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ABSTRACT

A new type of ocean general circulation model with simplified physics is described and tested for various
simple wind-driven circulation problems. The model consists of the vorticity balance of the depth-averaged flow
and a hierarchy of equations for ‘‘vertical moments’’ of density and baroclinic velocity. The first vertical density
moment is the (vertically integrated) potential energy, which is used to describe the predominant link between
the barotropic and the baroclinic oceanic flow in the presence of sloping topography. Tendency equations for
the vertical moments of density and baroclinic velocity and an appropriate truncation of the coupled hierarchy
of moments are derived that, together with the barotropic vorticity balance, yield a closed set of equations
describing the barotropic–baroclinic interaction (BARBI) model of the oceanic circulation. Idealized companion
experiments with a numerical implementation of the BARBI model and a primitive equation model indicate that
wave propagation properties and baroclinic adjustments are correctly represented in BARBI in midlatitudes as
well as in equatorial latitudes. Furthermore, a set of experiments with a realistic application to the Atlantic/
Southern Ocean system reproduces important aspects that have been previously reported by studies of gyre
circulations and circumpolar currents using full primitive equation models.

1. Introduction

It is a common approach to split the oceanic flow into
a depth-independent part, called the barotropic flow, and
the deviation, the baroclinic flow. This concept is con-
sidered to be useful under the premise that the barotropic
flow is dominantly forced by the surface wind stress.
However, the benefit of such a decomposition may de-
pend on the ‘‘importance’’ (which might be large) and
our ‘‘understanding’’ (which might not be as large) of
the interaction between both components. In the vortic-
ity balance for the large-scale, depth-averaged momen-
tum the predominant coupling to the baroclinic field is
given by torques generated by pressure gradients acting
on an inclined bottom, sometimes called JEBAR (joint
effect of baroclinicity and relief ) torque (Sarkisyan and
Ivanov 1971). JEBAR can be written as a torque in-
volving gradients of the vertically integrated potential
energy stored in the stratification and the topography
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and can become one of the dominant terms in the baro-
tropic vorticity balance (see, e.g., Holland 1973; Great-
batch et al. 1991; Böning et al. 1996).

It is the purpose of this study to present a new model
concept, which we name BARBI (standing for baro-
tropic–baroclinic interaction model). BARBI’s major
task is to implement the correct description of the in-
teraction of barotropic flow and baroclinic flow in the
presence of topography in a simplified ocean general
circulation model. BARBI consists of and predicts ver-
tical moments1 of density and velocity. The first density
moment is identical to the vertically integrated potential
energy, which we use (via the JEBAR torque) to couple
the baroclinic to the barotropic flow. Together with cer-
tain closure assumptions, BARBI assembles therefore
the essential dynamics of baroclinic circulation over to-
pography and results in a simplified (with respect to the
primitive equations) closed system describing the large-
scale wind- and buoyancy-driven oceanic circulation.

In its physical content, BARBI leans on the planetary
geostrophic equations, although it does not suffer from

1 We define a ‘‘vertical moment’’ of, say, f as the vertical integral
of f multiplied with a power of depth, that is, # fzn dz, where n is
the order of the moment.
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a singularity at the equator. Its mathematical complexity
is comparable with layered, reduced-gravity, or quasi-
geostrophic models since there are only a few two-di-
mensional equations in BARBI. The fundamental dif-
ference to existing models is the treatment of the vertical
dependence of the baroclinic variables, namely, density
and baroclinic velocity: the model equations are derived
by vertical integration and projection of the primitive
equations onto powers of depth (zn). In effect, the ver-
tical coordinate is transformed by this procedure into
the order of the vertical moments of the baroclinic var-
iables. This treatment of the vertical dependence comes
along as a natural consequence of the appearance of the
first density moment (potential energy) in the JEBAR
term of the barotropic vorticity equation. Furthermore,
it naturally turns out that ‘‘baroclinic velocity moments’’
can be used to calculate the effects of advection by the
baroclinic flow on the vertical density moments. As a
consequence of the projection procedure, BARBI is giv-
en, in principle, by an infinite, coupled set of equations
for vertical moments of increasing order. In practice,
however, the coupled hierarchy can efficiently be trun-
cated, as we shall show below, to the extent that only
a couple of lower order moments are necessary to de-
scribe the essential dynamics of the baroclinic flow over
topography.

Our new model concept competes, in a sense, with
similar models with simplified physics. We want to
stress, therefore, its major advantages:

• there is no restriction on topography, neither being
confined to the lowest layer (as in layered, reduced-
gravity models2) nor being infinitesimal in terms of
height or slope (as in quasigeostrophic models),

• there is no restriction to nonequatorial regions, as for
quasigeostrophic or planetary geostrophic models, and

• the forcing of currents by surface buoyancy flux is
explicitly included (in contrast to all other models with
simplified physics mentioned above), though we do
not make use of it in the current version of BARBI.

The most prominent feature of BARBI is that the fun-
damental role of the interaction between topography and
baroclinicity in generating large-scale ocean transports
is correctly represented in the model equations without
any truncation. We think that, so far, the representation
of topography has not attracted enough attention in mod-
els with simplified physics and that, therefore, BARBI
may contribute to a better understanding of important
ocean dynamics by means of simplified physics.

Of course, there are also disadvantages of BARBI to
be mentioned. The effect of baroclinic advection of per-
turbation density on the vertical density moments is not
as elegant and efficient to express in terms of vertical

2 However, note that in some layered models—for example, recent
versions of MICOM (Bleck et al. 1992), an ‘‘isopycnal’’ primitive
equation model—layers of zero (or at least very small) thickness are
defined to circumvent the artifacts of the ‘‘layered formulation.’’

moments of velocity and density as other effects. This
effect is, however, small in the wave and wind-driven
applications presented here (thermohaline-forced flow,
in which this effect becomes important, will be consid-
ered in a companion paper in preparation). On the other
hand, it is possible to derive approximate forms of the
effect in an truncated BARBI model, utilizing an ex-
pansion of the vertical coordinate in the basis of mod-
ified Legendre polynomials, and the proposed truncation
procedure. Using the same approach, it is in principle
possible to relax almost all assumptions that we make
in the present study, for example, the neglection of ad-
vection of momentum.

The paper is organized as follows. BARBI’s hierarchy
of equations is outlined in section 2 and summarized in
section 3. For practical applications the (infinite) hier-
archy must be truncated. We propose a truncation con-
cept, based on wave solutions of the model, described
in section 4. To test the new model concept, we apply
a numerical implementation of BARBI to a number of
circulation problems in section 5, namely propagation
of disturbances in midlatitude and equatorial basins, the
wind-driven circulation in a basin with topography, and
some realistic wind-driven cases with an Atlantic model
with attached Southern Ocean. Except for the last case,
all BARBI experiments are compared with twin exper-
iments with a primitive equation model (Pacanowski
1995; Redler et al. 1998). The last section is a con-
cluding discussion of our findings. We have added three
appendixes. In appendix A we outline a way to ap-
proximate the effect of the baroclinic advection of per-
turbation density in BARBI, in appendix B we cover
simple parameterizations for dissipative and diabatic
terms in BARBI, and in appendix C we discuss the
general, flat-bottom, and topographic wave properties
of the model.

2. Derivation of BARBI

We start with the Boussinesq form of the primitive
equations. Vertical integration of the momentum balance
yields the barotropic momentum balance:3

0]U
1 f k 3 U 5 2 =p dz 1 t 2 t (2h)E S]t

2h

0

1 = · J dz, (1)E u

2h

where U is the vertically integrated momentum, given
by U 5 u dz (u is the total velocity), h is ocean0#2h

depth, and p is the pressure (divided by a constant ref-
erence density). Stresses at the surface tS and the bottom
t (2h) enter from the divergence of the vertical tur-

3 All vectors are two dimensional horizontal, except for the fol-
lowing convention: k 5 (0, 0, 1) is a three-dimensional vertical unit
vector, and k 3 u 5 k 3 (u, y, 0) 5 (2y, u, 0) → (2y, u).
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bulent transports of momentum; Ju (a tensor) is the tur-
bulent, lateral flux of momentum. Although advection
of momentum can become an important baroclinic/baro-
tropic coupling agent for mesoscale flows (and could
be included in an approximative form), we neglect it
here since we are mainly interested in large-scale flows.

