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One sentence summary: Different sterilization techniques (autoclaving, gamma-sterilization and addition of NaN3) of natural sediment samples are
compared and are shown to perform quite distinctly in decreasing microbial activities and eliminating signatures of microbial life.
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ABSTRACT

To distinguish between biotic and abiotic processes in laboratory experiments with environmental samples, an effective
sterilization method is required that prevents biological activity but does not change physico-geochemical properties of
samples. We compared standard sterilization methods with respect to their impact on microbial abundance and activity.
We exposed marine sediment to (i) autoclaving, (ii) gamma-radiation or (iii) sodium azide (NaN3) and determined how
nucleic acids, microbial productivity, colony forming units (CFUs) and community composition of microorganisms, fungi,
unicellular protists and protozoa were affected. In autoclaved and gamma-sterilized sediments, only few colonies formed
within 16 days. After addition of NaN3 to the sediment, numerous CFUs (>50) but lower 3H-leucine incorporation rates, i.e.
lower protein biosynthesis rates, were found compared to the other two sterilization techniques. Extractable RNA was
detected immediately after all sterilization treatments (0.2–17.9 ng/g dry sediment) but decreased substantially by 84%–98%
after 16 days of incubation. The total organic carbon content increased from 18 mg L−1 to 220 mg L−1 (autoclaving) and 150
mg L−1 (gamma-radiation) after sterilization. We compare advantages and disadvantages for each tested sterilization
method and provide a helpful decision-making resource for choosing the appropriate sterilization technique for
environmental studies, particularly for marine sediments.
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INTRODUCTION

Biogeochemical cycles, such as the sulfur, nitrogen, carbon
and iron cycles, are mediated by abiotic and biotic reac-
tions. In order to quantify the biotic contribution to substrate
turnover in experiments with environmental samples, effec-
tive abiotic control setups are required (i.e. sterilized samples).
Although sterilization is defined as a process that effectively
kills, removes, eliminates or inactivates microbial life (Cole-
man and MacFadyen 1966; Degrange, Lensi and Bardin 1997;
McNamara et al. 2003; da Silva Aquino 2012), resilient DNA
and RNA and microbial activity often remain and persist in
treated natural soil and sediment samples (e.g. Berns et al.
(2008)). Sterilization of an environmental sample should not
only inactivate microorganisms (examples of different bacte-
rial inactivation states are reviewed in Cangelosi et al. 2014),
it should ideally also have minor effects on the physico-
geochemical properties of the sample material (Lotrario et al.
1995; McNamara et al. 2003; Herbert et al. 2005).

Commonly used physical sterilization methods comprise the
exposure of samples to wet heat, dry heat, gamma-radiation,
filtration, pasteurization and UV radiation (Liegel 1986; Trevors
1996; McNamara et al. 2003; Berns et al. 2008). Chemical steril-
izing agents include methyl bromide, formaldehyde, mercuric
chloride, ethylene oxide and sodium azide (Russell 1990; Trevors
1996).

Thermal sterilization (autoclaving) has been widely used in
microbial ecology (Wolf and Skipper 1994; Berns et al. 2008).
However, a number of microorganisms are known to survive
autoclaving, including spore-forming bacteria (e.g. Bacillus sp.
and Clostridium sp.) (Te Giffel et al. 2002; Setlow 2006; Sahlström
et al. 2008). It has been demonstrated that multiple autoclaving
cycles increase the effectiveness of the inactivation of micro-
bial activity (Wolf et al. 1989; Tuominen, Kairesalo and Har-
tikainen 1994; Lotrario et al. 1995) and that it results in the
fragmentation of DNA (Chiter, Forbes and Blair 2000; Berns
et al. 2008). Still, it is unknown to what extent RNA and DNA
is degraded in such samples. In addition, disadvantages of
thermal sterilization are that it leads to changes of mineral
phases and affects the geochemistry (e.g. by sulfide release
and in particular by carbon mobilization) of soil and sedi-
ment samples (Ramsay and Bawden 1983; Lotrario et al. 1995).
Specifically, autoclaving causes (i) an increase in Mn(II) concen-
tration (Tuominen, Kairesalo and Hartikainen 1994), (ii) heat-
induced crystallization of Fe (oxyhydr)oxide minerals (Radloff
et al. 2008), (iii) a decrease of soil and sediment surface
area, (iv) damage of soil structure, (v) release of nutrients and
substrates (e.g. sulfide) and (vi) an increase in organic carbon
concentrations (Wolf et al. 1989; Lotrario et al. 1995; Trevors 1996;
Radloff et al. 2008; Trotsenko and Murrell 2008; Quéméneur et al.
2016).

Sterilization of soil and sediment samples by gamma-
radiation has been used for over 60 years (Ramsay and Baw-
den 1983; Stroetmann, Kämpfer and Dott 1994; McNamara et al.
2003; Herbert et al. 2005; Manning et al. 2006). McNamara et al.
(2003) stated that only 10 kGy is required to eliminate Acti-
nomycetes and fungi in most soils. However, the majority of
soil bacteria are eliminated by a dose of at least 50 kGy, and
70 kGy is required to kill more resistant bacteria such as Bre-
vibacterium sp. and Micrococcus radiodurans (McNamara et al.
2003). Regarding the ionizing radiation effects, it is known
that only 20% of the cell damage is caused by direct shots of
gamma-quantum while the remaining 80% of cell damage is

caused by free radicals produced in the cells and surround-
ing water under gamma-radiation exposure (Halliwell and Gut-
teridge 2015; Cheptsov et al. 2017). Low doses of 0.25 to 5 kGy
increase the amount of RNA (Moussa et al. 2005; Kam et al.
2013) due to stimulation of mitochondrial RNA expression (Kam
et al. 2013). However, doses higher than 5 kGy were shown to
decrease the RNA content and almost completely destroy ATP,
RNA and DNA (Novitsky 1986). With respect to the geochemi-
cal and mineralogical integrity of the samples, gamma-radiation
has disadvantages because it enhances (i) the release of
nitrate and ammonium (Lensi et al. 1991; Buchan et al. 2012;
Brown et al. 2014), (ii) the release of Mn(II) in soil samples (Wolf
et al. 1989), (iii) the transformation of ferrihydrite to hematite
(Herbert et al. 2005; Brown et al. 2014), (iv) Fe(III) reduction (Bank
et al. 2008; Brown et al. 2015), (v) damage of biomolecules, such
as nucleic acids, proteins and lipids by reactive oxygen species
at doses higher than 25 kGy (Marschner and Bredow 2002; Brown
et al. 2014) and (vi) formation of free hydrogen and hydroxyl rad-
icals (Jackson et al. 1967; Desrosiers 1996).

