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Superplume mantle tracked isotopically the length
of Africa from the Indian Ocean to the Red Sea
John M. O’Connor 1,2,3*, Wilfried Jokat 1,4, Marcel Regelous2, Klaudia F. Kuiper3, Daniel P. Miggins5 &

Anthony A.P. Koppers5

Seismological findings show a complex scenario of plume upwellings from a deep thermo-

chemical anomaly (superplume) beneath the East African Rift System (EARS). It is unclear if

these geophysical observations represent a true picture of the superplume and its influence

on magmatism along the EARS. Thus, it is essential to find a geochemical tracer to establish

where upwellings are connected to the deep-seated thermo-chemical anomaly. Here we

identify a unique non-volatile superplume isotopic signature (‘C’) in the youngest (after

10Ma) phase of widespread EARS rift-related magmatism where it extends into the Indian

Ocean and the Red Sea. This is the first sound evidence that the superplume influences the

EARS far from the low seismic velocities in the magma-rich northern half. Our finding shows

for the first time that superplume mantle exists beneath the rift the length of Africa from the

Red Sea to the Indian Ocean offshore southern Mozambique.

https://doi.org/10.1038/s41467-019-13181-7 OPEN

1 Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany. 2 GeoZentrum
Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany. 3 Faculty of Science, Vrije University
Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, Netherlands. 4 University of Bremen, Fachbereich 5, 28359 Bremen, Germany. 5 College of Earth,
Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331-5503, USA. *email: j.m.oconnor@vu.nl

NATURE COMMUNICATIONS |         (2019) 10:5493 | https://doi.org/10.1038/s41467-019-13181-7 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-0153-5504
http://orcid.org/0000-0002-0153-5504
http://orcid.org/0000-0002-0153-5504
http://orcid.org/0000-0002-0153-5504
http://orcid.org/0000-0002-0153-5504
http://orcid.org/0000-0002-7793-5854
http://orcid.org/0000-0002-7793-5854
http://orcid.org/0000-0002-7793-5854
http://orcid.org/0000-0002-7793-5854
http://orcid.org/0000-0002-7793-5854
mailto:j.m.oconnor@vu.nl
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Extensive volcanism and tectonic activity in the East African
Rift system (EARS) are regarded as the classic example of
present-day plume-related rifting and continental breakup1–3.

Rifting began in southern Ethiopia at approximately 45Ma4 with
volcanism in northern Ethiopia and Yemen starting ∼30Ma5. This
older part of the EARS stretches for >2000 km, originating from
the Afar triple junction and traversing the Ethiopia Dome
southward along the Main Ethiopian Rift (MER) before bifur-
cating into the Kenyan and Western rifts (Fig. 1).

Global and continental scale tomographic models show
strong low-velocity regions in the mantle under East Africa (e.g.
refs. 5–9). One scenario proposed to explain these markedly lower
mantle seismic velocities is the upwelling of a large, continuous-
mantle plume (the African Superplume), originating at the
core–mantle boundary10,11. The thermochemical nature of the
seismic anomaly (superplume) in the lower mantle suggests a
dense chemical layer within a buoyant upward-flowing thermal
structure12.

The topography of the magma-rich northern half of the EARS
is dominated by two prominent plateaus—the Ethiopia and East

African domes—which are transected by the EARS, the Red Sea
and the Gulf of Aden. These domes are compatible with dynamic
support by plume upwellings from the lower mantle rising
beneath the continental lithosphere (e.g. refs. 10,11), but it is
unclear if one or more plumes support these high plateaus2,6–9,13.
Moreover, recent tomographic models of the Afro-Arabian
mantle reveal a laterally continuous, low-velocity region in the
upper mantle beneath all of eastern Africa and western Arabia
extending to depths of ~500–700 km9–11,14.

The relation between these seismically imaged upwellings and
large-volume EARS magmatism is often considered in the context
of the well cited explanation that the superplume is a thermal
phenomenon. In this scenario large-volume melting occurs where
hot plume material flows below areas of thinned lithosphere and
the TP is above the solidus. Continental lithosphere is inherently
heterogeneous, specifically in terms of thickness. In the case of
Africa, the Archean cratonic roots are deep so melts could only be
generated beneath pre-existing thinner Karoo and Palaeogene
orogenic belts adjacent to cratons5. The scattered distribution of
rift-related EARS magmatism can therefore be explained by a
variable lithospheric topography at depths of 100–150 km, which
channels hot plume material into streams and pools2,15. However,
a new generation of petrologic models16 show that while the Tp of
the East African mantle is characterized by elevated temperatures
(+140 to +170 °C) consistent with a buoyant superplume, it is
toward the cooler end of the spectrum for Large Igneous Pro-
vinces (LIPs)17. Thus, factors other than elevated temperature
must be contributing to large-volume melting and the excep-
tionally slow seismic velocity under East Africa. Consequently,
there is much uncertainty about how well seismic data and large-
volume melting captures the scale and dynamics of the super-
plume at depth and its interconnectivity with the upper mantle/
EARS.

A way of resolving this debate would be to find a unique iso-
topic fingerprint for linking EARS lavas to a single deep-seated
superplume. A number of such plume isotopic signatures have
been inferred by interpolation of arrays in Sr–Nd–Pb isotopic
space for lavas from the magma-rich northern EARS (e.g.
refs. 13,18–21), but it is unknown which, if any, of these isotopic
signatures might be a unique tracer for the single superplume
largely because of contamination/dilution by large-volume melt-
ing of the subcontinental lithospheric mantle. While rare gas
isotopes are more successful in overcoming the problem of con-
tamination/dilution22,23, they cannot be used as a robust super-
plume tracer because they do not define a distinct isotopic
signature and are not coupled to the solid superplume mantle.