The pressure gradient term in Eq. (1) can be decom-
posed as

0 0

=p dz 5 h= p(z 5 0) 1 g r dzE E[ ]
2h 2h

0

1 = g zr dzE1 2
2h

using the hydrostatic relation ]p/]z 5 2gr, where r
denotes in situ density (normalized by a constant ref-
erence density). Two types of pressure terms appear: the
first term on the rhs is associated with the bottom pres-
sure, while the second is the gradient of the vertically
integrated potential energy. From Eq. (1) we may for-
mulate the vorticity balance for the depth-averaged flow
U/h:

] 1 f
= · =c 1 =c · =

]t h h

1
5 2 =E · =h

2h

01 1 1
1 = · t 2 t (2h) 1 = · J dz , (2)S E u[ ]h h h

2h

where c denotes the barotropic transport streamfunction
defined by U 5 =c (the operator is shorthand for k=
3 =; furthermore, A · =B is the Jacobian of A and=
B). Here we have made use of of the rigid-lid assumption
and the volume conservation = · U 5 0. The bottom
pressure term drops out and the JEBAR torque [first
term on the rhs of Eq. (2)] shows up, involving the
vertically integrated potential energy E 5 g zr dz0#2h

as the remaining coupling to the baroclinic flow (note
that the coupling due to the frictional terms, which are
evaluated in appendix B, tend to be of minor importance
and are consequently ignored here).

We proceed by formulating a tendency equation for
the vertically integrated potential energy E to close the
balance in Eq. (2). It turns out that higher order vertical
moments of density are needed as well. Thus we define

0

nE 5 g z r dz, n 5 0, 1, 2, . . . .n E
2h

Note that E1 5 E. For simplification, the balances of
heat and salt are combined into a thermohaline balance
for density,

2 ]B]r ]r N r
1 u · =r 1 w 2 5 2 2 = · J . (3)r1 2]t ]z g ]z

Here, u and w are the (total) horizontal and vertical
velocities, Br and Jr vertical and horizontal density flux-
es, respectively, which cover all diabatic process, for
example, convection, mixing, and stirring by eddy ac-
tivity and sources of heat and salt at the surface. Note
that we have neglected effects of compressibility in Eq.
(3), which puts the thermohaline balance in BARBI on
a similar footing as usually implemented in simplified
dynamics (e.g., quasigeostrophic or layered, reduced-
gravity models) where density is replaced by a potential
(or ‘‘neutral’’) density. For the formulation of the dia-
batic terms in Eq. (3), it is necessary to assume fur-
thermore a linear equation of state (which is, however,
not necessary to derive the advective terms). The density
r is a deviation from a mean background profile of
density (z), given by the Brunt–Väisälä frequencyr

˜
dr(z)

2N (z) 5 2g .˜
dz

To distinguish between barotropic and baroclinic density
advection, we split the total advective flow u in Eq. (3)
into a barotropic part U and a baroclinic part u9 5 u
2 U/h, with the corresponding barotropic (W) and bar-
oclinic (w9) vertical velocities,4

z
W 5 U · =h,

2h
z

w9 5 2= · u9 dz9 with w 5 W 1 w9.E
2h

To obtain now a tendency equation for the vertical den-
sity moment En, we multiply Eq. (3) with g and zn and
integrate over depth, which yields

]E En nn1 h U · = 5 S 1 S9 1 S0 1 Q 1 D (4)n n n n nn11]t h
0g

n nS 5 2h U · = z r(z) dzn En11h ˜2h

0

n 2S9 5 z w9N (z) dzn E
2h

0 ]w9r
nS0 5 2g z = · u9r 1 dz.n E 1 2]z

2h

(5)

According to Eq. (4), changes in the vertical density
moments En are caused by advection of background
density by the barotropic flow (given by n), advectionr S

˜of by the baroclinic flow ( ) and advection of per-r S9n˜turbation density r by the baroclinic flow ( ). The sec-S0n
ond term on the lhs in Eq. (4) results from horizontal

4 They are derived from the total mass balance = ·u 1 ]w/]z 5 0
together with the kinematic boundary conditions (for a rigid lid) w
5 0 at z 5 0 and w 1 u · =h 5 0 at z 5 2h.
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and vertical advection of r by the barotropic flow. In
addition to the advective sources, there are diabatic
sources, decomposed into effects of vertical turbulent
buoyancy flux (Qn) and lateral turbulent buoyancy flux-
es (Dn).

All source terms are evaluated and parameterized in
the course of this work. We postpone the discussion of
the diabatic sources Qn and Dn and start with the ad-
vective terms. First, consider the effects of barotropic
advection. Similar to the second term on the lhs in Eq.
(4), it is evident that the effect of the lifting of the
background mass field by the barotropic flow ( n) canS
be expressed entirely in terms of U and the (given)
background stratification (z), in form of its correspond-r

˜ing vertical moments n 5 g zn (z) dz. Note that0E # r2h ˜
n depends only on x and y via the dependency on h(x,E

y). Therefore, n ± 0 only in regions with an inclinedS
bottom. For, for example, a constant Brunt–Väisälä fre-
quency N 5 N0, the term takes the simple form

2 nN h0nS 5 2(21) U · =h.n n 1 2

We want to point out, however, that the complete effect
of vertical and horizontal barotropic advection of den-
sity on En can be exactly derived for any choice of (z)r

˜or N(z).
Next, we consider the source term , representingS9n

the production of En due to lifting of the background
mass field by the baroclinic flow u9. For simplicity, we
assume first, again, a constant Brunt–Väisälä frequency:

is then given byS9n
02N0 n11S9 5 = · z u9 dz.n En 1 1

2h

The form of suggests that the balance of baroclinicS9n
momentum u9 should be projected in the same way as
Eq. (3) on zn to get prognostic equations for ‘‘baroclinic
velocity moments.’’ We follow this route and define the
baroclinic velocity moments as

0

n11u9 5 z u9 dz for n 5 0, 1, 2, . . . andn11 E
2h

u9 5 00

and add them to our prognostic variables in BARBI.
The baroclinic momentum balance is the difference be-
tween the complete momentum balance and the baro-
tropic one, given by Eq. (1),

z]u9 1
1 f k 3 u9 5 g= r dz 1 =E 1 F9,E]t h

2h

with the baroclinic frictional force F9. The projection
of the baroclinic momentum balance on zn11 yields

]u9n11 1 f k 3 u9n11]t

01
n n11 n115 2 [(21) h =E 1 =E ] 1 z F9 dz.1 n12 En 1 2

2h

(6)

A prognostic equation for the baroclinic velocity mo-
ments is thus found, with a quite simple expressionu9n11

of the pressure gradient in terms of gradients of En.
Note that no further assumptions have been made to
derive Eq. (6) except that we have neglected advection
of momentum as before. The divergence of allowsu9n11

us in turn to calculate in the balance of En. However,S9n
at this point it turns out that, indeed, all (odd) vertical
density moments are needed and not just E1 since the
interaction of potential energy E1 with the baroclinic
fields via (and thus ) couples the third moment E3S9 u91 2

to the balance of E1. For E3 we need , thus , there-S9 u93 4

fore E5, etc. Apparently, one needs a truncation of this
coupled hierarchy at some order, which is discussed in
section 4. Note also that starting with the balance of
potential energy, only the odd moments En (n 5 1, 3,
5, . . .) are involved.