Chemical sterilization, such as the addition of antibiotics,
respiratory inhibitors (e.g. sodium azide; NaN3) or toxic chem-
icals (e.g. methyl bromide, formaldehyde) target specific physio-
logical processes. NaN3 does not kill microbial life, but rather
inhibits microbial growth and substrate turnover in soil and
sediment samples. Sodium azide inhibits activities of peroxi-
dases, catalases and a few more enzymes that possess heme
as prosthetic group. As NaN3 inhibits the cytochrome c oxi-
dase of the respiratory chain, fermenting bacteria are still able
to metabolize and even grow in the presence of NaN3 (Wolf
et al. 1989; Trevors 1996; Dowdle and Oremland 1998; Radloff
et al. 2008). It has been reported that NaN3 inactivates soils
and sediments more effectively than antibiotics (Wolf et al.
1989; Dowdle and Oremland 1998), but some disadvantages
are that NaN3 reduces nitrate and nitrite abiotically and trig-
gers changes in pH (Trevors 1996; Marouf-Khelifa et al. 2006).
In addition, Bore et al. (2017) showed that soil microorgan-
isms can survive NaN3 sterilization. More specifically, they can
overcome the inhibition of NAD+/NADP+ regeneration. To over-
come intracellular inhibition of the electron transport chain
induced by NaN3, microorganisms can couple their intracellu-
lar respiration metabolism with extracellular redox processes by
using Fe(III), Mn(IV), quinones and humic substances function-
ing as extracellular electron acceptors (Bore et al. 2017).

In order to clearly distinguish biotic from abiotic processes
in studies with environmental samples, an optimal sterilization
method needs to be chosen. However, as explained in the pre-
vious sections, all methods carry disadvantages and it is neces-
sary to compromise depending on the samples and the research
questions to be answered. Here we present a systematic study
comparing three commonly applied sterilization methods (auto-
claving, gamma-sterilization and NaN3 addition) for labora-
tory sediment incubation experiments. We incubated sterilized
marine sediment (collected from Norsminde Fjord, Denmark) for
up to 16 days, quantified extractable nucleic acids (DNA/RNA)
as well as colony forming units (CFUs) and determined the
microbial (bacterial and archaeal), fungal, unicellular protists
and protozoan community structure, as well as the H3-leucine
incorporation activity. Finally, we evaluate the advantages and
disadvantages of autoclaving, gamma-sterilization and NaN3

addition for the application to experimental setups containing
sediments and to answer research questions in the field of
microbial ecology. Based on our data, we provide a decision-
making aid for studies with natural soils and sediments that
require effective sterilization methods.
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MATERIALS AND METHODS

Field site description and sampling procedure

Littoral marine sediments were taken in July 2016 and March
2017 from Aarhus Bay (Denmark). The upper 3 cm of the organic-
rich (TOC: 3.1%; DOC: 8 mg L−1) and muddy bulk sediment from
the shallow marine estuary Norsminde Fjord were sampled at
0.5 m water depth near its narrow entrance to Aarhus Bay (N 56◦

01.171′; E 010◦ 15.390′). Sediment was transported and stored at
4◦C until the start of the experiments. For geochemical charac-
terization of the sediments see Laufer et al. (2016).

Quantification of organic carbon content

The non-purgeable organic carbon (NPOC), which represents the
sum of all dissolved organic carbon compounds, was quantified
in the supernatant of the microcosms. For NPOC analysis, 2 ml
of suspension (water mixed with sediment) was centrifuged (10
min; 7000 g). After centrifugation, the supernatant was filtered
through a 0.45 μm filter (MF-Millipore MCE membrane, Merck
KGaA, Darmstadt, Germany) and NPOC was quantified with a
carbon analyzer (Multi NC 2100, Analytik Jena, Germany).

Sterilization of the sediment

The sediment was homogenized under ambient air. The sam-
ples for gamma-sterilization were filled into plastic bags and
sent to Synergy Health Allershausen GmbH (Germany) for a rou-
tine small amount irradiation. Samples were exposed to a cobalt
60 radiation field and radiated at 52 ± 2.6 kGy in a range as men-
tioned in McNamara et al. (2003). Sediment for autoclaving was
filled into plastic beakers, covered with aluminum foil and auto-
claved three times with 2–3 days storage in between at room
temperature. For autoclaving the autoclave Systec VE40 and the
program for solid material with the setting of 121◦C for 20 min
was used. For the chemical sterilization, a 5 M NaN3 solution
was prepared and added to 5 g sediment in 100 ml serum bot-
tles to a final concentration of 160 mM as described in Laufer
et al. (2016). The anoxic sediment was slurried to homogenize
the sample with NaN3 for a few minutes by hand.

Preparation of microcosms

The following four different microcosms were each prepared
in triplicates: (i) gamma-sterilized sediment, (ii) autoclaved
sediment, (iii) sediment amended with NaN3 and (iv) native
untreated sediment as a control. Microcosm incubations were
set up in 100 ml serum vials that were wrapped with alu-
minum foil for dark incubation at 25◦C and incubated over a
total period of 16 days. 50 ml of anoxic filtered seawater medium
were added to 5 g of homogenized sediment with a N2/CO2

(90:10) headspace. The seawater medium was prepared from
native seawater that was flushed with N2, and subsequently
filtered through a 0.22 μm filter (EMD Millipore SteritopTM).
The headspace was replaced by N2/CO2 (90:10). The pH of the
medium was adjusted to 7.1 and regularly monitored during
incubation. For NaN3-microcosm incubations, NaN3 (sterile and
anoxic) was added to the seawater medium (final concentration
of 160 mM NaN3). The microcosms were sampled four times, i.e.
immediately after preparation (t0), after 3 days (t3), after 7 days
(t7) only for NPOC and after 16 days of incubation (tend).

Colony forming units

For quantifying the CFUs, we used lysogenic broth (LB) plates
without any additives: in 500 ml of deionized, distilled water
5 g peptone, 2.5 g yeast extract, 5 g of sodium chloride and
7.5 g agarose were dissolved. 100 μl of microcosm slurry from
t0, t3 and tend were streaked out on plates for anoxic and oxic
incubation (8 plates per sterilization method per time point: 4
oxic and 4 anoxic plates). Anoxic incubation was performed in
an anoxic container (Anaerocult R©, Merck Millipore, Darmstadt,
Germany) at room temperature. All LB plates were incubated in
light at 35◦C. Colonies were quantified right after sterilization
treatments, after 3 days and after 16 days of incubation.

3H-leucine incorporation

By quantifying the rate of 3H-leucine incorporation into micro-
bial biomass, the rate of total microbial biomass production in
the sample can be estimated (Kirchman 2001). Here, we used
an expanded method suitable for sediment samples (Bååth, Pet-
tersson and Söderberg 2001; Buesing and Marxsen 2005; Demol-
ing and Bååth 2008). Microbial cells were extracted from 6 ml of
sediment slurry (sampled at t0 and tend) by shaking on a mul-
tivortex at maximum speed for 3 min. The entire sample was
subsequently filtered (0.45 μm; cells are in the filtrate). For each
microcosm sample, two technical replicates and one acid-killed
control replicate were analyzed. All replicates were incubated
with a final concentration of 2.8–3.0 nmol L−1 3H-leucine (specific
activity of 102.3 Ci mmol−1) for 1–2 h (t0: 70 min, t1: 90 min, t2: 135
min) at room temperature (Kirchman 2001; Demoling and Bååth
2008). The killed methodological control replicates were inacti-
vated with cold trichloroacetic acid (TCA; final concentration of
6.25%) before tracer addition and all other incubations were ter-
minated the same way after incubation. Subsequently, the sam-
ples were pelleted, washed with 5% w/v TCA and then with 80%
ethanol, according to Kirchmann (2001) with minor modifica-
tions. Finally, the dried pellets were resuspended in 1.5 ml Scin-
tillation Cocktail (Ultima Gold, PerkinElmer, Waltham, USA) and
analyzed immediately using a liquid scintillation counter (count
time 5 min; Packard TRI-CARB 2500TR, PerkinElmer). Rates of
microbial 3H-leucine incorporation and the corresponding pro-
ductivity were calculated according to Kirchmann (2001).