The southern half of the EARS continues south of the Western
Rift as far as the Davie Ridge where it trends NNE–SSW across
the Mozambique Channel24 and as far east as the Comoros-
Mayotte and Madagascar system (Fig. 1). There is no seismic or
geochemical evidence suggesting a connection between the Afri-
can superplume and this magma-poor southern half of the EARS.
But here we identify a unique non-volatile isotopic signature (‘C’)
in the youngest (after 10Ma) phase of widespread EARS rift-
related magmatism where it extends into the Indian Ocean and
the Red Sea. These offshore rock samples provide the first robust
(isotopic) evidence that superplume material is present in the
magma-poor southern half of the EARS, far from the very-low
seismic velocities beneath the magma-rich northern half. This
directly measured non-volatile superplume isotopic signature
tracks for the first time superplume mantle the length of Africa
from the Indian Ocean to the Red Sea. This more-or-less
homogeneous isotopic composition is consistent with the infer-
ence from seismic mantle images of a single deep-seated super-
plume that is modifying the EARS mantle not only in northeast
Africa but the length of Africa from the Red Sea to southern
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Fig. 1 Topography and bathymetry map of the East African Rift System
(NOAA globe 1 km). Map prepared using GeoMapApp (www.geomapapp.
org). MER=Main Ethopian Rift. Red star shows location of the 7Ma dome
on the Mozambique Ridge. Yellow labels indicate isotopically dated
volcanoes and plateaus associated with the most recent phase of rift-
related magmatism discussed in the text.
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Mozambique. Finally, we offer some broader perspectives about
how our finding raises some interesting questions for future lines
of research.

Results and discussion
Volcanism on the northern Mozambique Ridge. The massive
Jurassic/Early Cretaceous Mozambique Ridge is considered to
be an LIP that formed during early Gondwana dispersal in
the African–Antarctic corridor25–31. The northern Natal
Valley was emplaced between M26r to M18n (157.1–144 Ma)
and the entire Mozambique Ridge between M18n to M6n
(144–131.7 Ma)27,30,31.

Recently collected multibeam swath bathymetry and seismic
profiles from the Natal Valley and Mozambique Ridge reveal
anomalous seafloor dome-like volcanic structures, which are
interpreted in terms of Miocene to recent magmatism along a
southward propagation of the western branch of the East African
Rift System24,32–36 (Fig. 1). In the Natal Valley the domes are
25–31 km long and 16–18 km wide and rise some 400m above
the sedimentary deposits35 (Fig. 2). Detailed swath data of

seafloor domes on the Mozambique Ridge33,34 guided TV-grab
sampling of volcanic rock from a smaller topographic feature
(∼3 km east–west and 1.2 km in diameter) at the northern end of
the ridge (for details see ref. 34) (Fig. 2). Information about the
samples used in this study is provided as Supplementary Table 1
and Supplementary Fig. 1.

40Ar/39Ar geochronology. We report here 40Ar/39Ar incremental
heating isotopic ages, measured on acid-leached groundmass
separates for three TV-grab samples recovered during the SO230
expedition (MW14DL2-2, MW14DL2-3 and MW14DL3-5) from
the volcanic dome located at the northern end of the submarine
Mozambique Ridge. 40Ar/39Ar incremental heating ages are
summarized in Table 1 and Supplementary Fig. 2. Replicated
(Vrije University Amsterdam and Oregon State University)
robust ages for three samples from two different TV-grab stations
demonstrate that the sampled dome volcanism is ≥6.9 ± 0.03 Ma.
40Ar/39Ar results, plateau ages and K/Ca spectra are provided in
summary as Supplementary Data 1 and in full in Supplementary
Data 2.
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Fig. 2 Young volcanism on the Mozambique Ridge. a Gridded anomaly map of the total magnetic field intensity (TMI) in the Mozambique Basin from ref. 31

showing that the entire Mozambique Ridge is characterized by well-expressed magnetic lineations and the major fractures and structural boundaries in the
Mozambique Basin, relevant to Gondwana breakup, and selected major tectonic structures onshore SE-Africa. The locations of the magnetic spreading
anomalies in the Mozambique Basin are taken from refs. 27,30. See ref. 31 for further details and abbreviations of tectonic features. Continent-Ocean
boundary (COB) inferred from scenarios 1 and 2 as proposed in ref. 30. b Perspective map view showing the sampled dome on the Mozambique Ridge that
is overall about 3 km east–west and 1.2 km in diameter and TV-grab sites DL2 and DL3. Figure from ref. 33.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13181-7 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5493 | https://doi.org/10.1038/s41467-019-13181-7 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Geochemistry. Based on silica and total alkali content samples
DL2-2 and DL2-3 are basanites and DL3-5 is transitional between
a basanite and an alkali basalt (Fig. 3). Trace element data show
that the Mozambique Ridge samples are typical intraplate oceanic
alkali basalts (Figs. 3 and 4) and have relatively radiogenic Pb
isotope ratios (206Pb/204Pb= 19.52–19.54) and comparatively
depleted Sr (86Sr/87Sr= 0.7031) and Nd (143Nd/144Nd= 0.5128)
signatures (Fig. 5). Geochemical data are provided in Supple-
mentary Data 3.

EARS magmatism since the Late Miocene. We consider first
how an age of ∼7Ma for volcanism on the Mozambique Ridge
compares with published ages for the EARS and intraplate vol-
canism in the Indian Ocean (Fig. 1). The Comoro Islands are
associated with the seaward extension of the EARS and have
recently been linked with a deep-seated plume9,24,36. K–Ar ages
for the oldest island of Mayotte show that volcanism started
roughly 8 ± 1Ma and continued to at least as recent as
2–1 Ma37,38. Grande Comore is still active and K–Ar ages for
Grande Comore, Moheli, and Anjouan are all younger than 8 ± 1
Ma37,38. Thus, K–Ar dating of the Comoro Islands suggest that
subaerial volcanism initiated roughly around the same time as the
dome on the Mozambique Ridge.