The source term can be evaluated for an arbitraryS9n
background density (z), if this is expressed as a poly-r
nomial of depth; that is, (z) 5 p1z 1 p2z2 1 · · ·. Ar
truncated set of the expansion coefficients pn can be
found for practical purposes by, for example, a simple
fit to a profile of (z), given at discrete depths. Usingr
this expansion, we get for , after some algebra whichS9n
is suppressed here, the following expression:

` jpjS9 5 2g = · u9 .On n1jj 1 nj51

Hence, for a nonconstant N(z), the term takes a sim-S9n
ilar form as for constant N. For the general case, how-
ever, depending on the form of N(z) divergences of bar-
oclinic velocity moments of higher order than n 1 1
(odd and even) might appear in (note that we get theS9n
constant-N-form of using p1 5 2 /g and pn.1 52S9 Nn 0

0). In principle, the entire hierarchy beyond n 1 1 is
involved in for an infinite expansion of (z). A con-S9 rn

sequence for the model is that, in contrast to the case
with constant N, odd and even (.2) density moments
are coupled through .S9n

Last, we have to evaluate the source term , stem-S0n
ming from advection (both vertical and horizontal) of
perturbation density by the baroclinic flow. It is easy to
show by scaling analysis that is small compared toS0n

and n, as long as the density perturbation r is smallS9 Sn

compared to the background density (z). In the waver
and wind-driven experiments presented in section 5, the

terms are indeed very small (they have been moni-S0n
tored in corresponding experiments with a primitive
equation model). However, the term might becomeS0n
large if the density perturbation becomes large, as, for
example, in configurations with strong thermohaline
forcing. We postpone the detailed treatment of the S0n
to a companion paper in preparation but include a brief
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outline in appendix A where we show that, in effect,
can be expressed in terms of the density momentsS0n

Ek and baroclinic velocity moments .u9k

3. The BARBI model

At this stage, BARBI is completed. No further var-
iables will be added. However, some unspecified terms
(of frictional and diabatic nature) have not yet been
treated; they are discussed in appendix B and the results
are used here. To summarize, BARBI consists of the
following variables and corresponding tendency equa-
tions:

• the barotropic transport U 5 u dz 5 c given by0# =2h

the barotropic vorticity balance

] 1 f
= · =c 1 =c · =

]t h h

1 t S5 2 =E · =h 1 = ·12h h

1 1
1 A = · = · h= =c, (7)h 1 2h h

• the vertical density moments En 5 g zn r dz given0#2h

by

2 n]E E N hn n 0n n1 h U · = 1 (21) U · =h
n11]t h n 1 2

2N0 25 = · u9 1 K ¹ E 1 Q (8)n11 h n nn 1 1

for n 5 0, 1, 2, . . . (here written for the case of N 2

5 5 const and [ 0), and2N S00 n

• the baroclinic velocity moments 5 zn11 u9 dz0u9 #n11 2h

given by

]u9n11 1 f k 3 u9n11]t

1
n n115 2 [(21) h =E 1 =E ]1 n12n 1 2

n n11(21) h
1 A n(n 1 1)u9 1 ty n21 Sn 1 2

21 A ¹ u9h n11

for n 5 0, 1, 2, · · ·.

Horizontal and vertical viscosity Ah and Ay are used as
well as a lateral diffusivity Kh. We are using no slip as
the lateral boundary condition for momentum translating
to similar conditions for U and , free slip at theu9n11

bottom as worked out in appendix B, and von Neumann
condition for En (no buoyancy flux through lateral bound-
aries and the bottom). Surface boundary forcing enters
through the wind stress tS and the surface density flux
Qn.

All variables in BARBI are two-dimensional. The
vertical coordinate is transformed into the order of the
vertical moments of the baroclinic variables, namely
density and baroclinic velocity. This approach is a nat-
ural consequence of the occurrence of E1 (potential en-
ergy) in the barotropic vorticity equation (JEBAR term)
and in the tendency equation for En. At the presentu9n11

stage, BARBI is neglecting advection of momentum and
effects of compressibility or the nonlinearity of the
equation of state and assumes that r remains small when
compared with (for K , n).r S0 S9 Sn n˜

4. Closure of the hierarchy of moments

For practical purposes, we need a truncation of the
coupled hierarchy of the vertical moments. We begin
with the case of a constant N, a straightforward exten-
sion of the closure for nonconstant N(z) is demonstrated
afterward. A parameterization of EL12 in terms of En#L

is presented since, for constant N, we need EL12 in the
pressure gradient forcing of , showing up in turn inu9L11

the equation for EL. Consideration of wave properties
in BARBI is our guide for the closure. Therefore, we
aim to construct the parameterization such that a trun-
cated model has the correct gravity and geostrophic
wave speeds.

It seems obvious that BARBI has barotropic and baro-
clinic geostrophic waves (associated with the planetary
b and topographic slopes) and baroclinic gravity waves.
We want to note, here in passing, that it is possible to
gain the correct dispersion relations for all baroclinic
(flat bottom and topographic) waves (and baroclinic
modes) in the limit of infinite number of vertical modes
in BARBI. This is demonstrated in appendix C.

However, we start with a one-mode BARBI model
for which the baroclinic equations (excluding effects of
friction, horizontal advection, and diabatic sources) are
given by

]u9 12 21 f k 3 u9 5 2 =E h (g 2 1),2 1]t 3
2]E N1 02 = · u9 5 0. (9)2]t 2

Here, the parameterization E3 5 gh2E1 is used, and we
have to find now a proper value for the closure parameter
g, which for simplicity is taken as a constant.

If we restrict Eq. (9) to an f plane, the dispersion
relation of inertio-gravity waves [proportional to expi(k
· x 2 vt)] is obtained,

1 2 g
2 2 2 2 2 2v 5 f 1 c k with c 5 (N h) ,0 06

where k 5 (k1, k2) denotes the wave vector and c the
gravity wave speed. We can choose g to gain the correct
phase speed c 5 N0h/p of the first-mode gravity wave
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speed.5 This is achieved with (1 2 g)/6 5 1/p2 or g
ø 0.3921.

For the following reason, we suppress here any dis-
cussion of other wave branches. Equation (9) has indeed
the form of the (reduced gravity) shallow water equa-
tions, since with the pressure variable P 5 (g 2 1)h2E1/
3, we get

]u92 1 f k 3 u9 5 2=P,2]t

]P
21 c = · u9 5 0.2]t

Therefore, it is evident that our setting for g also yields
the correct dispersion relations for the entire baroclinic
wave family (as, e.g., short and long Rossby waves) in
this one-mode BARBI model, including the spectra of
equatorial waves. Boundary waves such as Kelvin and
pseudo-Kelvin waves are implemented as well [the latter
appear in numerical models, which do not resolve the
first internal Rossby radius of deformation (see Davey
et al. 1983; Hsieh et al. 1983; Killworth 1985)].

It is straightforward to extend the truncation proce-
dure for BARBI models with more than one baroclinic
mode. We propose the following closure for EL12 (in a
model with E1, E3, . . . EL)

L

L2j12E 5 g E h . (10)OL12 j j
j51

A wave solution En 5 enhn21 expi(k · x 2 vt) yields
for the (truncated) hierarchy of moments in this (L
mode) BARBI model for the gravity wave branch ( f
plane)

2 21 v 2 f 0(e 2 e ) 5 2 e3 1 12 2 26 N h k0

2 21 v 2 f 0(e 2 e ) 5 2 e5 1 32 2 220 N h k0

_
2 21 v 2 f 0(e 2 e ) 5 2 e , (11)L12 1 L2 2 2(L 1 1)(L 1 2) N h k0

which can be formulated in matrix form as
2 2v 2 f 0 TM(g )e 5 e, e 5 (e , e , . . . , e )j 1 3 L2 2 2N h k0

since

e 5 g e ,OL12 j j
j

where M is an L 3 L matrix and e is an L 3 1 vector.