RNA and DNA extraction

Samples for RNA and DNA extraction were taken at t0 and tend

and stored at −80◦C and −20◦C, respectively. RNA and DNA was
extracted using the MoBio, Inc., PowerSoil R© RNA and DNA iso-
lation kit as directed by the manufacturer (MO BIO Laborato-
ries, Carlsbad, CA, USA), with the following modifications: 1.5–
2.5 g sediment were used from each experiment, 5 minute bead-
beating was applied and centrifugation steps were performed at
maximum speed (7000 x g) at 4◦C. RNA and DNA were eluted in
100μl of 10 mM Tris buffer. The extracts were checked for nucleic
acid integrity by agarose gel electrophoresis, and concentrations
were determined using a Qubit R© 2.0 Fluorometer with DNA and
RNA HS kits (Life Technologies, Carlsbad, CA, USA). The obtained
DNA and RNA concentrations are reported in the supplemen-
tary material. The detection limit of Qubit quantification was
<0.2 ng/g.
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DNA digestion in RNA samples and reverse
transcription

RNA extracts were digested with the Ambion Turbo DNA-freeTM

kit as directed by the manufacturer (Life technologies, Carls-
bad, CA, USA). Successful DNA removal was confirmed by PCR
using general bacterial primer GM3–8f and 1392R (Stahl et al.
1988; Muyzer et al. 1995). RNA extracts were used for reverse
transcription when no PCR products were obtained after 30 PCR
cycles (i.e. the DNA had been completely degraded). The reaction
mix for the reverse transcription (total volume 20 μl) contained
5 μl DNAse-digested RNA, 6 μl DEPC-treated water, 2 mmol l−1

dNTP mix (New England Biolabs, Ipswitch, MA) and 5 ngμl−1 ran-
dom primer (Invitrogen, Life Technologies, Carlsbad, CA). The
reaction mix was incubated for 5 min at 65◦C before 1x First
Strand buffer (Invitrogen, Life Technologies), 5 mmol l−1 DTT
(Invitrogen, Life Technologies), 2 U RNaseOUTTM Recombinant
Ribonuclease Inhibitor (Invitrogen, Life Technologies) and 10 U
SuperScript R© III Reverse Transcriptase (Invitrogen, Life Tech-
nologies) were added. The reaction mix was incubated for 5 min
at 25◦C, 60 min at 50◦C and 15 min at 70◦C in a S1000 thermal
cycler (Bio-Rad Laboratories GmbH, Munich, Germany). cDNA
was quantified using a Qubit R© 2.0 Fluorometer with the DNA
HS kit and stored in −20◦C.

T-RFLP

The microbial community composition was analyzed using ter-
minal restriction fragment length polymorphism (T-RFLP) spe-
cific for 16S rRNA, 18S rRNA and fungal ITS region (for 16S
rRNA genes most PCR products and T-RFs were below the
detection limit). 16S rRNA, 18S rRNA and fungal ITS region
genes from DNA samples were amplified by PCR on a Bio-
Rad (Hercules, CA) C1000 thermal cycler using fluorescently
labeled bacterial primers Bac27f(-FAM)/907r (Pilloni et al. 2012),
archaeal primers Ar109f/Ar912r(-FAM) (Culman et al. 2008), fun-
gal primers (ITS region sequences were amplified using the fun-
gal ITS primer pair FAM-labelled ITS1F (Gardes and Bruns 1993)
and ITS4R (White et al. 1990)) (Wankel et al. 2017) and distinct
eukaryote-targeted (protozoans and protists) primers Euk20f(-
FAM)/Euk516r (Liu et al. 1997; Euringer and Lueders 2008). Each
50 μl PCR reaction contained 5 × PCR buffer (MBI Fermentas
Taq), 10 μM of each primer, 10 mM dNTPs (Promega, Madison,
WI), 25 mM MgCl2, 5 unit of MBI Taq polymerase (MBI Fermen-
tas Taq) and 1 μl DNA or cDNA template. The reaction condi-
tions for PCR consisted of an initial denaturation at 94◦C for
5 min, followed by 25 to 30 cycles of 30 s at 94◦C, 30 s at an
annealing temperature of 52◦C, 60 s at 70◦C and a final exten-
sion step for 5 min at 70◦C. PCR products were visualized using
1% agarose gel to ensure yield of sufficient PCR products. Bacte-
rial 16S rRNA gene, fungal ITS region and eukaryotic 18S rRNA
gene amplicons for each individual sample were purified using
a PCR Extract column Kit (E.Z.N.A. Cycle pure kit, Omega Bio-
tek). A total of 80 ng of purified PCR products were digested with
0.3 μl 20 U MspI (Bacteria; Promega), TaqI (Archaea; Promega),
Hae III (Fungi; Promega) and Bsh1236I (Protozoans; Promega) in
a 10 μl reaction system. One microliter digested and desalted
DNA and cDNA was subjected to T-RFLP analysis on a ABI 3730xl
DNA Analyzer using POP-7 polymer (Applied Biosystems, Foster,
CA), using previously described methods (Euringer and Lueders
2008). Raw data was processed using Genemapper V 5.0. Further
analysis was performed using T-REX (Culman et al. 2009) with
background noise filtering (factor 1.2) and applying a clustering
threshold for peak alignment across samples (set to 1.5 bp). The

relative terminal restriction fragment (T-RF) abundance was cal-
culated based on peak heights.

Supplementary ferrihydrite experiment

The goal of this experiment was to investigate the effect of
the chosen sterilization methods on the mineralogy of ferrihy-
drite (Fe5OH84H2O), a classical representative for low-crystalline
iron(III) minerals in environmental samples (Cornell and Schw-
ertmann 2004). Due to its high abundance in the Earth’s crust,
iron (oxyhydr)oxide minerals represent an important fraction
in sediments and soils (Scheinost 2005; Braunschweig, Bosch
and Meckenstock 2013) (e.g. 1–3% in Norsminde Fjord sediment
(Laufer et al. 2016)) and they are strongly connected to microbial
activity (Colombo et al. 2014). Furthermore, iron minerals pro-
vide active surface sites and transformation of the iron mineral
can cause mobilization of nutrients (such as phosphate or trace
metals) or pollutants (such as toxic metals) (Bonneville, Van Cap-
pellen and Behrends 2004; Kappler and Straub 2005; Gadd 2010).
Changes in iron mineralogy therefore do not only affect iron-
metabolizing bacteria, they also affect the entire microbial com-
munity due to the release or the retention of nutrients. Ferri-
hydrite was prepared according to Amstaetter, Borch and Kap-
pler (2012). Microcosms (25 ml) were prepared with 40 mM PIPES
buffer, sterile ultrapure water and 1 ml ferrihydrite suspension
(concentration of 5 mM). Subsamples were exposed to the same
sterilization procedures as the sediments. The composition of
iron minerals after sterilization was identified using Mössbauer
spectroscopy. For this, aqueous mineral suspensions were fil-
tered onto a cellulose filter (diameter of 1 cm, mesh size 0.22μm)
and covered with Kapton tape forming a thin disk. Transmission
spectra were collected at 77 K and 5 K using a constant accelera-
tion drive system (WissEL) in transmission mode with a 57Co/Rh
source. All spectra were calibrated against a 7 μm thick α-57Fe
foil that was measured at room temperature. Analysis was car-
ried out using Recoil (University of Ottawa) and the Voigt Based
Fitting (VBF) routine (Rancourt and Ping 1991). The half width at
half maximum (HWHM) was constrained to 0.131 mm/s during
fitting.