A 40Ar/39Ar study of the Rungwe Volcanic Province (RVP) at
the southern tip of the Western Rift (Fig. 1) yielded ages from 8.5
to 5.7 Ma39, consistent with prior results, supporting an eruptive
episode concurrent with tectonic activity on the Malawi and
Rukwa border faults40,41. Three additional samples yield ages
from 18.5 to 17.6 Ma, consistent with the 18.6 ± 1.0 Ma age
obtained previously (see ref. 39 and reference therein). These
older ages are spatially limited to phonolite domes that predate
the current tectonic extensional structure. No Rungwe samples
dated yet can be the source of the of 26Ma carbonatitic tuffs in
the nearby Rukwa area42. A K–Ar age determination from
Essimingor volcano on the southern tip of the eastern branch
(Fig. 1) suggest an age ≥8 Ma43, whereas 40Ar/39Ar ages indicate
that volcanism started at ~6Ma and has continued episodically to
the present44,45.

In the Ethiopian Plateau the oldest volcanic rocks have been
dated at ∼45Ma in southern Ethiopia2,4,46,47. The most
voluminous eruptive stage is represented by flood and shield
basalts in the Ethiopian plateau made up of several distinct
volcanic centres ranging from a thick sequence of ∼30Ma flood
basalts overlain by a 30Ma shield volcano. In the centre of the
province are two ∼22Ma shield volcanoes47–49 and younger
shields developed ∼11Ma48. Between 12 and 10Ma, the southern
Red Sea margin propagated southward as the MER propagated
NE, effectively linking the southern Red Sea and Ethiopian rifts,
and forming a triple junction for the first time, possibly in

response to a (global) plate reorganization49. In the Gulf of Aden
ages of off-axis seamounts point to a volcanic event at ~10Ma
that subsequently became more widespread roughly 6Ma ago50.

In summary, the age of volcanism on the Mozambique Ridge
and the Comoro Islands is similar to the overall timing of Late
Miocene rift-related magmatism in the magma-rich northern half
of the EARS and extending into the Red Sea-Gulf of Aden. Young
volcanism on the Mozambique Ridge represents the southern-
most known EARS-related magmatism, and extends the EARS
volcanic province more than 2000 km to the south of Rungwe
(Fig. 1).

EARS isotopic signatures. Sr–Nd–Pb isotopic fingerprints for
plume mantle under the EARS were previously determined from
the general convergence of lavas in Sr–Nd–Pb isotope space (see
ref. 21 and reference therein). Three candidate plume isotopic
signatures are proposed for the EARS: plume ‘C’20, plume ‘K’18

and plume ‘V’21.
Plume ‘C’: In the northern part of the EARS, recent volcanic

and magmatic activity is largely confined to the tectonically active
segments of the MER and the active spreading centres of the Red
Sea and the Gulf of Aden49. Lavas from along and near the MER
are predominantly transitional tholeiites with Th/Yb and Nb/Yb
ratios similar to OIB and E-MORB (Fig. 4) and have less enriched
and more homogeneous Sr, Nd and Pb isotope compositions than
EARS lavas to the south (Fig. 5) (see e.g. refs. 13,20,51). A widely
accepted explanation for the Sr–Nd–Pb isotopic signature of the
MER is that it results from mixing between plume material and
MORB mantle (DMM), and continental lithosphere (SCLM) (see
e.g. refs. 20,52). Converging MER arrays in multi-isotope space
define the composition of the plume endmember (centred about
87Sr/86Sr= 0.7035, 143Nd/144Nd= 0.51287 and 206Pb/204Pb=
19.5 (ref. 20) (Fig. 5). This plume endmember is similar to the
‘common’ isotopic composition observed globally in oceanic
basalts20 known as ‘C’53. A key finding of our study is that the 7
Ma basanites-alkaline basalts from the Mozambique Ridge
express a pure plume ‘C’ isotopic signature (Fig. 5).

Plume K: South of the Ethiopian Rift the EARS branches into
the Kenyan and Western rifts. Lavas from the Kenyan Rift
converge in Sr–Nd space to a composition referred to as plume K
(87Sr/86Sr 0.7030–0.7035 and 143Nd/144Nd 0.5130–0.5127)4,13,18,
which is largely indistinguishable from plume ‘C’ (Fig. 5).

Plume V: The compositional convergence of Western Rift lavas
is attributed to the presence of a common superplume V, with a
limited range of compositions, that had been continuously
metasomatizing the compositionally variable lithosphere beneath
the Western Rift for the last 500–1000 Ma21. The 87Sr/86Sr,
143Nd/144Nd, and 206Pb/204Pb composition of plume V is
represented best by lavas from the Nyiragongo and Nyiramugira

Table 1 Results of 40Ar/39Ar groundmass incremental heating experiments for S0230 samples.

Sample information Plateau Inverse isochron

Experiment Sample Age ± 2σ (i) 39Ar
(%)

K/Ca MSWD n N Age ± 2σ (i) 40Ar/36

Ar intercept ± 2σ
a17D17844 MW14DL3-5 6.90 ± 0.02Ma 72% 0.357 1.35 12 24 6.90 ± 0.02Ma 287.03 ± 7.33
bVU107-J3_1 MW14DL3-5 6.94 ± 0.03Ma 73% 0.325 1.87 8 15 6.89 ± 0.04Ma 316.22 ± 10.88
a17D17979 MW14DL2-3 6.91 ± 0.02Ma 52% 0.267 3.26 7 24 6.89 ± 0.05Ma 315.46 ± 31.97
bVU107-J2_1 MW14DL2-3 6.99 ± 0.03Ma 63% 0.326 2.07 6 15 6.92 ± 0.06Ma 321.16 ± 15.79
a17D18018 MW14DL2-2 6.97 ± 0.02Ma 57% 0.173 0.40 11 24 6.97 ± 0.03Ma 354.12 ± 7.97
bVU107-J1_1 MW14DL2-2 7.26 ± 0.12Ma 43% 0.168 7.94 4 15 6.87 ± 0.88Ma 332.07 ± 74.98