5 For constant N 5 N0, constant h, and a rigid lid the baroclinic
eigenmodes are fn(z) 5 cosnpz/h with eigenvalues (np)2, Rossby
radii N0h/( | f | np), and gravity wave speeds N0h/(np), with n 5 1,
2, . . . .

For example, for long Rossby waves (b plane, ] /]tu9n11

[ 0) we get a similar result with the same matrix M as
before:

2v f
M(g )e 5 e.j 2 2bN h k0 1

Therefore, the dispersion relations v 5 v(k) for the
different wave branches are determined by the eigen-
values zn of M(g j). Without giving further details, we
just note here that it is possible to adjust the eigenvalues
by tuning the values of the g j, such that they become
zn 5 21/(np)2 and therefore fit the (known) gravity
wave and Rossby wave speeds (the problem is linear in
g j and can readily be solved). In consequence, the BAR-
BI model will have as many baroclinic modes as vertical
moments. Furthermore, the density moments resemble
amplitudes of baroclinic modes in the basis of the (left)
eigenvectors en (a 1 3 L vector) of M. In other words,
the components of en give coefficients for a linear com-
bination of all En/hn21, to filter out the n th baroclinic
mode (where =h [ 0). We use the eigenvectors en in
section 5 for the analysis of results of numerical models
(both BARBI and a primitive equation model).

Next, we briefly outline the consequences of a non-
constant N to the truncation procedure at order L. In
contrast to the case with constant N, the term involvesS9n
now higher order (.L 1 1) baroclinic velocity mo-
ments, which, in addition to EL12, have to be parame-
terized.

Consider again a one-mode BARBI model, where we
now parameterize all higher order (n . 1) density mo-
ments:

n21 n21E 5 gh (21) E for n 5 2, 3, 4, . . . .n 1

Using this parameterization in the equations for the trun-
cated (n . 2) baroclinic velocity moments, assuming a
flat bottom and neglecting the Ay term, we see that

can be expressed in terms of :u9 u9j.2 2

j223h
ju9 5 u9 (21) for j 5 3, 4, 5, . . . .j 2 ( j 1 1)

Therefore, we get for the general case of a nonconstant
N in a one-mode model:

` j21 jjp h (21)p j1S9 5 2g= · u9 2 3 .O1 2 [ ]2 ( j 1 1)( j 1 2)j52

The parameter g is determined as before by solving the
baroclinic wave equation, which now yields

` j21 jjp h (21)p j12 2c 5 gh (g 2 1) 2 .O[ ]6 ( j 1 1)( j 1 2)j52

Given a profile for , we can calculate the pn and getr
˜an ‘‘effective’’ constant , which is given by the sum2N 0

in square brackets involving the pn. The correct gravity
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FIG. 1. The first density moment and first baroclinic velocity moments (arrows) in BARBI after
30 days. Contour interval is 20 m2 s22.

wave speed6 c, determined by the actual profile of N(z),
can be tuned with the choice of g.

The truncation approach is readily extended to more
than one mode in a model with nonconstant N. For an
L-mode BARBI model, we are using the parameteri-
zation

L

n21 n2jE 5 (21) g E h for n . L.On j j
j51

Then, we can express the truncated, higher-order ve-
locity moments as

L 1 2
j ju9 5 u9 h (21) .L111j L11 L 1 2 1 j

We can use this expression for the evaluation of forS9n
the case of a nonconstant N in an L-mode model.

5. Numerical experiments

We have assessed the performance of BARBI by com-
parison of integrations of a numerical implementation
of BARBI with integrations of a primitive equation
model (called MOM hereinafter; Pacanowski 1995;
Redler et al. 1998) in various model setups. The nu-
merical BARBI model is very similar to MOM (most
code fragments have actually been taken from MOM);
for example, finite differences in space and time are

6 To our surprise, it came out that the optimal parameter g is ap-
proximately given by g 5 1 2 6/p2 (the same optimal g as for a
constant N 2), for any background density profile that we have tested.

second order and an Arakawa B grid is used. The ap-
proximations currently used in BARBI have been tested
by evaluation of the appropriate terms in the numerical
experiments. In particular, we have verified that the lin-
earization of the momentum balances and the neglection
of in the density moment balances is appropriate sinceS0n
these effects are present in MOM. It turns out that both
assumptions are valid.

In order to present the results of the integrations, we
choose and discuss here results from experiments in four
different configurations:

• wave propagation in a flat bottom, midlatitude basin
on a b plane, initialized with a Gaussian disturbance
of the first moments near the eastern boundary of the
basin (expt DISTURB);

• spinup of an equatorial b plane circulation, forced
with wind stress in the western part of the basin (expt
EQUAT);

• a midlatitude basin on a b plane with a meridional
ridge, forced with wind stress (expt RIDGE); and

• a realistic model of the Atlantic and the Antarctic
Circumpolar Current (expt ATLACC).

a. Experiment DISTURB

The initial condition for experiment DISTURB is a
Gaussian perturbation in the first density moments near
the eastern boundary, as shown in Fig. 1. BARBI uses
truncation at order 5, with E5 5 0.66h2E3 such that E1

and E3 are predicted and the lowest two baroclinic



2726 VOLUME 33J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

F
IG

.
2.

T
he

fi
rs

t
de

ns
it

y
m

om
en

t
(E

1
)

al
on

g
50

8N
in

(a
)

M
O

M
an

d
in

B
A

R
B

I
us

in
g

(b
)

E
5

5
0.

66
E

3
an

d
(c

)
E

3
5

(1
2

6)
/p

2
E

1
fo

r
th

e
fi

rs
t

th
re

e
ye

ar
s

of
th

e
in

te
gr

at
io

n.
C

on
to

ur
in

te
rv

al
is

2
m

2
s2

2
.

T
he

th
ic

k
da

sh
ed

li
ne

s
de

no
te

ph
as

e
sp

ee
ds

of
th

e
fi

rs
t

an
d

se
co

nd
ba

ro
cl

in
ic

R
os

sb
y

w
av

e
at

50
8N

in
th

e
m

od
el

se
tu

p.

modes are present. In addition, we discuss as well a
one-mode BARBI model, using E3 5 0.3921h2E1. The
vertical resolution of the primitive equation model is 10
m thick at the top increasing to 250 m at the bottom (at
5500 m), altogether 45 vertical levels. Both models use
a b plane of 408 in latitudinal range referenced to 308N,
which is also the latitude of the southern boundary of
the domain. The zonal resolution is 2.58 cosf and the
meridional resolution is 2.58 cos308. The horizontal vis-
cosity is 2 3 105 cosf m2 s21, the vertical viscosity is
1023 m2 s21, the horizontal diffusivity is 2000 cosf m2

s21, and the vertical diffusivity is 1024 m2 s21. The
bottom is flat, and bottom friction is set to zero. The
background stratification is the same in both models,
given by a constant stability frequency N0 5 2.6 3 1023

s21. The time step is 1 h in both models. We are using
a linear equation of state in MOM with ]r/]T 5 20.2
kg m23 K21; salinity is kept constant. The perturbation
in E1 is incorporated into MOM with a Gaussian per-
turbation in temperature, decaying from about 0.5 K at
the surface to the abyssal ocean with a vertical e-folding
scale of 500 m.

Both models show a westward propagation of the
perturbation in the baroclinic structure. Figure 2 dis-
plays this behavior along a latitude centered in the mid-
dle of the basin. The initially positive E1 anomaly splits
up into two signals with opposite sign. The positive
anomaly moves westward with the speed of the first
baroclinic (long) Rossby wave in the model setup, while
the negative anomaly propagates with the phase speed
of the second baroclinic mode (the mode speeds are
indicated by the dashed lines in Fig. 2). A very similar
signal shows up in E3 in both MOM and the two-mode
BARBI (not shown). Figure 2c shows the result of the
experiment with the one-mode BARBI model. The first
mode Rossby wave speed is very similar to MOM and
the two-mode model, but in the one-mode BARBI mod-
el the negative anomaly in E1 with propagation speed
of the second baroclinic Rossby wave is absent.