RESULTS

For this study, we analyzed the geochemistry (e.g. NPOC), quan-
tified the number of CFUs, detected the microbial productivity,
quantified the amount of extractable DNA and RNA, and the
number and relative abundance of microbial T-RFs in native sed-
iment directly after collection, directly after sterilization (t0) and
after incubation of the sterilized sediments for 3 (t3) and 16 days
(tend).

Influence of sterilization methods on geochemistry

The porewater of the collected native sediment from the coastal
marine field site had a NPOC content of 18.3 mg L−1 (this study
and Laufer (2016)). In the microcosms with natural untreated
sediment and filtered seawater, the NPOC value of the porewa-
ter remained constant at 18 mg L−1 before sterilization and dur-
ing incubation of 7 days (Fig. 1, natural untreated sediment).
The strongest effect on the NPOC content of the porewater
was observed directly after sterilization (t0) in the microcosms
that underwent thermic sterilization (autoclaving) and gamma-
radiation where the total organic carbon content increased to
approximately 220 mg L−1 and 150 mg L−1 compared to the natu-
ral untreated sediment (18 mg L−1), respectively. After 3 days (t3),
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Figure 1. Changes in total dissolved organic carbon content. NPOC in mg/L after t0, t3 = 3 days and t7 = 7 days. Different shades of one color represent replicates: blue
(t0), yellow (t1) and green (t2), and show similar trends.

a further increase of the total organic carbon of the autoclaved
and gamma-radiated sediment in the porewater was observed.
After 7 days of incubation (t7), the porewater NPOC of autoclaved
and gamma-radiated samples was approximately 280 mg L−1

and 190 mg L−1, respectively. The addition of NaN3 to the sed-
iment microcosms resulted in an increase of only 10 mg L−1

NPOC compared to the non-treated sediment at t0 (after ster-
ilization), reaching a total of 48 mg L−1 total organic carbon con-
tent in NaN3-amended microcosms (increase of 30 mg L−1 NPOC
when compared with the non-treated sediment) after 7 days of
incubation (t7).

Influence of sterilization methods on colony forming
units

The suspension of native sediment with porewater collected
from the coastal marine field site showed numerous bacterial
as well as fungal CFUs (>50) on oxic and anoxic LB plates (Table
S1, Supporting Information). Bacterial and fungal colonies were
distinguished by their different morphology. The filtered sea-
water which was used to set up the microcosms did not pro-
duce CFUs on LB plates. Sediment slurries from all microcosms
after autoclaving, gamma-radiation, ad NaN3-sterilization treat-
ments showed bacterial as well as fungal CFUs under oxic and
anoxic conditions immediately after sterilization of the sedi-
ments (t0) (summary in Fig. 2 and more details in Table S1, Sup-
porting Information). Autoclaved sediment showed around 0–2
bacterial CFUs per 100 μl microcosm slurry on oxic and anoxic
plates at t0. After 3 (t3) and 16 days of incubation (tend) of auto-
claved sediment, only 0–1 CFUs on oxic and no CFUs on anoxic
LB plates were counted. Similar results were obtained for wet
gamma-sterilized sediment: at t0 0–1 bacterial CFUs per 100 μl
microcosm slurry were counted on oxic as well as on anoxic
plates. After 3 and 16 days of incubation of gamma-radiated sed-
iment, the CFUs on oxic and anoxic LB plates were in a similar
range (t3: 0–2; tend: 0–4 CFUs). In dry gamma-sterilized sediment,
the lowest CFU numbers were detected (t0: 0–2; t3: 0–1; tend: 0–1)
on oxic as well as on anoxic plates. In NaN3-amended sediment
samples, numerous CFUs (>50) were detected on oxic as well
as on anoxic plates at t0 and after 3 days of incubation. After
16 days of incubation, some NaN3-amended samples contained
numerous (>20) bacterial and fungal CFUs while other samples
contained none on oxic plates. Almost no colonies were found
on anoxic plates (only one exception with numerous colonies
on one anoxic plate). All controls without sediment (only filtered

Figure 2. Impact of sterilization method on the number of T-RFs, microbial pro-
ductivity (3H-leucine incorporation rates), CFUs, extractable RNA and DNA right

after sterilization, and on the iron mineral identity of ferrihydrite (separate
microcosm experiment with only ferrihydrite) an,d after 7 days of incubation
(3H-leucine incorporation rates) and after 16 days of incubation (total amount of
T-RFs, RNA, DNA, CFUs) compared to unsterilized natural sediment. Fh = ferri-

hydrite (iron mineral); bdl = below detection limit for RNA and DNA.

and sterilized marine water) showed no CFUs at either t0 or after
16 days).

Influence of sterilization methods on microbial activity

For estimating microbial activity and productivity in the treated
samples, a 3H-leucine incorporation assay was performed (Fig.
3). Non-sterilized natural marine coastal sediment showed a
bacterial productivity of 2.7 nM C incorporation per day per L
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Figure 3. General bacterial productivity in marine sediment microcosms based on 3H-Leucine incorporation rates (in nM carbon per day) with natural untreated,
autoclaved, gamma-radiated and NaN3-added Norsminde Fjord sediment after t0, t3 = 3 days and t7 = 7 days. Different shades of one color represent replicates.

sediment right after setting up the microcosms (t0). After three
days of incubation at room temperature (t3), we observed that
the bacterial productivity was lower (1.3 nM C incorporation per
day) than at t0 in the natural untreated sediment and remained
equal after 7 days of incubation (1.2 nM C incorporation per
day). After autoclaving and gamma-radiation (t0), the carbon
incorporation rate was 60%–70% lower compared to the natural
untreated sediment at t0, further decreased to 0.7–1.0 nM C d−1

after 3 days of incubation and stayed the same after 7 days of
incubation. After addition of NaN3, a slightly higher activity was
measured right after sterilization (1.5 nM C d−1), but it decreased
substantially after three days of incubation to 0.2 nM C d−1. After
4 more days of incubation (t7), the microbial activity remained
relatively constant in all NaN3 triplicates at ca. 0.3 nM C incor-
poration into biomass.