Italics are for a rejected age
a200–180 μm; 1 N HCl (60min); 6 N HCl (60min); 1 N HNO3 (60min); 3 N HNO3 (60min); Mill-Q (60min)
b355–200 μm; 1 N HNO3 (120min); Mill-Q (60min)
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volcanoes (VVP)54 (average 87Sr/86Sr 0.7045; 143Nd/144Nd
0.5127; 206Pb/204Pb 19.4)21 (Fig. 5). Metasomatization of the
lithospheric mantle at various times by this volatile-rich
(primarily carbonatitic) plume material (ref. 21 and references
therein and ref. 51) is reflected in the exceptionally high level of
trace element enrichment compared to the rest of the EARS in
lavas from volcanic provinces in the Western Rift (Rungwe
(RVP), Virunga (VVP), Toro Ankole, and Kivu) (Fig. 4)55–58.
This process raised the 3He/4He ratio and led to almost complete
hybridization of the trace elements, Sr–Nd, and, to a large extent,
Pb isotope compositions21,51. Plume V 206Pb/204Pb (constrained

from the intersection of the Pb isotopic analyses from Western
Rift volcanoes (e.g. refs. 59,60) is strikingly similar to that of plume
C (calculated from the intersection of Pb isotopic analyses from
the MER20) (Fig. 5). An indication that Pb and Sr–Nd isotopes
might be behaving differently is the positive correlation between
He and Pb isotopes, but not Sr–Nd, for RVP and MER lavas21.
This decoupling might be explained by ‘outgassing’ of abundant
CO2 from the superplume at depth acting as a carrier phase for
the trace gases21 (see discussion in a following section about other
drivers of melting). RVP magmas are among those produced by
the lowest degrees of melting along the Western Rift21 (Fig. 4)
suggesting that low-degree melting allows the Pb, if not the
Sr–Nd, aspects of the common ‘C’ /V signature to bypass
contamination by metasomatized SCLM.

In the following sections we discuss the evidence that a similar
mechanism operating along the offshore extensions of the EARS
in the Red Sea-Gulf of Aden, Southern Somali Basin and Indian
Ocean results in lavas containing the Sr–Nd–Pb superplume
isotopic signature without significant contamination or dilution
by lithospheric sources.

Red Sea-Gulf of Aden. The Red Sea is a rift zone at a transient
stage between continued development or failure where alkali vol-
canism dominates52 (Supplementary Fig. 3a). The oldest known
oceanic crust formed ~5Ma ago at about 17°N, and since then
oceanic spreading has developed progressively northwards61. A
pure plume ‘C’ isotopic signature is evident in basalts from Ramad
Seamount (∼17°N) and in basanites from Jizan volcanic field
located about 200 km to the east on the coastal plain61 (Fig. 5). In
the Gulf of Aden, where seafloor spreading is well established,
plume C lavas occur at ∼46°E52. An apparent mixing/dilution array
between pure plume ‘C’ and DMM is indicated by alkali basalts
from the Zubair (∼15°N) and Hanish-Zukur (∼14°N) archipela-
gos52, lavas from the rift zone extending northwest of Ramad, and
from the Sheba Rift in the Gulf of Aden (Figs. 4 and 5). Another
source of contamination of the plume C signature is sub-
continental mantle lithosphere, which has affected lavas from the
intersection of the Sheba Ridge and the African margin (Tadjoura
Trough, Gulf of Tadjoura and Asal Rift)52 (Fig. 5). Schilling
et al.52 interpret the Sheba spreading ridge in the Gulf of Aden
and its SW extension into the Tadjour Trough, Gulf of Tadjoura
and the Asal Rift in terms of mixing between Pan-African con-
tinental lithosphere, the Afar mantle plume, and DMM. More-
over, these lavas lie on Sr–Nd–Pb isotopic arrays defined by Late
Oligocene–Quaternary continental basalts from the southern end
of the onshore Yemen Traps62 and the Hamdan volcanic field to
the north (15.30°–16°N)61. The Yemen Traps are associated with
the Red Sea-Gulf of Aden rifting62 and the source of this sub-
continental mantle lithosphere is presumed to be related to the
Pan-African orogenic events5. The correspondence between the
Yemen Traps and the MER Sr–Nd–Pb isotopic arrays suggests
that the contamination of the plume ‘C’–DMM array by Pan-
African continental lithosphere (e.g. refs. 13,20,51,52) is confined to
lavas erupted onshore.

On a global scale, variations in the thickness of the oceanic
lithosphere exert a first-order control on the geochemistry of OIB
despite other effects such as fertile mantle compositional
heterogeneity. That is, the lithosphere thickness limits the mean
extent and pressure (depth) of melting63–65. The Mozambique
Ridge OIB and other EARS lavas have higher Nb/Yb and TiO2/Yb
ratios than MORB due to the thicker lithospheric cap resuting in
lower degrees of melting at greater depth with residual garnet
(Fig. 4). The intensity of the garnet signature in OIB melts is also
affected by mantle temperature; higher temperatures result in a
deeper onset of melting and thus a greater garnet signature for a
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given lithosphere thickness. The high Th/Nb and Ti/Yb ratios
(Fig. 4) show that the Mozambique Ridge lavas erupted on older,
thickened lithosphere (high mean pressure and low mean extent
of melting)63–66. Smaller degrees of melting beneath thicker
lithosphere will tend to yield melts with higher incompatible trace
element concentrations and a lower depleted mantle contribution,
which are less susceptible to contamination.