In addition to the Rossby waves, MOM and BARBI
exhibit boundary wavelike structures (pseudo-Kelvin
wave: see Davey et al. 1983; Hsieh et al. 1983; Kill-
worth 1985). They show up first at the eastern boundary,
where the easternmost part of the initial Gaussian anom-
aly is detached from the interior anomaly and begins to
propagate northward. An early stage (after 30 days of
the integration) of this propagation can be seen in Fig.
1. The speed of the propagation of the viscous waves,
very similar in both MOM and BARBI, is in between
the (slow) first baroclinic Rossby wave speed and the
(fast) first-mode baroclinic Kelvin wave speed. Figure
3 shows these boundaries waves traveling along the
northern boundary in the first year of the experiment.
Again a separation of the signal into faster traveling
positive amplitudes (first mode) and slower negative
amplitudes (second mode) can be seen.

In summary, DISTURB shows that a low-order (one
or two baroclinic modes) BARBI model is able to sim-
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FIG. 3. The first density moment (E1) along the northern boundary (a) in MOM and (b) in BARBI. Contour interval is 20 m2 s22.

ulate the important aspects of (geostrophic) wave prop-
agation in a flat-bottom ocean, which are present in the
much more complicated primitive equation model, con-
firming the aim of our truncation procedure.

b. Experiment EQUAT

Experiment EQUAT treats the spinup of the baro-
clinic circulation in an equatorial basin, and mimics the
oceanic dynamics in the onset of an ENSO event in the
tropical Pacific. The parameters for both models are the
same as in DISTURB, except that we choose here N 5
1.5 3 1023 s21 and a horizontal resolution of 28. The
basin extent is 1008 in longitudinal direction from 148S
to 148N on an equatorial b plane. In addition, we apply
open boundary conditions (Stevens 1990) for the baro-
clinic and barotropic modes in MOM and BARBI at the
northern and southern boundaries to allow (Kelvin)
waves to propagate out of the domain (otherwise they
would travel rapidly along the boundaries and affect the
equatorial region again). Starting from a state of rest,
the models are forced with a westerly wind stress to the
west of 608W with an amplitude of 0.06 N m22. East
of 608W the wind stress is zero.

For BARBI we choose a truncation at order 7 with
the closure E7/h6 5 0.026 174E1 2 0.379 621E3/h2 1
1.207 826E5/h4, such that three baroclinic modes are
present. We show the results in the basis of the eigen-
vectors en of M(g j), as described in section 4. Note that
the scalar product en · (E1, E3/h2, E5/h4) is equivalent
to the amplitude of the nth baroclinic mode, whereas
En contains a mixture of amplitudes of all modes (as in
the above example, Figs. 2 and 3). Figure 4 shows the
baroclinic-mode amplitudes for both models along the
equator during the first few months of the experiments.
There is clearly an eastward-propagating equatorial
Kelvin wave present in all modes and both models.
While the first baroclinic Kelvin wave travels in about
1.5 months across the basin, the second-mode wave
needs about 3.5 and the third about 6 months. The am-

plitude of the first baroclinic mode is the largest, while
the amplitude of the third mode is the smallest (note
the different contour intervals in the figure). Wave
speeds and amplitudes are almost identical in both mod-
els.

As already indicated in Fig. 4, the equatorial Kelvin
waves are reflected at the eastern boundary as equatorial
Rossby waves, propagating westward again and Kelvin
waves, propagating north- and southward. As a con-
sequence of our choice of N, the largest amplitudes of
the Rossby wave show up symmetrically at about 88–
108 north and south of the equator. Again wave speeds
and amplitudes agree well between BARBI and MOM.
According to Fig. 4, the first (second, third) mode Ross-
by wave reaches again the forcing region after about 6
months (1 year, 7.5 years) after eastern reflection. In
summary, EQUAT confirms that with respect to im-
portant aspects of wave propagation, BARBI and the
truncation procedure performs equally well in equatorial
regions as in midlatitudes.

c. Experiment RIDGE

RIDGE is the same model configuration as DIS-
TURB, with the difference that both models are now
forced with wind stress and topography is present in
form of a ridge. A cosine-shaped, zonal wind stress
(with maximal amplitude of 0.6 3 1024 m2 s22) yields
the classical double-gyre solution in the flat bottom case
(not shown) with a western boundary transport of about
14 Sv (Sv [ 106 m3 s21). The topography, shown in
Fig. 5, is a shallow north–south ridge in the middle of
the basin.

Figures 6a and 6b show the initial response of the
barotropic streamfunction c to the forcing in experiment
RIDGE for MOM and BARBI. Obviously, a signature
of the topography is present at the early stages. Since
the bottom (JEBAR) torques are initially very small (not
shown), the topographic Sverdrup solution is established
(see, e.g., Schulman and Niiler 1970): any flow across



2728 VOLUME 33J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 4. (left) Equatorial Kelvin waves in (a), (c), (e) MOM and (b), (d), (f ) BARBI. Shown is a section at the equator (excluding the
region in the western part of the basin in which the wind stress forcing is applied) of the (a), (b) first, (c), (d) second, and (e), (f ) third
baroclinic modes for the first few months of the experiments. (right) Equatorial Rossby waves in (a), (c), (e) MOM and (b), (d), (f ) BARBI.
Shown is a section at 88N with the same splitting. Contour interval is 1 m2 s22 for the first mode, 0.5 m2 s22 for the second mode, and 0.2
m2 s22 for the third mode.

FIG. 5. The topography used for BARBI and the primitive equa-
tion model in experiment RIDGE. It is constant in the latitudinal
direction.

the geostrophic contours f /h must be forced by the
depth-modified wind stress curl = ·tS/h or by friction.
Note that without coupling of the barotropic and the
baroclinic modes [i.e., by neglecting =E1 · =h in the
vorticity balance Eq. (2)], there would be no further
change in the barotropic mode in both models after
about 1 week (approximately the passage time of the
barotropic Rossby waves).

However, as a consequence of the increasing impor-
tance of the bottom torques in the vorticity balance, the
streamfunction approaches the flat-bottom Sverdrup so-
lution in the subsequent integration of both MOM and
BARBI. Figures 6c and 6d show the streamfunction
after 12 months, when this process is nearly completed
in both models. Both solutions are similar to each other
and almost the same as the flat-bottom solution (not
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FIG. 6. Streamfunction (contour interval 1 Sv) in experiment RIDGE in (a), (b) BARBI and (c), (d) MOM averaged over the (a), (c) first
months of the integration and the (b), (d) 12th month.

shown). There is also good agreement between MOM
and BARBI in the two density moments and in the
baroclinic velocity moments. Figure 7 exemplifies the
baroclinic velocity structure for MOM and BARBI after
4 years of integration. Shown are the vertical mean hor-
izontal velocities in an upper layer of 2000-m depth and
a deep layer reaching from 2000 m to the bottom. For
BARBI we have projected the vertical structure of the
vertical shear u9 on a linear profile f 2 5 z 1 h/2 (see
appendix A). At the early stages of the integration, the
flow below 2000 m is comparable in magnitude with
the upper layer flow (not shown). When the baroclinic
adjustment is completed, as shown in Fig. 7, the flow
in the lower layer becomes much weaker than in the
upper layer. The upper-layer flow gets more and more
shielded from the topography and the streamfunctions
resembles the flat bottom Sverdrup solution.