Influence of sterilization methods on amount of
extractable DNA and RNA

Using fresh untreated marine sediment, we were able to extract
around 16–18 ng RNA per g dry sediment and 30–50 ng DNA per g
dry sediment (Fig. 2; Table S2, Supporting Information). Follow-
ing gamma-sterilization, 7–16 ng per g dry sediment RNA (and
40–60 ng per g dry sediment DNA) were extracted from gamma-
sterilized wet sediment at t0 with this amount decreasing over
time (3–5 ng per g dry sediment RNA at t3 and after 16 days
of incubation (tend) 1–3 ng per g dry sediment RNA). Similarly,
gamma-sterilized dry sediment showed a decrease from 4–7 ng
per g dry sediment RNA at t0 to 0.2 ng per g dry sediment RNA
after 16 days of incubation (tend). After autoclaving, about 1.5–2.5
ng per g dry sediment RNA were extracted at t0 and only 0.2 ng
per g dry sediment RNA was detectable at tend. A similar trend
was found for the NaN3-amended sediment (t0: 8–17 ng per g
dry sediment RNA; tend: 0.2 ng per g dry sediment RNA). The
amount of extractable DNA followed the same trends as RNA
in all setups (Summary in Fig. 2 and more details in Table S2,
Supporting Information).

Impact of sterilization on the microbial community
composition based on T-RFLP

The collected native sediment from the coastal marine field site
showed around 100 T-RFs for the bacterial, archaeal, fungal and
unicellular eukaryote community (Fig. 4 and Fig. S1, Support-
ing Information). T-RFLP data (based on extracted DNA) of bac-
teria, archaea, fungi and unicellular eukaryotes indicated that

the applied sterilization methods had different impacts on the
total number of T-RFs (Fig. S1, Supporting Information), in addi-
tion to the impact on community structure (Fig. 4). After gamma-
sterilization of wet sediment (t0), the greatest number of T-RFs
was detected in the bacterial group (29 T-RFs), whereas a less
complex community was found for archaea, fungi and proto-
zoans (11, 12 and 17 T-RFs, respectively). After 16 days of incu-
bation of gamma-sterilized wet sediment (tend), the microbial
community fingerprint had changed substantially with only 1
to 2 T-RFs detected for bacteria, archaea and fungi. The proto-
zoan community changed the least, with 9 T-RFs still detected
after two weeks. A different pattern was found for dry gamma-
sterilized sediment. At t0, only bacterial T-RFs were detectable
(10 in total), whereas after two weeks of incubation, we found 39
bacterial T-RFs, 3 archaeal, 16 fungal and 19 protozoan. Directly
after autoclaving (t0), only bacteria (19 T-RFs) and archaea (5 T-
RFs) were detectable and the number of T-RFs remained con-
stant after 16 days of incubation (tend). The microbial community
of sediment with NaN3 showed similar T-RF patterns compared
to the natural untreated sediment directly after NaN3-addition
(t0). However, more archaeal T-RFs were detected (17 T-RFs in
NaN3 microcosms and only 8 T-RFs in the natural sediment)
in NaN3-amended sediment related to the untreated sediment.
After 16 days of incubation, the number of fungal T-RFs was
higher in the NaN3-amended sediment than in the untreated
sediment (31 and 20, respectively), while the number of proto-
zoan T-RFs was lower than in the natural sediment (24 and 37,
respectively).

The T-RF graphs (Fig. 4) show the relative abundance of sin-
gle T-RFs before and after microcosm incubation. In the case of
bacteria, archaea and fungi, it was not possible to obtain 16S
rDNA T-RFs for all gamma-sterilized triplicates of wet sediment
after incubation. The bacterial T-RFs with the lengths of 89 and
145 base pairs (bp) were the only T-RFs detectable in gamma-
sterilized wet sediment after two weeks of incubation. For the
archaea in gamma-sterilized wet sediment, T-RFs with lengths
of only 54 bp, 67 bp, 93 bp, 178 bp and 784 bp were detected,
while for fungi similar T-RF length of 54 bp, 66 bp and 93 bp and
for unicellular eukaryotes T-RFs of 65 bp, 67 bp, 95 bp, 557 bp and
558 bp were present. In gamma-sterilized triplicates of dry sed-
iment, numerous bacterial T-RFs were detectable (i.e. 73 bp, 89
bp and 145 bp) but only archaeal T-RFs with the lengths of 54 bp,
93 bp, 178 bp and 784 bp were resistant. The autoclaving process
seems to be the most effective method for destroying the DNA
of fungal and protozoan microorganisms. No protozoan DNA T-
RFs were detectable after two weeks of incubation and only one



Otte et al. 7

Figure 4. Bacterial, archaeal, fungal and protozoan community structure before and after sterilization based on 16S rDNA based T-RFs. Changes in bacterial, archaeal,
fungal and protozoan community structure after gamma-radiation (of wet and dry sediment), autoclaving and NaN3-addition as well natural untreated marine sed-

iment at the beginning of the experiment (t0) and after 16 days (tend). ∗ marks low DNA T-RFs and in some cases we were not able to amplify the samples and detect
T-RFs (below detection limit).



8 FEMS Microbiology Ecology 2018, Vol. 94, No. 12

fungal triplicate showed T-RFs with lengths of 54 bp, 93 bp, 104
bp, 402 bp and 589 bp. NaN3-addition to the marine sediment
showed minor changes compared to the natural untreated sed-
iment after two weeks of incubation. Bacterial T-RFs of a length
of 217 bp and 297 bp, archaeal T-RFs of 178 bp, 192 bp and 384 bp,
fungal T-RFs of 397 bp, 518 bp and 534 bp, and protozoan T-RFs
of 65 bp, 66 bp, 67 bp, 224 bp and 558 bp seemed to be prominent
after two weeks of NaN3 incubation.

T-RFLP data of cDNA samples from different sterilization
setups were not conclusive enough due to the low encountered
cDNA and cDNA-amplicon concentrations.

Impact of sterilization on ferrihydrite (iron mineral)
properties

The investigated environmental sediment samples contain 1%–
3% iron, of which approximately 70 μmol Fe(III) per g dry
sediment in 0.5 M HCl (bioavailable fraction) are denoted
as low crystalline (e.g. ferrihydrite) and 200 μmol Fe(II) per
g dry sediment in 6 M HCl extractions are denoted as
crystalline (Laufer et al. 2016). The highest extent in min-
eral transformation was observed for the autoclaved ferrihy-
drite sample. More than 70% of the initial ferrihydrite mate-
rial was transformed into goethite and hematite, potentially
via dissolution- and re-precipitation (goethite) and solid-state
conversion (hematite) mechanisms (Cornell and Schwertmann
2004). Due to changes in mineral surface charges, nutri-
ents being (im-)mobilized can subsequently trigger micro-
bial processes (such as heterotrophic iron(III) reduction) and
change the biological dynamics in the iron cycle (Radloff
et al. 2008; Trotsenko and Murrell 2008; Quéméneur et al.
2016). The exposure to gamma-rays resulted in a moderately
low impact on the transformation of ferrihydrite. Only about
6% of the initial ferrihydrite was transformed to goethite
during gamma-ray sterilization, whereas the addition of
NaN3 showed neither significant alteration nor transformation
from the initial mineral material (Fig. S2, Table S3, Support-
ing Information). However, mineral dissolution processes and
potential transformations to other iron (oxyhydr)oxides (e.g.
akaganéite to hematite) (Cornell and Schwertmann 2004) should
be considered in long-term experiments (>two weeks).

