not detectable by deep-sea animals, has been used
with some success® but those wavelengths are rapidly
attenuated in water and the resulting monochrome images
contain much less information than equivalent color images.”®

Classic high-definition video monitoring approaches are being
integrated with novel acoustic imaging systems’>®* with an
increasing level of complementarity in deep-water areas (Figure
3). Acoustic cameras, such as high-frequency multibeam
imaging dual-frequency identification sonar (DIDSON) and
adaptive resolution imaging sonar (ARIS) can visualize fish and
invertebrate shapes and track the movement of individuals at
distances greater than those which may be achieved by visual
systems equipped with artificial lighting solutions.*®

A limitation of acoustic camera use for monitoring fauna
however is related to animal identification, which with acoustic
systems must be solely based on morphology, since no
colorimetric and limited texture information is captured by
acoustic camera devices. Spatial resolution of acoustic cameras is
also insufficient to resolve important details for species
identification. However, acoustic cameras can effectively “see
in the dark”, thus avoiding photic contamination, allowing
investigation of how artificial lights may influence animal
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Figure 3. Different video and acoustic imaging data outputs obtained by fixed-point and crawler platforms connected through the Ocean Networks
Canada’s (ONC) observatory assets in the NE Pacific and Strait of Georgia, Canada. (A, B) Commercially exploited sablefish (Anoplopoma fimbria)
imaged from HD video (A) and from an imaging rotary sonar (B), at 970 m depth in Barkley Canyon; (C) spiny dogfish (Squalus achantias) imaged
with an ARIS dual frequency identification sonar at 120 m depth in the Strait of Georgia [color scale bar indicates raw backscatter reflectivity amplitude
(in decibels, dB)]; (D, E) photomosaic by a crawler in Barkley Canyon (870 m), depicting gastropod’ egg towers (D) and a range of benthic species
occupying a methane seep habitat patch; (F, G) 3D photomosaics of a methane hydrate mound at the same location, depicting mound area/volume
changes over time due to uplift/growth in hydrates (areas in yellow) and slumping (areas in red).

behavior in the deep sea. In order to verify identifications,
acoustic cameras must be deployed simultaneously with new
prototype low-light high-resolution optical imaging equipment
(e.g,%).

The space sampled around an observatory can be also
increased by mounting an imaging sonar on a rotating head (see
Figure 3B). At present such devices are installed on the ONC
cabled observatory in Barkley canyon. These sonars allow
Internet connected operators to qualitatively discern the
presence and abundance of benthic fauna and any associated
bioturbation over surfaces larger than in any single fixed image.®”
Similar rotating side or upward facing sonar packages are
undergoing initial deployments on other cabled infrastructures,
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capable of being used to identify animals, when they are not too
densely grouped, at distances of up to ~1 km.*®

Currently, automation in image processing for animal
tracking, classification, counting, the extraction of morpho-
logical features (e.g., size, shape, and color patterns), and
characterization of behavioral aspects (e.g., crawling, walking,
swimming, burying, and territoriality; sensu ref 69) is becoming
a relevant tool in biological data provision from cabled
observatories and their associated mobile platforms. More
automated routines are urgently required as the volume of image
data collected by these systems increases in line with
technological developments. Such routines will enable research-
ers to overcome the human analysis-dependent bottleneck of
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manual processing,'” while also reducing observer bias."> By
developing artificial intelligence (AL in the form of learning
algorithms) in computer vision, cameras may be transformed
into the equivalent of a calibrated sensor, automatically
providing time series quantitative data on key fauna, to augment
the qualitative data represented by the images themselves.”**°
Despite the difficulties inherent in converting the expert
knowledge into useful algorithms, calibration and tuning via
sufficiently extensive feedback can result in operational perform-
ances comparable to those of expert researchers.”’

3.2. Passive Acoustic Monitoring To Support Image-
Based Monitoring. PAM monitoring of fish and invertebrate
sounds increase species monitoring capability well beyond the
reach of optoacoustic technologies. Such a technological
application has become an important tool in fisheries and
conservation research.””’> The use of PAM assets provides a
long-range monitoring capability in remote locations where
traditional sampling methods are difficult or impossible to
implement,” such as for example in the case of sponge reefs”* or
seamounts.”” Furthermore, combining acoustic localization with
video and other forms of observation can be used to identify
sound producing species as well as document their soniferous
behavior.”® This approach is finding an increasing use in the
collection of long-term data for integrated biodiversity assess-
ment.””