The ridge experiment follows the scenario of the
‘‘Sverdrup catastrophy,’’ as outlined in the work of An-
derson and Gill (1975) for a vertically continuous model
with flat bottom and Anderson and Killworth (1977) for
a two-layer system with topography present. In the ver-
tically integrated framework used in BARBI, the catas-

trophy utters itself in a partial compensation between
the Jacobian c · =( f /h) and the baroclinic bottom=
torque. Evaluating the steady state transport from fk 3
U 5 2h=P 2 =E1 1 tS 1 R (where R denotes the
lateral friction term), the Jacobian becomes

f b ]c f
=c · = 5 2 U · =h

2h h ]x h

b ]c 1 1
5 2 =P · =h 2 =E · =h12h ]x h h

1
2 (t 1 R) · =h. (12)S2h

The wave response of the Sverdrup catastrophy cancels
out the deep pressure gradient, (=p) | 2h 5 =P 2
gr(2h)=h 5 0, and thus =P\=h, which switches off
the Jacobian of P and h in Eq. (12). The compensation
of the bottom pressure gradient and the corresponding
cancellation of the bottom pressure torque P · =h can=
be traced back to the suggestions by Neumann (1955)
and Welander (1959). Notice that this does lead to the
cancellation of the JEBAR torque E1 · =h. The rela-=
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FIG. 7. (a), (c) Upper- and (b), (d) lower-layer velocity in experiment RIDGE in (a), (b) BARBI and (c), (d) MOM at the end of the
fourth year of the integrations. The upper-layer depth is chosen as 2000 m. Also see appendix A for definitions of layer velocities in
BARBI.

tion Eq. (12) then implies that the baroclinic bottom
torque cancels in the vorticity equation Eq. (2), the forc-
ing turns to ( · tS)/h, and the f /h characteristics are=
replaced by f characteristics: that is, the vorticity bal-
ance is that of flat-bottom conditions except for the fric-
tional terms.

d. Experiment ATLACC

The experiment ATLACC is a test of the performance
of BARBI in a more realistic application. The domain
is the entire Atlantic and the region around Antarctica.
The North Pole of the model grid is rotated to a point
at the equator in the Pacific. The horizontal resolution
is 28 and BARBI uses truncation at order 3, with E3 5
0.3921h2E1. The horizontal viscosity is 2 3 104 m2 s21,
other parameters are the same as in DISTURB. The
model is forced with interpolated annual mean wind
stress data from an European Centre for Medium-Range
Weather Forecasts (ECMWF) analysis (Barnier et al.

1995) (note that we omit surface density forcing for the
moment). The topography was interpolated from the
ETOPO5 (National Geophysical Data Center 1988) da-
taset onto the model grid and smoothed with a two-
dimensional symmetric filter. Figure 8 shows the to-
pography and wind stress used in ATLACC.

We present results of BARBI from three different
experiments using the ATLACC setup: an experiment
without background stratification (N0 [ 0, notice that
without thermohaline forcing the density moments be-
come zero, thus a case without background stratification
is strictly barotropic) but with topography, an experi-
ment with a flat bottom (h 5 5500 m), and an experiment
with the interpolated topography and background strat-
ification (N0 5 2.6 3 1023 s21). This suite of three
experiments follows the, by now classical, simulations
with the early GFDL (MOM) model, described by Bryan
and Cox (1972) and Cox (1972). Similar experiments
are found in Han (1984a,b) and Cai and Baines (1996)
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FIG. 8. (a) Topography and wind stress in experiment ATLACC. (b) The f /h contours in experiment ATLACC.

for the global ocean, and in Olbers and Wübber (1991)
for a circumpolar domain.

Here, we want to briefly summarize the most impor-
tant results of these studies concerning the Antarctic
Circumpolar Current (ACC) since we did not repeat
similar experiments with MOM ourselves. The transport
of the ACC varies in the three experiment enormously.
The homogeneous ocean with topography has very low
ACC transport [22 Sv in Cox (1972)] since the geo-
strophic contours are blocked by the sill in Drake Pas-
sage, except for some contours on the shallow conti-
nental shelves (see Fig. 8). The transport along blocked
contours is small: the sink for the momentum input by
wind is form drag involving the pressure differences
between the continents. In contrast, the flat-bottom, ho-
mogeneous ocean has several hundreds of Sverdrups
(more than 600 Sv in Bryan and Cox 1972, reflecting
‘‘Hidaka’s dilemma’’ Wolff et al. 1991). Here, friction
is the only momentum sink, with the effect that either
unrealistically large transports are obtained or unreal-
istically large eddy viscosities have to be considered
(the flat-bottom transport is proportional to tS/Ah). The
third experiment, now considering baroclinic conditions
in a topographic ocean, generally gets a realistic trans-
port for the ACC [187 Sv in Cox (1972)]. The impor-
tance of blocked geostrophic contours for the strength
of the ACC and the relief from this constraint in a baro-
clinic ocean were recently investigated by Borowski et
al. (2002).

Figure 9 and 10 show the streamfunctions for the
three BARBI experiments; for the baroclinic case, the
density moment E1 is shown as well. Before discussing
the ACC, we just note in passing that the model behavior

in the North Atlantic of the three configurations reveals
the regimes discussed in the experiments RIDGE, that
is, the shift from the topographic Sverdrup regime to
the flat-bottom one, if baroclinicity is included. How-
ever, while the subtropical gyre with maximal transports
of about 30 Sv for the baroclinic case with topography
is within rough bounds of observational estimates, the
subpolar North Atlantic shows only a weak cyclonic
circulation present in all three experiments, at a maxi-
mum of 5 Sv in the flat-bottom case. This is in contrast
to observational estimates that give higher values of
about 30–50 Sv, pointing toward the importance of ther-
mohaline forcing for the strength of the North Atlantic
subpolar gyre (Böning et al. 1996; Greatbatch et al.
1991), which we have excluded in our experiments.

For the ACC transport, the cases without stratification
yield 35 and 700 Sv with and without topography, re-
spectively. Both circulations are quite unrealistic as dis-
cussed above. In the homogeneous topographic case the
flow roughly follows f /h contours, shown in Fig. 8b.
Most f /h contours are blocked and the flow passes
Drake Passage in a narrow boundary layer near the
South American shelf. There are a few domains around
Antarctica with closed f /h contours, leading to closed
gyres, most prominently seen in the South Atlantic sec-
tor.

As expected, the ACC gets extremely vigorous in the
flat-bottom case. The complete spinup in this experiment
takes several decades, in contrast to applications in
closed basins with flat bottom in which the spinup is
completed after a couple of months at most. It is clear
that the wave adjustment of the Sverdrup circulation
(Anderson and Gill 1975) does not apply here since the



2732 VOLUME 33J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 9. (a) Streamfunction in experiment ATLACC with N 2 5 0 after 40 days of integration. (b) Same but here using a flat bottom instead
of the realistic topography and after 1 yr of integration. Contour intervals are 10 Sv for values lower than 25 Sv, 5 Sv between 25 and
25 Sv, 10 Sv between 25 and 200 Sv, and 100 Sv for values greater than 200 Sv.

ACC system is supercritical (the eastward current over-
takes the westward wave propagation).

With topography and stratification implemented, the
flow around Antarctica becomes reasonable, with an
ACC transport of about 130 Sv through Drake Passage
[the good agreement with the observed value of 134 6
13 Sv should be viewed critically; for a recent review
on the ACC see Rintoul et al. (2001)]. After passing
Drake Passage, the ACC flows northward along the east
coast of South America and detaches at about 408S in
a confluence with the Brazil Current. All basin gyres
get a more realistic structure. The closed f /h gyres
around Antarctica have disappeared; now there are in-
dications of subpolar gyres, for example, a closed cir-
culation in the Weddell Sea with a strength of about 20
Sv.

In conclusion, the experiments in this more realistic
setup confirm that a low-order BARBI model produces
the important aspects of the wind-driven large-scale
baroclinic circulation over topography.