DISCUSSION

Sterilization techniques as a prerequisite for control
setups in environmental studies

In environmental studies, it is necessary to distinguish between
biological and non-biological processes in order to quantify the
microbial contribution to substrate turnover. Therefore, it is
essential to know how to inactivate biological activities effi-
ciently in environmental samples. While certain life proper-
ties of cells such as organized cell structure and microbial
growth can be analyzed by e.g. microscopy, viability proper-
ties such as energy (ATP) conversion, substrate conversion,
changes of protein content and the amount of extractable
RNA or DNA need advanced analytical approaches (Table 1).
In simple culture experiments, it might be useful to use
techniques like microscopy or flow cytometry to determine
complete sterility, i.e. the absence of (living) microbial cells.
But in complex environmental samples (or similarly a mix-
ture of laboratory cultures) like sediments or soils, most of
these analyses have their limitations due to matrix effects
caused by the integrity of sedimentary or soil material (e.g.

difficulties in extracting DNA, difficulties in distinguishing
between DNA from different dead and live cells, heat, UV
and radiation shielding and protection of microorganisms by
the sedimentary matrix, difficulties in distinguishing between
dead or living cells under the microscope, problems with
cell counts and quantification of ATP yield) (Bogosian and
Bourneuf 2001; Emerson et al. 2017). Nevertheless, a pragmatic
strategy is required to quantify the impact of microorganisms
on substrate turnover versus abiotic reactions in environmental
samples (Melton et al. 2014). In the future, complex environmen-
tal studies will likely use, e.g. single-cell techniques, metatran-
scriptomics, DNA-stable-isotope probing (SIP) or RNA-SIP to dis-
tinguish the active and living from the dead microorganisms in
microbial ecosystems (Hammes, Berney and Egli 2010; Emerson
et al. 2017; Singer, Wagner and Woyke 2017).

Sterilization efficiency with respect to RNA and DNA
stability

The natural degradation of nucleic acids is mainly triggered by
physicochemical parameters, such as temperature, pH, UV radi-
ation and the presence of radicals (Vincek et al. 2003; Seear and
Sweeney 2008; Camacho-Sanchez et al. 2013). For our study, we
applied commonly used sterilization treatments that are com-
parable to or lead directly to such physicochemical impacts. The
RNA/DNA ratio is an important indicator of the metabolic sta-
tus of active microbial communities (Fleming, Sanseverino and
Sayler 1993; Fabiano et al. 1995; Hurt et al. 2001). The higher this
ratio, the more activity can be expected. Still, we found RNA and
DNA in all sediment samples immediately after sterilization (t0)
(Table S2, Supporting Information; Fig. 2). In soils and sediments,
the presence of DNA is not coupled to the viability of microor-
ganisms. Moreover, there is no direct correlation between the
age of a sample and the preservation of nucleic acids (Poinar
et al. 1996; Herrmann and Henke 1999). The majority of DNA in
sediments is present in an extracellular form defined as naked,
free, ambient or environmental DNA which includes soluble as
well as non-soluble and viral DNA (Corinaldesi, Danovaro and
Dell’Anno 2005; Nielsen et al. 2007; Corinaldesi, Beolchini and
Dell’Anno 2008; Taberlet et al. 2012). Extracellular DNA from dead
microorganisms can persist in sediments and soils for weeks
to years (Levy-Booth et al. 2007; Nielsen et al. 2007; Pietramel-
lara et al. 2009; Lever et al. 2015; Torti, Lever and Jørgensen 2015;
Carini et al. 2017), either sorbed to clay minerals (Pietramel-
lara et al. 2009), bound to humic substances (Levy-Booth et al.
2007) or incorporated in biofilm structures (Alawi, Schneider
and Kallmeyer 2014). In addition to that, microorganisms exist
in a range of metabolic states (dormant, living, growing and
decreasing/non-viable) and their ribosomal RNA (rRNA; 82%–
90% of total RNA pool) is frequently employed to identify the
‘potentially active’ fraction of microbes in environmental sam-
ples (Lennon and Jones 2011; Blazewicz et al. 2013). Riboso-
mal RNA is generally more stable than mRNA (Snyder and
Champness 2007). Measures of mRNA half-life-times for labo-
ratory cultures were in the range of few minutes (Hambraeus,
von Wachenfeldt and Hederstedt 2003; Steglich et al. 2010).
Detectable RNA (rRNA and mRNA) in environmental samples
likely belongs to living and metabolically active organisms (Edg-
comb et al. 2011; Orsi et al. 2013), but for environmental systems,
there are indications that RNA persists long after death of the
source organisms and that extracellular RNA might be more sta-
ble and more widespread in sediments than previously assumed
(Fordyce et al. 2013; Torti, Lever and Jørgensen 2015) and may
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Table 1. What is life, and how can we determine sterility/cell death? Overview of methods that can be used to determine living cells, more pre-
cisely viability (live/dead determination) and activity. In simple culture experiments it might be useful to use these techniques (e.g. microscopy)
to determine complete absence of microbial cells. In complex environmental samples it is necessary to analyze RNA and DNA content or/and
microbial productivity, respectively. Tools for distinguishing the living from the dead in microbial ecosystems were recently reviewed in
Emerson et al. (2017).

Life properties of cells Analyzing method Useful for determine sterility?

Simple culture
experiments

Complex
environmental
experiments

Organized cell structure and
membrane integrity∗ (viability)

Microscopy with live/dead techniques, including
many stains and dyes

yes no

Response to stimuli∗ (viability) Stimulation (chemotaxis, phototaxis, etc.) yes no
Growth and reproduction∗

(viability)
Culture dependent methods: quantification of
cells or biomass by colonies on solid medium,
density of liquid culture, cell counts

yes no

Energy (activity/productivity) Quantification of cellular energy (adenosine
5′-triphosphate (ATP))

yes no

Metabolism
(activity/productivity)

Culture independent methods: quantification of
isotope labelled substrates, RNA or 3H-leucine
incorporation, transcriptomics and proteomics,
etc.

yes yes

∗Give only limited information about living cells.

used for microbial communication (Tsatsaronis et al. 2018). It
has been reported that RNA adsorbs onto clay minerals (Franchi,
Ferris and Gallori 2003) and clay-bound RNA is less susceptible
to digestion by RNAses than free RNA (Franchi and Gallori 2005).

Apart from physically forced degradation, DNA and RNA
are naturally degraded by enzymes such as phosphodi-
esterases including deoxyribonucleases (DNases) and ribonu-
cleases (RNases). The presence of DNA and RNA in sterilized
samples is thus not only a function of effective inactivation
of microbial cells, but also dependent on the destruction or
preservation of degradation enzymes (e.g. DNases, RNases).
Heat kills bacteria by destroying lipid membranes and denatu-
ration of proteins, which leads to enzyme deformation (Chang
1994). However, Miyamoto, Okano and Kasai (2009) reported that
when RNase, a thermostable and more robust enzyme than
DNase, is heated at 121◦C by autoclaving for 20 min, it does
not lose its activity (no irreversible thermoinactivation). There-
fore, RNases will be affected by heat, but not degraded, leading
to continuous degradation of RNA after sterilization (Miyamoto,
Okano and Kasai 2009). In our experiments we could show that
although present right after sterilization, DNA and RNA were
clearly degraded during incubation for 16 days after steriliza-
tion by heat (Fig. 2; details in Table S2, Supporting Informa-
tion). As NaN3 does not kill bacteria or affect non-heme pro-
tein structures (Jobelius and Scharff 2000), RNases and DNases
remain active and degrade remaining nucleic acids efficiently. In
our experiments we could show that sterilization by the addi-
tion of NaN3 which causes inhibition of cytochrome oxidase
lead to RNA levels below detection limit after incubation.
Gamma-rays kill bacteria by breaking down their nucleic acids
and proteins through radical formation. Thus, enzymes become
damaged or degraded (Lensi et al. 1991; McNamara et al. 2003). In
our gamma-radiated samples, low levels of remaining RNA were
still present after 16 days of incubation. This most likely resulted
from damaged RNases that were not able to degrade the residual
free RNA.