Unfortunately, the application of PAM is limited by the
paucity of archived data on fish sounds.”””” For example, of the
approximately 400 fish species in British Columbia waters, only
22 have been reported to “vocalize” in large part because sound
production has been investigated in so few species.”” This is
especially true in the deep sea, where fish sounds have rarely
been studied despite the fact that many species possess sonic
muscles presumably used in vocalization.*"**

Although many fishes and invertebrates do not produce
purposeful sounds, it is important to understand that incidental
sound production may occur upon physiological and behavioral
activity (e.g,, specific swimming and feeding mode sounds).
Those acoustic marks can be used to assess the presence of
individuals for a certain species and are therefore being
incorporated into PAM monitoring procedures.”"*

The aforementioned PAM applications, combined with other
observation technologies (e.g, video, acoustic imaging, and
sonar) improving the documentation of organism sound
production and associated behavior, will add further ecological
value to the integrated monitoring framework of ocean
observatories.”*

3.3. Molecular Sensing as Benchmark for Species
Traceability. Molecular tools have diverse applications in
marine ecological studies and biological monitoring. Substantial
contributions have been provided by several DNA barcode
initiatives generating and implementing databases, along with
the development of metabarcoding protocols to recover
community diversities from unsorted samples.** The latest
revolution in biomonitoring is linked to the collection and
analysis of genetic material obtained directly from environ-
mental samples, namely, environmental DNA (eDNA). This
protocol enables tracing of the presence of species from skin
cells, fish scales, gametes, and food leftovers, without the need to
isolate any target organisms.85 Direct sequencing of eDNA has
been shown to provide several advantages over traditional
techniques, improving the capacity to unravel the “hidden”
biodiversity (e.g., detect rare, cryptic, elusive, and non-
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indigenous species in the early stages of invasion) and enabling
global census of species in near real time.*®

However, eDNA tracing presents some limitations such as, for
example, the detection of false positives (when a target species is
absent but its DNA is recovered) and false negatives (i.e., species
undetected where they are present) which have to be carefully
evaluated and avoided.*>*” Major difficulties encountered in
deep-sea ecosystems for studies involving molecular analysis of
diversity are the general lack of taxonomic knowledge as well as
the absence of appropriate databases of species-specific marker
sequences.”® """ When these molecular markers are identified,”"
in situ hybridization techniques may be used with great success
when tar§eting expected taxa within monitoring pro-
grammes.9 3

Recent technical improvements concern the development of
“eco-genomic” sensors capable of autonomously collect bio-
logical samples and perform molecular analyses.”* These sensors
allow the characterization of marine community composition as
a whole, regardless of the faunal size classes involved.”> One
example is the environmental sample processor (ESP’®),
designed to autonomously collect discrete water samples,
concentrate microorganisms, and automate the application of
molecular probe technologies.

In parallel, recent advances in high-throughput sequencing
technologies are allowing the processing of huge amounts of
genomic data using small portable devices (i.e., miniaturized
sequencers such as that produced by Oxford Nanopore
Technologies having the size of a USB stick). These kinds of
devices, together with advances in bioinformatics, could
represent the most important revolutionary breakthrough
technology in ecological networks monitoring. Challenges
related to the taxonomic assignments of genomic sequences
and their interpretation (incompleteness of databases) may be
solved by applying machine learning algorithms.”” Such
approaches can maximize ecologically meaningful insights and
provide a list of highly informative sequences ecosystem
indicators that could provide the basis for hybridization chips
(i.e., microarrays) for denser, more mobile, and cheaper in situ
devices that can be scaled up appropriate spatiotemporal
resolutions.”®

Al approaches are gaining relevance in the metabarcoding
analysis and provide a fast and cost-effective way for assessing
the quality status of ecosystems.”®”” Recent examples in omics
analysis were based on random forest'*”'°" and self organizing
maps.'*> These were used for identifying biotic indices for the
foraminiferal metabarcoding. Similarly, ref 103 used a random
forest based approach for selecting the relevant biomarkers for
classification of ocean, harbor, and ballast water samples. 9% ysed
a deep recurrent neural network (approach for a base calling
application on portable sequencing machines,'*> where mean-
ingful results were sent to a cloud service through an Internet of
Things framework for further analysis.'°

Along with molecular-based monitoring tools, other chemical
sensing applications may complement DNA probing'”” and
sequencing. An example is provided by in situ mass
spectrometry, originally developed for targeting xenobiotic
compounds in marine water microsamples, which has been
successfully used for identifying species’ presence based on their
physiological byproducts.'”

3.4. Ecosystem Indicators. In the near future, the
integration of advanced genomic and chemical approaches for
in situ detection of organisms’’ and quantification of their
biochemical activity'®” will greatly enhance the performance of
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ecological monitoring networks, adding to the detection
capacity of optoacoustic imaging and passive acoustic
approaches alone.