Southern Somali Basin. The magma-poor southern half of the
EARS extends offshore into the Somali Basin along the Comoros-
Mayotte and Madagascar tectono-volcanic system24,36 (Fig. 1).
Grande Comore, the youngest of the Comoro islands, is com-
posed of two active volcanoes, Karthala and La Grille, whereas
volcanism on Mayotte started roughly 8 ± 1Ma37,38. The overall
isotopic variation of lavas from the islands of Grande Comore
and Mayotte66 is explained by mixing between a plume source
with a nearly uniform isotopic and chemical composition and
alkalic low-degree melts of metasomatized oceanic lithospheric
mantle67–69. A few samples from Mayotte and to a lesser extent
La Grille show a pure plume ‘C’ signature (Fig. 5). These lavas
represent lower degree melts (Fig. 4) of the metasomatized
oceanic lithospheric mantle68. In contrast, the non-plume ‘C’-like
Karthala alkali olivine basalts are the result of mixing between
plume melts and higher degree melting of the metasomatized
oceanic lithospheric mantle68. The lower degree La Grille melts
might reflect a structural weakness in the 140-Ma-old oceanic

lithosphere of the southern Somali Basin70 that allows easy
migration of near-primary plume melts to the surface68.

In summary, low-degree melts of pure superplume ‘C’ mantle
generated under thickened oceanic lithosphere are transported
rapidly to surface offshore via the EARS in the southern Somalia
Basin. But in contrast to the Red Sea-Gulf of Aden and the
Mozambique Ridge, long-term plume-related metasomatized
oceanic lithospheric mantle represents an additional source of
contamination.

Mozambique Ridge. The EARS extends offshore along the
Comoros-Mayotte and Madagascar system and as far south as the
Davie Ridge where it trends NNE–SSW across the Mozambique
Channel and the Mozambique Ridge24 (Supplementary Fig. 3).
Seismic reflection and multibeam data24 and references therein
show that activity along a fault zone related to EARS is associated
with the development of seamounts, dykes and lava flows in the
Mozambique Channel71,72 and the young volcanic domes on the
Mozambique Ridge and in the northern Natal Valley35 (Supple-
mentary Fig. 3). These volcanic edifices most likely developed
initially during the Mid-Miocene71,72. We show here that the
7Ma basanites-alkaline basalts from the Mozambique Ridge
volcanic domes express a pure plume ‘C’ isotopic signature
identical to that of Jizan-Ramad lavas in the Red Sea (Fig. 5).
Trace element ratios indicate that these lavas result from small
degrees of melting in the garnet stability field (Fig. 4). We argue
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that, as in the case of plume ‘C’ samples from the Red Sea-Gulf of
Aden, the low mean extent of melting and absence of thick
continental lithosphere minimizes dilution/contamination. This
inference agrees with potential field data and magnetic lineations
(Fig. 2) showing that the entire Natal Valley and Mozambique
Ridge is floored by oceanic crust emplaced between 157.1–144Ma
and 144–131.7 Ma, respectively, with an anomalous thick oceanic
layer 3 and/or significant magmatic underplate (refs. 26,31 and
references therein) (Fig. 2).

In summary, we argue that as in the Red Sea and the Southern
Somali Basin, the Mozambique Ridge lavas express the pure
isotopic ‘C’ signature of the African superplume where complex
tectonic settings such as thickened lithosphere and deep faults
associated with the EARS facilitate rapid rise of low-volume melts
to the surface without significant contamination/dilution by
SCLM or DMM.

Non-thermal drivers of melting. We consider now various
potential drivers of melting along the EARS that do not require a

purely thermal superplume or its interaction with thinned/rapidly
thinning lithosphere. Plate stretching in Ethiopia at different
times during rift development seems to have generated large
volumes of decompression melt in the asthenosphere leading to
the lower seismic velocities observed in the underlying mantle
(e.g. refs. 17,73,74).

According to Rooney et al.17, the compositional heterogeneity
in the thermochemical superplume in the lower mantle12 is
likely due to recycled slab material that has been converted
into eclogites and pyroxenites (e.g. ref. 75). This suggestion is
consistent with the apparent alignment of the EARS with the
eastern side of the African Large-low-shear-wave-velocity pro-
vinces (LLSVPs) at the base of the mantle formed by the
accumulation of piles of subducted ocean crust over Earth's
history76–78. Slab mantle carries with it carbonate (CO2) that can
trigger large-volume deep melting in both the recycled crust and
associated peridotite host79, that likely contributes significantly
to the low seismic wave speeds that characterize the East African
mantle17. This notion is consistent with long-established
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abundant CO2 outgassing along the magma-rich northern half of
the EARS80–83. Moreover, Lee et al.83 find that significant
volumes of CO2, probably sourced from upper mantle or lower-
crustal magma bodies, is transferred from upper mantle or lower-
crustal magma bodies along the deep faults away from active
volcanic centres (e.g., Rungwe) in the EARS. Subduction-related
CO2-assisted large-volume melting can explain the apparent
contradiction between the relatively cool mantle temperatures
(+140 to +170 °C) and markedly low seismic wave speeds
associated with the magma-rich northern half of the EARS17.

Superplume material in the upper mantle is also likely to occur
as inherently more fusible mantle domains. For example, Rooney
et al. 84 conclude that the widespread distribution of easily fusible
lithospheric ‘metasomes’ within the EARS continental lithosphere
mantle may facilitate magma generation without the need for
substantial lithospheric thinning or elevated mantle potential
temperatures. CO2 might also be an important volatile phase
contributing to small volume partial melting of small-scale fusible
mantle domains85 transferred from upper-mantle or lower-
crustal magma bodies along the deep faults away from active
volcanic centres in the EARS83.

Small-scale convection is a little-understood potential driver of
low-volume EARS melting17. Small upwellings emanating from
the African superplume are inferred petrologically48 and
seismically86, and, recent tomography models for east Africa
reveal that the scale of upwellings under the magma-rich half of
the EARS is smaller than expected for lower mantle plume
sources87,88.