Effect of sterilization treatment on microbial
productivity

Productivity of microorganisms was measured by 3H-leucine
incorporation rates which reflect the protein biosynthesis pro-
ductivity of bacteria in the marine environment (Fischer and
Pusch 1999; Kirchman 2001). In our study, the microbial pro-
ductivity (2500 pM C d−1) in the untreated sediment samples
was in the same order of magnitude as similar samples in the
literature (e.g. upper 4 cm of freshwater sediments) (Buesing
and Gessner 2003; Buesing and Marxsen 2005). We found a clear
difference in microbial productivity between untreated (active)
and sterilized marine sediment for each sterilization treatment
(Figs. 2 and 3). Microbial productivity followed a similar trend as
RNA concentrations, i.e. both decreased during incubation for 16
days. Based on the 3H-leucine assay, sterilization with NaN3 had
the highest impact on the microbial productivity (Fig. 3, sum-
mary in Fig. 2), which might be related to the fact that the 3H-
leucine assay mainly targets bacteria (e.g. fermenting bacteria
or facultative aerobic bacteria) (Bååth 1994; Medina et al. 2003;
Barcenas-Moreno et al. 2009; Rousk, Brookes and Bååth 2009;
Rousk and Bååth 2011) while fungal growth could be monitored
with different tracer methods (Bååth 2001). However, numerous
CFUs of both microorganisms and fungi (>50) were observed
on anoxic and oxic plates with NaN3-amended sediment. The
NaN3-inhibited cytochrome c oxidase is not required for anaer-
obic bacteria, e.g. fermenting bacteria (Radloff et al. 2008), and
they can overcome intracellular respiration inhibition by extra-
cellular electron transport with other electron acceptors, e.g.
Fe(III) and Mn(IV) (Bore et al. 2017). Thus, these microorganisms
could grow up to numerous CFUs (>50). Based on the 3H-leucine
assay, autoclaving and gamma-radiation had a slightly lower
impact on the microbial productivity than NaN3 but showed a
faster effectiveness considering the slower decrease in produc-
tivity detected in NaN3-treated samples (directly after the ster-
ilization process and the incubation time of 16 days). In general,
the microbial productivity of autoclaved and gamma-sterilized
sediment was very low which is consistent with the low amount
of CFUs on anoxic and oxic plates. For quantification of CFUs on
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LB plates, it has to be kept in mind that only aerobic microor-
ganisms and fermenters can grow on LB plates and that there
are many other metabolisms which need specific electron accep-
tors, electron donors or organic carbon sources. Nevertheless,
the counted CFUs are consistent with the quantified microbial
productivity here.

Microbial survival strategies and microbial community
fingerprint of microorganisms

The sedimentary community based on T-RF analysis of bacte-
ria, archaea, fungi, unicellular protists and protozoans showed
substantial changes (a) directly after sterilization (t0) compared
to the untreated sediment and (b) after 16 days of incubation of
sterilized sediment samples (tend) compared to the community
after sterilization (t0) (Fig. 4). Gamma-sterilized samples showed
less microbial T-RFs (especially from dry sediment), most prob-
ably due to the destruction of prokaryotic DNA and RNA, pro-
teins and lipids. Gamma-sterilization of dry sediment makes it
difficult to obtain DNA T-RFs from archaeal, fungal and proto-
zoan immediately after sterilization (t0). During the drying pro-
cess, many archaea, fungi and protozoans might form spores
leaving no free extractable DNA behind. Autoclaving inactivated
most fungi and protozoans, while some bacteria and archaea
might have survived by sporulation. The addition of NaN3 to the
marine sediment showed only minor community composition
changes compared to the natural untreated sediment, which
is in agreement with the fact that NaN3 does not kill microor-
ganisms but inhibits their respiration metabolism. Based on
the DNA T-RFs, none of the chosen methods was able to com-
pletely destroy resilient DNA in the sediment (Fig. 4). Survival
of certain microorganisms after heat, gamma-ray or chemical
treatments can be explained by a number of survival strategies,
including a reduced metabolism in a dormant state, spore for-
mation and different repair and resistance mechanisms (Table
S4, Supporting Information). Spores can be extremely resistant
over many decades (Cote et al. 2018). Bacillus spp. and Clostridium
spp. are well known spore-forming strains (Cote et al. 2018), but
only 0.0005% RNA from a Bacillus spp. was found in Norsminde
Fjord sediment (Otte et al. 2018) (see details in Table S4, Sup-
porting Information) and might have survived in heat-sterilized
samples. Special heat-resistance mechanisms like complex DNA
repair systems, proteins for DNA structure and lipid compo-
sitions have been found in Thermococcus spp., Thermotoga spp.,
Thermus spp. and other thermophilic bacteria (Table S4, Support-
ing Information). The thermophile Thermoanaerobacter spp. was
found at a relative abundance of 0.004% in the untreated marine
sediment (Otte et al. 2018), and has also been detected in the ster-
ilized samples (Otte et al., unpublished data).

Based on the obtained data, we can conclude that the T-RFs
either belong to non-degraded DNA of dead microorganisms or
to bacteria, archaea, fungi or protozoans that were able to sur-
vive gamma-radiation of wet sediment (12 T-RFs of the original
90–110 T-RFs), gamma-radiation of dry sediment (69 T-RFs of the
original 90–110 T-RFs), autoclaving (around 26 T-RFs of the origi-
nal 90–110 T-RFs) or NaN3-amendment (106 T-RFs of the original
90–110 T-RFs) (Fig. S1, Supporting Information). Unfortunately,
due to limited sample material (in particular RNA), our analy-
sis does not allow to draw conclusions on whether the detected
DNA originates from active microorganisms or from extracellu-
lar DNA of dead organisms.

With T-RFLP, it was possible to see that the microbial commu-
nity differed between the different sterilization treatments, but

sequencing data could help to understand which specific clades
of bacteria were still present. However, T-RFLP is a cost-efficient
fingerprint-method to get an overview of the sterility of an envi-
ronmental sample.