Stitched imaging products (e.g, mosaicking) can provide
valuable information on species distribution and habitat use at
more extended scales. In situ molecular methods can detect the
presence of taxa otherwise undetected by imaging outside a
small temporal window or too small for morphological
recognition, while acoustics expand the spatial scales of deep-
sea biological monitoring, enabling the integration of horizontal
(nektobenthic displacementég) and vertical (i.e., benthopelagic
coupling®) biomass and energy fluxes. With the use of such
combined data sets, a series of biological variables can be
measured and ecosystem indicators extracted, as essential
elements for the accurate assessment of the health of benthic
ecosystems and cover the complete range from benthic (e.g.,
chemosynthetic) primary production, individual characteristics,
population dynamics, and species and community dynamics to
finally the ecosystem functioning level.

As a result of these ever-growing demands, the need for
automation in data collection, analysis, and interpretation
procedures is paramount. Integration of cabled observatories
and associated mobile systems equipped with Al for real-time
content extraction from imaging systems, hydrophones, and e-
DNA samplers, would allow the monitoring of ecosystem
indicators and representation of ecosystem functioning over
extended spatiotemporal scales (from square meters to kilo-
meters, over days, months, seasons, and decades). To date, no
such integrated system exists in the deep sea to verify the
concept.® At present there are major shortfalls in automation of
image and sound processing and producing an efficient, long-
term in situ e-DNA extraction and sequencing device. However,
many of these systems are integrated into the ONC cabled
observatory infrastructure in the NE Pacific, with data being
collected in real time at a number of nodes and returned to a
central repository (i.e., Ocean 2.0 data bank system). Similarly,
real-time, interactive tools such as the Scripps Plankton Camera
System (http://spc.ucsd.edu/) facilitate quick access to visual
data and a statistical overview. The implementation of these
types of data repositories can allow environmental comparisons
to be made among neighboring and more distantly arrayed
platforms in an attempt to scale local results over a larger
networked area (Figure 4). This endeavor is providing the
guidelines for future development of spatiotemporally inte-
grated monitoring protocols.

Autonomous monitoring of biological variables and derived
ecosystem indicators by cabled observatories and their
integrated mobile platforms should be implemented following
a general and standardized common operational protocol: (i) all
multiparametric readings from optoacoustic imaging, PAM,
molecular, biogeochemical, and oceanographic sensors should
be acquired synchronously by all cabled and mobile platforms;
(ii) such data acquisition should occur in a high-frequency and
time-lapse mode, where the image content should be automati-
cally analyzed by AI algorithms and classified on board of the
device (saving storage PAM and transmission bandwidth space),
while preserving the observation time georeferenced stamp; and
finally; (iii) all mobile platforms should constantly survey the
same benthic and pelagic areas (subdivided into specific
stations) among cabled observatories and their moored vertical
projections. Such an automated and spatiotemporally coordi-
nated and standardized protocol for data acquisition will make
data treatment, transmission, and storage easier, while
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Figure 4. Schematic representation of current seafloor monitoring
infrastructure ONC in Barkley Canyon, where a power node distributes
energy and data transmission capability to serve fixed multiparametric
imaging platforms and a crawler. The mobile platforms communication
and coordinated function makes this area the first cooperative network
(shown in the red circle) for the deep-sea ecological monitoring. As an
example of the power of ongoing multiparametric monitoring, time
series from several environmental sensors for the crawler are presented
over consecutive years (data plotted at 1 h frequency). When gaps in
data acquisition occur, data can be supplied by nearby cabled platform
(as interpolated to cover maintenance periods). Shaded green areas
indicate moments at which the environmental monitoring by the
crawler has been accompanied by image collection, the processing of
which is still manual, while automated scripts for animal tracking and
species classification are under development.

simultaneously facilitating more straightforward repeatability/
reproducibility of observations at the same location and
comparison of measurements made with other networks,
allowing regional/global level analysis.
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Table 2. Indicators Extraction Roadmap: Consecutive Automatable Steps for the Hierarchical Computing of Ecosystem
Indicators from Input Biological Variables, Obtained by Bio-imaging and Other Sensing Technologies, Installed on Spatially
Distributed Autonomous Networks of Cabled Observatories and Their Connected Mobile Benthic and Pelagic Platforms

Animal tracking
and classification

Demographic and functional
descriptors

Biological variables

Biometric

Population dynamics

Habitat and species

distributions

Platform level: Input data from each field of view

eAutomated processing of video and acoustic imaging:
faunal identification and counting

eAutomated processing of passive acoustic readings:
detection and classification of organisms

eComplementary e-DNA molecular sequencing: species

presence traceability

¢Class-size frequencies distributions (e.g. by laser scaling or
sterovision)