6. Concluding discussion

a. Summary

We have described the physical ingredients and per-
formance of a new type of ocean general circulation

model with simplified physics, which we call BARBI.
Motivation for the new approach comes from the ap-
pearance of the first vertical density moment (or verti-
cally integrated potential energy) in the JEBAR torque
of the vorticity balance of the barotropic transport. JE-
BAR is the predominant coupling of the large-scale,
barotropic circulation to the baroclinic modes in the
vorticity balance and resembles, together with the wind
stress curl, the forcing of the barotropic flow.

Using the first density moment in JEBAR as a guide-
line, we have projected the primitive equations on ver-
tical powers of depth. As a consequence of the projec-
tion, all variables in BARBI become two-dimensional
since the vertical coordinate was transformed into the
order of the vertical moments of the baroclinic variables.
Projection of the thermohaline balance yields prognostic
equations for vertical density moments En, such that we
are able to calculate the complete budget of barotropic
vorticity and thus the barotropic transport. One impor-
tant effect on En, lifting of the background stratification
by the baroclinic flow, leads, in a natural way, to the
definition of ‘‘baroclinic velocity moments,’’ which are
thus added to the coupled hierarchy of baroclinic var-
iables in BARBI to close the model.

We have derived linear solutions of the model equa-
tions and show that the entire spectrum of oceanic waves
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FIG. 10. (a) Streamfunction in experiment ATLACC with N 2 5 2.6 3 1023 s21 and realistic topography after 40 days of integration.
Contour intervals are 10 Sv for values lower than 25 Sv, 5 Sv between 25 and 25 Sv, and 10 Sv for values greater than 25 Sv. (b) The
first density moment E1 with a contour interval of 1000 m2 s22 in the same experiment.

exists in BARBI. A practical truncation procedure is
suggested, cutting off the density hierarchy at a certain
number of moments and preserving the flat bottom and
topographically modified wave spectrum exactly (for the
resolved modes). We have demonstrated the ability of
the truncated BARBI model to simulate some funda-
mental problems of wave variability and wind-driven,
baroclinic circulation over topography in the ocean. In
fact, in these experiments BARBI, consisting of only a
few two-dimensional equations, compares very well
with a full primitive equation level model with high
vertical resolution.

Last, we want to note that BARBI is open for testing
(the source code could be downloaded online at http://
www.ifm.uni-kiel.de/fb/fb1/tm/data/pers/ceden/BARBI/
BARBI.html) with the restrictions on the physics re-
ported below.

b. Discussion

In our view, the most important advantage of this
new model concept, as compared with other models with
simplified physics, is that the fundamental role of the
effect of topography and baroclinicity in generating
large-scale ocean transports is correctly represented in
the model equations without any truncation. So far, the

correct representation of topography in simple ocean
models has not received much attention, but is, however,
an important factor controlling the barotropic and baro-
clinic flow. Therefore, we believe that BARBI is likely
to contribute to a better understanding of the large-scale
ocean dynamics, both by analytical considerations and
results from numerical integrations.

Another advantage in comparison with, for example,
a quasigeostrophic model or a reduced-gravity model,
is that it is in principle possible to include the effect of
surface buoyancy forcing. We have not explored this
feature in the present manuscript since smallness of the
perturbation density was assumed, which will not be the
case for strong thermohaline forcing (but, however, is
valid for the wave and wind-driven cases in the present
study). Building a simplified, two-dimensional model
for the wind and thermohaline-driven, large-scale flow
will be the aim of a companion study in preparation.

A drawback of the truncated BARBI model is that it
is not possible to derive exact and closed forms (in terms
of the modeled En and ) of the effects by the baro-U9n11

clinic advection of perturbation density and, for non-
constant N, by the baroclinic lifting of the background
stratification. The treatment of these effects on the re-
solved En in a truncated BARBI model involves vertical
moments of higher order as the order of truncation. On
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the other hand, it is straightforward to use the param-
eterization of the higher order truncated En, as used in
the truncation procedure, to evaluate both effects, as
outlined in section 4. Note that utilizing an expansion
of the vertical coordinate in the basis of modified Le-
gendre polynomials, it is in principle possible to relax
almost all the remaining assumptions that we make in
the present study concerning dissipative and diabatic
terms and neglection of momentum advection.

We want to stress that this is the only point in which
BARBI comes close to a normal spectral model, to the
respect that the order of truncation affects nonlinear
terms in the lower-order model equations. However, in
BARBI, the truncation procedure offers an efficient and
elegant way to parameterize such effects, instead of sim-
ply neglecting them, as is normally done in spectral
models. Furthermore and in contrast to spectral models
(and, e.g., layered ocean models), our choice of the
structure functions is motivated for physical reasons,
based on the underlying primitive equations itself by
the appearance of the vertically integrated potential en-
ergy in the bottom torque of the barotropic vorticity,
resembling the fundamental agent for interaction of the
large-scale, barotropic, and baroclinic flow. Describing
this interaction is, in turn, the major task for BARBI.
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APPENDIX A

Evaluation of S0n

An exact integration of down to BARBI’s baro-S0n
clinic state variables (the density and velocity moments)
is not possible. However, we can assume an approxi-
mative representation of the vertical structure of either
the baroclinic velocity or the density perturbation. For
the purpose of demonstration we proceed by repre-
senting u9 in terms of polynomials f j(z, h) of the vertical
coordinate z,

J

u9(x, z, t) 5 v (x, t) f (z, h). (A1)O j j
j51

It is reasonable to assume that the f j have zero integral
(i.e., they should be orthonormal—this makes them de-
pendent on h) so that each single term in Eq. (A1) in-
tegrates to zero. The coefficient vectors vj can be ex-
pressed as a linear combination of the baroclinic ve-
locity variables by inversion of 5 Sj akj vj where theu9k
matrix akj 5 # zk f j dz is generated by projection of Eq.
(A1) onto powers of z. The vertical baroclinic velocity
then becomes

zJ

w9 5 2= · v (x, t) f (z, h) dzO j E j
j51 2h

J

5 2 = · v (x, t)g (z, h), (A2)O j j
j51

where gj(z, h) is the integral of f j appearing in the first
expression above. Inserting these expressions into Eq.
(5) one finds

0

nS0 5 2g = · v rz f (z, h) dzOn j E j5 [ ]j 2h

0

n211 n rz = · v g (z, h) dz . (A3)E j j 6
2h

It becomes obvious that the vertical integration gener-
ates a series of density moments Ek of order k $ n.
Thus, is entirely determined as a functional of BAR-S0n
BI’s state variables Ek and .u9j

The choice of the f j is crucial as to which moments
will appear (modified Legendre polynomials of depth
are a reasonable choice). In particular, if odd powers of
z are in the f j, then even moments of density will emerge
in the source terms with odd index. However, inS0n
general, odd and even moments will be involved, similar
to the consequence of a nonconstant N 2 (density mo-
ments of higher index as n 1 2 will be involved as
well). Obviously, the parameterization of higher order
moments, being not part of the truncated model, should
follow the procedure presented in section 4 for the case
of a nonconstant N 2.

APPENDIX B

Frictional and Diabatic Closures

In this section, we consider the frictional sources in
the barotropic and baroclinic momentum budgets Eq.
(1) and Eq. (6) and the diabatic sources in the tendency
equation (4) for En. We start with the frictional forces
in the barotropic momentum balance and stick to the
usual parameterization for the divergence of Ju,

](J ) ] ]uu i j ih5 A ,1 2]x ]x ]xj j j

where Ah denotes a horizontal viscosity and xj, j 5 1,
2 shorthand for x, y (similar for uj). The barotropic
frictional force is then

0 ] ]u
hF 5 t 2 t(2h) 1 A dzS E 1 2]x ]xj j2h

0]u ]h ] ]u
h h5 t 2 t(2h) 1 A 1 A dz.S E1 2]x ]x ]x ]xj j j j2h2h

Notice that the bottom stress t (2h) is not the only agent
transferring barotropic momentum into the bottom.
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When the bottom is inclined, there is a nondivergent
contribution from =h · Ju(2h). However, we want to
keep our parameterization simple and set the transfer of
momentum into the bottom altogether to zero; that is,
2t (2h) 1 Ah(]u/]xj)2h ]h/]xj 5 0 (free slip at the
bottom). Moreover, we are using a constant lateral vis-
cosity Ah. The remaining barotropic frictional force is
then

] ]U/h ]h
hF 5 t 1 A h 1 u9(2h) .S [ ]]x ]x ]xj j j

With the above frictional parameterization there is cou-
pling of the barotropic and the baroclinic motion. We
tend to regard the effect of frictionally induced coupling
as minor. In addition, this form of frictional coupling
could be viewed as a result of our simple (but standard)
parameterization of frictional fluxes. Therefore, we skip
the term u9(2h) ]h/]xj, and the full barotropic momen-
tum equation now reads

]U ] ]U/h
h1 f k 3 U 5 2h=P 2 =E 1 t 1 A h .1 S]t ]x ]xj j

Note that there is no transfer of barotropic momentum
into the bottom by frictional forces in this parameteri-
zation.