In summary, large-volume melting along the continental EARS
leads to contamination of the superplume signature by melting of
(metasomatized) lithospheric sources. The Sr, Nd, and Pb isotopic
superplume signature ‘C’ is seen most clearly in offshore lavas,
where the EARS can act to transfer uncontaminated low-volume
melts of more fusible (fertile ± CO2), relatively cool (TP that
ranges from ambient mantle to only 1490 °C), widely distributed
plume material to the surface, possibly in association with small-
scale plume convection.

Rare gas vs. solid isotopic tracers. Trace gas signatures such as
the high 3He/4He isotopic ratios in lavas from the Ethiopia Rift
and Rungwe are a potential tracer of deep-seated plumes22.
Nevertheless, they cannot distinguish between the presence of a
single superplume source located in the EARS mantle, or if the
deeper superplume is connected directly to the shallow mantle via
multiple (plume) upwellings or indirectly via multiple mantle
plumes rising from one or more boundary layers23. Halldórsson
et al.23 show that combining He and Ne isotopes provide new
insights into key aspects of the EARS mantle not possible using
He isotopes alone. One finding is that there is a common mantle
plume source beneath the magma-rich northern half of the EARS
because hyperbolic mixing trajectories are compatible with
admixture between an assumed PLUME and depleted (DMM) or
subcontinental lithospheric (SCLM) mantle source endmembers.
However, the He–Ne isotopic signature of their assumed PLUME
source encompasses the range of many oceanic hot spots, such as
Iceland23. Moreover, the authors note the extreme sensitivity of
Ne isotopes to relatively small additions of the PLUME end-
member to DMM and SCLM. A case in point is the hyperbolic
mixing trajectory between PLUME and SCLM which provides the
best fit to data from the Kenyan and Western rifts. But just a
small amount of SCLM has a huge effect on 4He/3He, such that
the lavas are infered to have up to 80% of this component (see
yellow symbols in their Fig. 3).

A further complication in extending the use of trace gases to
map the distribution of superplume mantle is the CO2-assisted

large-scale melt production contributing significantly to the low
seismic wave speeds in the East African mantle17. The ‘outgassing'
of abundant CO2 acts as a carrier phase for the trace gases, as is
proposed to explain the decoupling of helium from Sr–Nd–Pb in
the Hawaiian plume89. Thus, trace gases behave differently from
the non-volatile plume tracers such as Sr–Nd–Pb and reflect
therefore the spatial decoupling of CO2 from the superplume.
High CO2 flux from the superplume will also contaminate/dilute
the He–Ne plume signature with variable amounts of SCLM and
DMM. If, for example, the large-scale CO2 flux from the
superplume differs between the magma-poor and magma-rich
halves of the EARS then hyperbolic mixing trajectories will not
predict the same/valid He–Ne superplume signature due to
mixing with variable amounts of SCLM and DMM. In short,
while hyperbolic mixing curves can provide a best estimate for the
He–Ne isotopic signature of the African superplume it cannot be
used as a robust isotopic tracer for superplume mantle. In
contrast Sr, Nd and Pb isotopes can potentially measure directly a
common plume isotopic signature, in part because the concen-
tration contrast between plume and SCLM is far less significant.
Thus, we report here the first robust, directly measured viable
isotopic signature for tracking the influence of superplume in
EARS lavas.

In summary, we have sampled basanites-alkaline basalts from
one of the small domes on the Mozambique Ridge. These
volcanic domes are located along the offshore southern extension
of the EARS into the Indian Ocean on 144–157Ma igneous crust.
A ∼7Ma 40Ar/39Ar age for these OIB lavas shows that the
widespread youngest (after 10Ma) phase of EARS magmatism
extends from the Red Sea as far south as the Mozambique Ridge.
The OIB lavas have an Sr–Nd–Pb isotopic signature (‘C’), which
is also seen in lavas from the other ends of the EARS, at its
offshore extension into the Red Sea and Somalia Basin. Beneath
the continental EARS, the ‘C’ component is diluted due to
contamination by large-volume melting of (metasomatized)
lithospheric sources, but its presence can be inferred from
variations in Sr–Nd–Pb isotope space. We conclude that the pure
isotopic superplume signature ‘C’ is only sampled offshore where
the EARS can act to transfer uncontaminated low-volume melts
of more fusible (fertile ± CO2), relatively cool (TP that ranges
from ambient mantle to only 1490 °C), widely distributed plume
material to the surface, possibly in association with small-scale
plume convection. These offshore rock samples provide the first
sound evidence that superplume material is present in the
magma-poor southern half of the EARS, far from the very-low
seismic velocities associated with the magma-rich northern half.
We argue that because the EARS can tap pure plume ‘C’ lavas
wherever the tectonic setting is appropriate then common ‘plume
‘C’ superplume material must be widely distributed in the upper
mantle under the entire EARS from the Mozambique Ridge to the
Red Sea-Gulf of Aden. This finding implies that superplume
material contributes to EARS magmatism not only in northeast
Africa but along the length of the EARS from the Red Sea to
southern Mozambique. We conclude therefore that we have
isotopically tracked for the first time superplume mantle the
length of Africa from the Indian Ocean to the Red Sea, which is
consistent with seismic mantle images of a single deep-seated
superplume with a more-or-less homogeneous isotopic composi-
tion. Our finding seems to offers some broader perspectives about
the African superplume that raise some interesting questions for
future lines of research as follows: Evidence that superplume
mantle is associated with the magma-poor southern half of the
EARS implies that the C mantle is reaching the EARS regardless
of whether it is magma-rich or the existence of anomalously low
mantle velocities (Fig. 6). This observation is consistent with the
suggestion that the markedly low mantle velocities in the magma-
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rich northern half of the EARS reflect the thermochemical
structure of the superplume due to, for example, recycling of crust
into the mantle carrying with it carbonate (CO2) that can trigger
deep melting. A further perspective is that it is increasingly more
feasible to measure Sr–Nd–Pb signatures in melt inclusions in
primary minerals90 that might carry the pure superplume ‘C’
signature to the surface. These primary melts lock in the ‘C’
signature before it can be overwhelmed by contamination from
large-volume melting of lithospheric sources. Thus, in due course
the superplume ‘C’ fingerprint could be used to track superplume
mantle in contaminated continental EARS lavas.