* Morphology, color

eBehavioral life traits (e.g. territoriality, mode of
displacement, rhythmic activity, predatory modality)

Network level: Data standardization over total imaged surface/volume

eAbundance
eBiomass
*Body size and growth cycles (e.g. molting, recruiting)
eReproductive cycles (e.g. spawning site and timing)

eSeascapes changes (i.e. photomosaics and 3D laser scans)

ePercentage of presence/occupation per quadrant (e.g.
heat-mapping procedures)

eSpecies composition
eRichness of taxa

Biodiversity

Ep
g8
gm
o 2
8'0
8 £

Functioning

e Alpha (within observational platform), Beta (between
platforms), and Gamma (at the level of the entire
network)

eSpecies associations as proxy of inter-specific relationships
(i.e. food web structure)

eAbundance, biomass, and faunal behavioral activity as

and productivity

proxy for carbonflux

eBioturbation as proxy for remineralization

The measurement of biological variables needed for the
hierarchical computation of ecosystem indicators, should be
carried out through a series of sequential automated steps
(Table 2): (i) all imaging outputs initially processed for the
classification, counting, and tracking of fauna and quantification
of bacterial mat coverage and activity; (ii) animals measured
(e.g, by stereovision, acoustic scaling, or laser scanning) to
obtain class-size frequency distribution and sex ratio (when
morphology allows individual discrimination); (iii) total species
counts from all seabed and water-column areas summed and
standardized for the imaged volume, to obtain an overall
abundance (i.e., density) and biomass estimation; (iv) species
counts computed for each station analyzed by mapping
procedures (e.g., percentage of presence/occupation per
quadrant), to derive information on habitat use as well as
displacement routes through different zones (i.e., corridors); (v)
a species richness list and biodiversity obtained at each platform
(o diversity), between platforms (f diversity), and the level of
the whole network (y diversity), to assess habitat heterogeneity
influences on species distribution, community composition, and
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overall ecosystem boundaries; finally, (vi) density and biomass
for each species related to carbon inputs from benthopelagic
fluxes in chlorophyll-a and turbidity (as proxy for transported
organic and inorganic matter), as well as from geochemical
fluxes, when relevant (i.e., carrying the reduced chemicals, for
example methane, hydrogen, and sulfide, that fuel chemo-
synthetic microbes), to calculate ecosystem functioning and
productivity performances. All automated analysis stages need
to be verified by human researchers to ensure accuracy of the
algorithm functioning, while the nature of specified ecological
interpretation must be cross-checked against published results
from conventional methods such as analysis of stomach
contents, stable isotopes, and fatty acids.' "

4. PERSPECTIVES AND OUTLOOK

Autonomous flexible networks of cabled observatories and
mobile platforms can allow extensive monitoring of marine life at
different levels of biological organization and at unprecedented
spatial and temporal resolution. Although integrated monitoring
actions such as those outlined herein are yet to attain full
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operational readiness, and therefore proofs of some of the
concepts discussed are missing, the technological developments
are ongoing. Progress to date already allows researchers to utilize
services-oriented ecological monitoring of some isolated deep-
sea ecosystems. It is important, however, that future
observatories are designed from the ground up for ecosystem
monitoring and data integration, rather than being developed on
an ad hoc, and somewhat haphazard, basis, as funding for
individual projects becomes available.

Bioimaging technologies already play a central role in
ecosystem exploration and monitoring. Increasing levels of
automation in image processing are transforming cameras into
true sensors, delivering time series data for a number of
biological variables and derived ecosystem indicators. Visual
data are being increasingly complemented by in situ passive
acoustic listening sensors and new e-DNA sequencing
technologies for species traceability. All these initially disparate
data sources can be combined to form a detailed and high-
resolution monitoring approach applicable to the benthic and
pelagic components of a deep-sea ecosystem. The output from
such a monitoring regime will support decisions of policy
makers, allowing them to assess the impacts of increased
industrial activities and pressures on deep-sea ecosystems (e.g.,
oil or gas extraction and mining or trawl fishing), including a
better assessment of already evident but poorly quantified
climate change impacts at great depths. The obtained data will
be of paramount importance for the accurate assessment of the
health status of ecosystems and the physical damage to habitats
and for efficient monitoring of their resilience and the efficacy of
restoration actions. The compiling of multiannual time series
monitoring data sets (continuously updated in real time) will
allow the identification of shifting environmental baselines and
rapidly highlight the onset of any negative environmental
impacts which may develop, potentially unpredictably, from
human activities in these remote deep-sea ecosystems.
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