Next we specify the frictional forces in the baroclinic
momentum balance. Using again the above standard pa-
rameterization of frictional fluxes with constant lateral
(Ah) and vertical (Ay ) viscosity gives

0 21 ] u9
h 2 yF9 5 1 2 dz A ¹ u9 1 A .E 21 21 2h ]z

2h

To be consistent we are using a free-slip condition at
the bottom as for the barotropic momentum; that is,
Ay]u9/]z 5 tS at the sea surface and Ay]u9/]z 1 Ah(=h
· =)u9 5 0 at the bottom. Multiplying the frictional force
in the baroclinic momentum balance with zn and inte-
gration over depth yields

0 n11h
n n h 2z F9 dz 5 (21) t 1 A ¹ u9E S n11n 1 2

2h

y n n1 A (n 1 1)[nu9 1 (21) h u9(2h)]n21

h1 A f9 .n11

Note that the stress condition at the surface introduces
the wind stress tS. Many terms in this projection cancel
out by the free-slip boundary condition at the bottom,
but terms involving u9(2h)¹2h and (=h · =)u9(2h) re-
main and are combined in . They are of order off9n11

the bottom slope times the magnitude of the friction
terms retained. As a first step we ignore entirelyf9n11

(because it is small) but also cancel the u9(2h) term
and write the baroclinic momentum balance as

]u9n11 1 f k 3 u9n11]t

1
n n115 2 [(21) h =E 1 =E ]1 n12n 1 2

n n11(21) h
y h 21 A n(n 1 1)u9 1 t 1 A ¹ u9 .n21 S n11n 1 2

With this frictional closure each moment is deter-u9n11

mined from a finite number of equations involving only
lower u9 moments.

Last, we need a closure for the diabatic sources Dn

and Qn in the tendency equation for En. With the usual
diffusive parameterizationB1 of the turbulent density
transport Jr 5 2Kh=r, the Dn term is evaluated as

0

n hD 5 g= · z K =r dzn E
2h

h n11 n5 K = · [=E 1 (21) gh r(2h)=h]. (B1)n

This form points out that the density moments do not
diffuse downgradient. As a first step, however, we ig-
nore corrections involving =h and replace Dn simply by

h 2D 5 K ¹ E .n n (B2)

The vertical turbulent flux Br has a diffusive and con-
vective property, and thus it should be a destruction of
stratification and thus of total potential energy. On the
other hand, Br also incorporates the flux of buoyancy
from the surface, which could be a source or sink of
potential energy. Parameterizations of these processes
and appropriate forms of the Qn will be worked out in
a companion part of the article. In the wave and wind-
driven experiments discussed in this study we have Qn

5 0.

APPENDIX C

Flat-Bottom and Topographic Waves in the
Infinite Hierarchy

BARBI has the correct phase speeds for all baroclinic
modes in the limit of infinite number of density mo-
ments, both for gravity and Rossby waves. To prove
this, consider the eigenvalue problem Eq. (11), which
in untruncated form is an infinite recurrence relation,

1
(e 2 e ) 5 ze2l11 1 2l212l(2l 1 1)

with eigenvalue z, which, for instance, for Rossby waves

B1 Note that, assuming that (unresolved) eddies mix preferable
along isopycnals, this flux would go to zero for a linear equation of
state. However, we keep this contribution, since we are aware that
our numerical implementation of BARBI will need some kind of
lateral diffusion of En. We suppress as well any attempt to include
advective effects of eddy activity (bolus transport).
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is z 5 v/(bk1 h2/ f 2) (see section 4). It can be solved2N 0

exactly by repeated substitution, which yields

l211 z z
le 1 1 · · · 1 1 z1 [ ](2l 1 1)! (2l 2 1)! 3!

e2l115 or
(2l 1 1)!

1 1 1
e 1 1 1 1 · · · 11 2 l[ ]3!z 5!z (2l 1 1)!z

e2l115 .
l(2l 1 1)!z

In the limit l → ` the terms in the bracket tend to
sin(1/ ) and, since the el must remain finite,Ï2z Ï2z

we arrive at the familiar sinusoidal constraint sin1/
5 0, and thus the eigenvalues zn 5 21/(np)2, nÏ2z

5 1, 2, . . . of the baroclinic modes for constant N are
gained.

When topography is present, the wave properties get
considerably more complicated because the barotropic
and baroclinic variables get coupled. Here, we give a
brief summary of what we found concerning the influ-
ence of topography on waves in BARBI. However, we
restrict ourselves to the geostrophic wave branch. BAR-
BI wave properties with consideration of topography
follow then from

] f 1
2¹ c 1 h=c · = 1 =G · =h 5 01]t h h

2] bl ]
G 1 (G 2 G )2l21 2l11 1]t 2l(2l 1 1) ]x

2f l
2 (=G · =h 2 f =c · =h) 5 0,1h(2l 1 1)

where l 5 N0h/ | f | is the bulk baroclinic Rossby radius
and Gn 5 En/hn21. A wave solution with amplitudes en

and C, assuming constant a 5 =h and b 5 =( f /h) and
constant h and f where not differentiated, yields the
eigenvalue problem

aB2(v 2 v ) f C 2 e 5 0R 12p

vC2ve 2 (e 2 e )2l21 2l11 12l(2l 1 1)
2a lB1 (e 2 f C) 5 012l 1 1

with the abbreviations (using the shorthand k 3 a 5
k2a1 2 k1a2) vR 5 hk 3 b/p2, the frequency of a
barotropic topographic-planetary wave, vC 5 2bl2k1,
the scale of flat-bottom baroclinic planetary waves and
aB 5 2 f /h k 3 a. Notice that aB/k2 is the frequency
of a topographic wave on an f plane. The hierarchy may
be cast into a recurrence relation for the en, which yields

by iteration, in the limit l → `, the following dispersion
relation

2 2( |k |l) 2 m
tanm 5 2mh (C1)

2 2(1 2 h)(|k |l) 2 m

with v 5 vC/m2 and h 5 l2aB/vC 5 ( f /h)(k2a1/k1 2
a2)/b. The flat-bottom case is recovered for a 5 0 or
h 5 0.

In the long-wave limit (we have filtered short Rossby
waves), Eq. (C1) is consistent with what is known about
topographic waves in a stratified ocean (Rhines 1977;
Killworth and Blundell 2003). For ( | k | l)2 K 1 we get
the condition tan m 5 2mh, the slow baroclinic waves
in Rhines’ terminology. The smallest solution from Eq.
(C1) yields m2 5 ( | k | l)2/(1 1 h), the fast barotropic
wave with dispersion relation v 5 vR. The bottom-
trapped (fast baroclinic) mode is contained in BARBI
as well [take m2 5 2m2 with m . 0 in Eq. (C1)]. Note
that the topographic waves are considered here for gen-
eral a, in contrast to Rhines (1977) (where a1 5 0 is
assumed).
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