Methods
Geochemistry. Approximately 0.05 g of sample was accurately weighed into a
Teflon beaker, and digested in 1 ml 15M HNO3 and 3ml 12M HF for 12 h in
sealed beakers on a hotplate at 80 °C. After cooling, 0.2 ml of HClO4 was added to
the sample, and the solution evaporated to incipient dryness at 120 °C. Two mil-
lilitres of 15M HNO3 was added to the sample, and evaporated to near dryness,
and this step was repeated twice before increasing the hotplate temperature to

150 °C and fuming off excess HClO4. The sample was then redissolved in 4 ml
15M HNO3 and 4ml H2O, two drops of 12 M HF were added, and the sealed
beakers left on a hotplate at 80 °C for 12 h. The samples were then placed in an
ultrasonic bath for 30 min, before heating at 80 °C for another 12 h. At this stage,
all samples were completely in solution. The sample solutions were then quanti-
tatively transferred to 250 ml HDPE bottles and diluted to 200 g with MQ water to
obtain a final solution of 2% HNO3+ 0.002 M HF with a sample dilution factor of
about 4000 and total dissolved solids of 250 μg/ml. All reagents used were distilled
in Teflon stills, and diluted with MQ 18.2 Ohm water.

Trace element measurements were carried out at the GeoZentrum Nordbayern
using a Thermo Scientific X-Series 2 quadrupole inductively coupled plasma mass
spectrometer. Samples were introduced into the instrument through a Cetac Aridus
2 desolvating nebulizer system in order to reduce molecular interferences. An ESI
SC-2 DX FAST autosampler was used to reduce washout times between samples.
The instrument was tuned using a 5 ppb solution of Be, In and U; typical sensitivity
for 238U was 2 × 106 counts per second for a sample uptake rate of 50 μl/min. The
Ce/CeO ratio was typically >4500, and thus corrections for interference of oxides of
Ba and the light rare-earth elements on Eu and Gd were unnecessary. Before each
measurement session, the instrument was calibrated using multielement solutions
covering the relevant concentration range. A mixed Be, Rh, In and Bi solution (30,
10, 10, 5 ppb) was mixed with the sample online and these elements used as
internal standards to correct for instrumental drift. Procedural blanks analysed
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during this work were negligible for all elements measured. Trace element data for
the rock standard BHVO-2 measured as an unknown are given in the table.

Whole-rock powders for Sr, Nd and Pb isotope analysis were leached prior to
dissolution. Approximately 1 g of powder was leached with 6 M HCl at 100 °C
for 8 h, changing the acid every 2 h, and the remaining residue washed
repeatedly with MQ H2O, and then dried. Plagioclase separates prepared for
Ar–Ar analysis were rinsed with MQ H2O. For Pb isotope analysis,
approximately 70 mg of sample was weighed into a Teflon beaker, and digested
overnight in sealed beakers at 70 °C in a mixture of 10 drops 15 M HNO3 and 20
drops 14 M HF. All acids used were double-distilled, except for HF which was
purchased as Suprapur grade. The resulting solution was evaporated to near
dryness, treated with 15 drops 15 M HNO3, evaporated to complete dryness,
redissolved in 20 drops 6 M HCl, evaporated and finally taken up in 20 drops
1 M HCl. The samples were transferred to 2 ml centrifuge tubes, centrifuged and
the solution loaded onto ion-exchange columns containing 0.1 ml Eichrom
SrSpec resin. Most elements were washed off the resin with 3 ml 1 M HCl, and
this fraction was collected for Sr and Nd. Pb was recovered with 2 ml 6 M HCl,
and this solution evaporated, redissolved in 1 M HCl and passed a second time
through the columns. The final solution was dissolved in 2% HNO3 for mass
spectrometry.

The 1 M HCl solution collected from the SrSpec resin was dried down and
redissolved in 3.5 M HNO3. The REE were separated using ion-exchange
columns containing 0.1 ml Eichrom TRUSpec resin, positioned to drip into a
second column containing 0.1 ml SrSpec resin, which retained the Sr. After
washing with 1 ml 3.5 M HNO3, the columns were decoupled, washed twice
with 1 ml 3.5 M HNO3, and Sr and the REE recovered in H2O and 2.5 M HCl,
respectively. Nd was separated from the other REE using Eichrom LnSpec resin
in 0.25 M HCl. Blanks were below 120, 18 and 15 pg for Sr, Nd and Pb,
respectively.

Sr and Nd isotope measurements were carried out using a Thermo Triton
thermal ionization mass spectrometer in static mode. Sr was loaded onto single Ta
filaments in 1 ml 1 M H3PO4, and the measured isotope ratios corrected for
instrumental mass fractionation using 86Sr/88Sr= 0.1194. 87Rb interference was
monitored and corrected for by measuring 85Rb, but was negligible for most
samples. The NBS987 Sr standard yielded an 87Sr/86Sr value of 0.710266 ±
0.000012 (n= 10) over the period of analysis. Nd was loaded onto the Ta filament
of a double Ta–Re filament assembly and analysed as the metal. A correction for
mass fractionation was applied assuming 144Nd/146Nd= 0.7219. An in-house Nd
standard yielded 143Nd/144Nd= 0.511539 ± 0.000008 (n= 6), equivalent to
0.511851 for the La Jolla Nd standard.

The Pb fraction was dissolved in 2% HNO3 to obtain a Pb concentration of
about 30 ng/g, and spiked with approximately 3 ng/g SRM997 Tl standard. Isotope
measurements were carried out on a Thermofisher Neptune Plus multicollector
plasma mass spectrometer in static mode, using a 205Tl/203Tl ratio of 2.3871 to
correct measured Pb isotope ratios for instrumental mass bias. Sample
measurements were bracketed by measurements of the SRM981 Pb standard,
which were used for external normalization assuming the values of ref. 91. Accuracy
and reproducibility, as determined by multiple analysis of rock standards, was
better than 80 ppm.

Geochronology. Sample preparation: The groundmass samples were prepared
following the methods of ref. 92. The 200–180 μm samples measured at Oregon
State were cleaned in a series of hour-long acid baths, progressing from 1 N HCl to
6 N HCl to 1 N HNO3 to 3 N HNO3, followed by a final milli-Q water bath. The
355–200 μm samples measured at the VU University were cleaned in 1 N HNO3 for
2 h, followed by an hour-long milli-Q water bath. Each separate was picked by
hand under a binocular microscope to ensure the removal of alteration and to
confirm the purity of the separate.

Oregon State University: Groundmass samples were irradiated for 6 h in the
CLICIT position at the Oregon State University TRIGA reactor. Incremental
heating experiments were conducted for each sample. Irradiated samples were
loaded into copper planchettes for analysis using a Thermo Scientific ARGUS-VI
multicollector mass spectrometer at the OSU Argon Geochronology Laboratory
following the procedure described in ref. 93. All ages are calculated relative to Fish
Canyon Tuff (FCT) sanidine with an age of 28.201 Ma94 and using the decay
constants after ref. 95.

The correction factors for neutron interference reactions at the TRIGA are
(2.64 ± 0.02) × 10−4 for (36Ar/37Ar)Ca, (6.73 ± 0.04) × 10−4 for (39Ar/37Ar)Ca,
(1.21 ± 0.003) × 10−2 for (38Ar/39Ar)K and (8.6 ± 0.7) × 10−4 for (40Ar/39Ar)K.
Ages were calculated using the ArArCALC v2.7.052 software of ref. 96,
with errors including uncertainties on the blank corrections, irradiation
constants, J-curve, collector calibrations, mass fractionation, and the decay of
37Ar and 39Ar.

VU University: The groundmass samples were irradiated together with Fish
Canyon Tuff (FCT) sanidine for 18 h at the Oregon State University TRIGA
reactor in the cadmium shielded CLICIT facility (irradiation ID VU107).40Ar/
39Ar analyses were performed at the geochronology laboratory of the VU
University on a Helix MC noble gas mass spectrometer. Single grains of FCs
were fused and multiple grain groundmass samples were step-heated with a
Synrad CO2 laser beam and released gas was exposed to a Lauda cooler (−70 °C)

and hot NP10 and St172 getters and analysed on the Helix MC. The five argon
isotopes are measured simultaneously with 40Ar on the H2-Faraday position
with a 1013Ω resistor amplifier, 39Ar on the H1-Faraday with a 1013Ω resistor
amplifier, 38Ar on the AX-CDD, 37Ar on the L1-CDD and 36Ar on the L2-CDD
(CDD—compact discrete dynode). Gain calibration for the CDDs is done by
peak jumping a CO2 reference beam on all detectors in dynamic mode. All
intensities are corrected relative to the L2 detector. Air pipettes are run ~every
10 h and are used for mass discrimination corrections.

All ages are calculated relative to FCT of 28.201Ma94 with ref. 95 decay
constants. The atmospheric air value of 298.56 from ref. 97 is used. Detailed
analytical procedures for the Helix MC are described in ref. 98. The correction
factors for neutron interference reactions are (2.64 ± 0.02) × 10-4 for (36Ar/37Ar)Ca,
(6.73 ± 0.04) × 10−4 for (39Ar/37Ar)Ca, (1.21 ± 0.003) × 10−2 for (38Ar/39Ar)K and
(8.6 ± 0.7) × 10−4 for (40Ar/39Ar)K. All errors are quoted at the 1σ level and include
all analytical errors. Data were reduced using the ArArCALC v2.7.052 software of
ref. 96, with errors including uncertainties on the blank corrections, irradiation
constants, J-curve, collector calibrations, mass fractionation, and the decay of 37Ar
and 39Ar.

Data quality. 40Ar/39Ar step-heating experiments are widely assessed using criteria
as follows:

An acceptable age plateau includes at least 50% of the gas released with a mean
square weighted deviation (MSWD) of approximately 1.0.
Shows an inverse isochron with a 40Ar/36Ar intercept of about 295.5 ± 2σ
(indicating equilibration with atmospheric argon).
Has concordant plateau and inverse isochron ages within 2σ internal error
(validating the assumption of the 295.5 ratio used in determining the
plateau age).

It is evident from the images of the samples used in this study that the smallest
sample DL2-2 is significantly more altered compared to the other two samples.
This is an obvious explanation for why mildly leached 355–200 μm groundmass
did not give a plateau age. The influence of alteration on the inverse isochron 40Ar/
39Ar intercept values is demonstrated by how they vary for DL3-5 depending on
acid leaching. Mild acid leaching gives an intercept value indicating excess argon
(i.e., greater than the atmospheric value of 295.5) whereas strong acid leaching
gives an atmospheric/sub-atmospheric value. Yet, both analyses give the same
plateau age so validating the assumption of the 295.5 ratio used in their calculation.
Another important reason that plateau ages with non-atmospheric inverse
isochron intercepts are acceptable in the case of this study is that heating steps are
high in 40Ar(r) so the data points used for calculating the inverse isochrones plot
close to the 39Ar/40Ar axis making it very difficult to pin any case to precisely
define the 40Ar/36Ar intercept value. In summary, we consider that the plateau ages
for the massive boulder sample DL3-5 most precisely defines the crystallization age
of the dome samples.

Data availability
The authors declare that all the data for the 40Ar/39Ar age determinations and
geochemical analyses supporting the findings of this study are available within the paper
and its supplementary information files.
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