Effect of sterilization on the sample geochemistry and
mineralogy

Geochemical and mineralogical integrity of sediments is impor-
tant as it delivers substrates for abundant microorganisms and
it determines the geochemical and thermodynamic framework
that controls the identity of processes that are occurring. Fur-
thermore, iron minerals provide active surface binding sites and
dissolution and formation of iron minerals can cause mobiliza-
tion or immobilization of nutrients (such as phosphate or trace
metals) or pollutants (such as toxic metals), respectively (Bon-
neville, Van Cappellen and Behrends 2004; Kappler and Straub
2005; Gadd 2010). Consequently, changes in iron mineralogy do
not only affect iron-metabolizing bacteria, they also affect the
organisms that have survived due to the release or the reten-
tion of nutrients and organic carbon (see increase of NPOC fol-
lowing autoclaving and gamma-sterilization procedure). So far
it is well known that the sterilization methods affect geochem-
istry and mineralogy (Table S5, Supplorting Information) which
we confirmed in a supplementary experiment on the stabil-
ity of the Fe(III) (oxyhydr-)oxide ferrihydrite (see supplementary
material). Specifically, we could show that chemically-sterilized
ferrihydrite (with NaN3) showed neither significant alteration
nor transformation compared to the initial ferrihydrite (Fig. S2,
Table S3, Supporting Information). While gamma-sterilization
had a moderately low impact on the transformation of ferrihy-
drite (only 6% ferrihydrite transformed to goethite), autoclaving
showed the highest impact on the mineralogy (more than 70%
of the initial ferrihydrite material was transformed into goethite
and hematite) (Fig. S2, Table S3, Supporting Information).

Choice of sterilization method for laboratory
experiments

The choice between the different sterilization methods should
be based on the research goals at hand, i.e. (i) which
(bio)geochemical processes take place and which redox-active
compounds are converted; (ii) which microorganisms are
involved or responsible for substrate conversion (Table 2).
Depending on the parameters that will be measured dur-
ing an experimental run (i.e. substrate concentration, mineral
(trans)formation, cell and activity quantification, RNA and DNA
quantification) the interferences of each sterilization method
should be considered. In Table S5 (Supporting Information) we
provide a comprehensive overview of the advantages and dis-
advantages of classical sterilization methods. In Table 2 we
offer a decision-making aid for the choice between autoclav-
ing, gamma-radiation and the addition for NaN3 as sterilization
treatment for complex biogeochemical samples, depending on
the research focus.

If one wants to ensure the lowest amount of measure-
able DNA and/or RNA contamination or microbial productiv-
ity, we suggest to apply autoclaving and gamma-radiation, but
this comes at the expense of for example the changing the
organic matter composition. Autoclaving and gamma-radiation
was highly effective in inactivation of microorganisms (based on
CFUs, microbial productivity and elimination of fungi and pro-
tozoan T-RFs). In order to achieve most efficient results of the
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Table 2. Summary of used sterilization methods in this study, their disadvantages and guidance for choice of sterilization method in sediment
samples. When designing an experiment it is important to define exactly the research question and, as a consequence, the specific setup of
the abiotic controls. Depending on whether the focus is on the analysis of the geochemical conditions, on the identification of the minerals or
on quantification of certain metabolic activities, the most suitable sterilization method should be chosen. The last row of this table shows a
set of recommendations for which types of studies are best for which method.

Research focus Used sterilization method in this study and their disadvantages

Autoclaving (3 times autoclaving)
Gamma-radiation (52 kGy
radiation) NaN3 (final conc.: 160 mM NaN3)

Dissolved compound analysis + ++ +++
DOC increase (ca. 20 times) DOC increase (ca. 10 times) Nitrate and nitrite reduction, pH

drop (not shown in this study)
Mineral analysis + ++ +++

Mineral transformation (e.g. 70%
Ferrihydrite into goethite and
hematite), decrease of sediment
surface area, damage of
sediment structure

Less mineral transformation (e.g.
6% Ferrihydrite transformation to
goethite)

No immediate mineral
transformation (ferrihydrite).
Mineral dissolution in long term
experiments. Due to acidic pH of
NaN3

Analysis of microbial
productivity

++ ++ + → +++(after incubation, at least 7
days)

Productivity decreased e.g. from
2.5 nM C/d to 1.5 C/d (t0) and 0.5
nM C/d (t7)

Productivity decreased e.g. from
2.5 nM C/d to 1.0 C/d (t0) and
0.5–1.3 nM C/d (t7)

Productivity decreased e.g. from
2.5 nM C/d to 2.0 C/d (t0) and 0.3
nM C/d (t7)

Analysis of CFUs/microbial
growth on LB plates

++ ++ +

Few survivors Doses of 50–70 kGy most bacteria
die, low doses (0.25–5 kGy)
increase RNA expression,
radio-resistant bacteria survive

Does not sterilize, only inhibits
mitochondrial respiration, does not
affect most fungi and fermenters

Few CFUs, few T-RFs after
treatment

Few CFUs and T-RFS Many CFUs and T-RFs

Analysis of microbial community
(based on DNA) and metabolic
response (based on RNA)

+ → +++ + → ++ + → ++

(after incubation) (after incubation) (after incubation)
DNA & RNA still present right
after treatment, bdl after 16 days
of incubation

DNA & RNA still present right
after treatment, bdl after 16 days
of incubation

DNA & RNA still present right after
treatment, decreased DNA & RNA
after 16 days

Summary of results and
recommended methods for
specific research questions

Microbial studies with maximal
sterility

Microbial studies with maximal
sterility

Substrate conversion of specific
bacteria

DNA/RNA based studies Selected mineral studies Mineral studies
Selected geochemical studies Selected geochemical studies
Soil/sediment studies

+ less effective method, +++ most effective method; bdl = below detection limit.

sterilization treatment we recommend a short pre-incubation
for at least 7–16 days to for DNA/RNA to degrade.

If one wants to ensure the lowest changes of geochemical
and mineralogical properties, we recommend the addition of
NaN3 and gamma-radiation for samples that will be analyzed for
geochemical and mineralogical properties. Similar to the impact
on the iron mineralogy, autoclaving significantly affects the
DOC concentrations of the sterilized sediment (increase from
20 mg/L (native sediment) to approximately 220 mg/L (auto-
claved sediment)). A draw-back of gamma-radiation and the
addition of NaN3 is the release of nitrate and ammonium (Lensi
et al. 1991; Buchan et al. 2012; Brown et al. 2014). The applica-
tion of NaN3 for microbial inactivation of experiments that focus
e.g. on the quantification of microbial turnover of carbon com-
pounds and other redox-active geochemical compounds such
as sulfate, Fe(III) etc., can be recommended (Table 2). More-
over, gamma-sterilization also increases the NPOC content (con-
firmed in our study: from 20 mg/L to around 150 mg/L). Thus,

gamma-radiation can be recommended for pure cultures stud-
ies, water, sediment and soil sterilization for microcosm exper-
iments for quantifying substrate turnover. Based on our find-
ings, it is recommended to use dry sample material (sediments
and soils) for gamma-sterilization, as the efficiency of RNA
removal was higher than for wet sample material. In research
approaches with sterilized controls and DNA-/RNA-based meth-
ods we would recommend gamma-radiation as the single best
method for as-sterile-as-possible conditions. But it should be
considered that gamma-radiation is more expensive (around
160 Euro per package; see Synergy Health Care GmbH) than auto-
claving and NaN3 addition, gamma-sterilizing companies work
with large amounts of g to kg packages, samples have to be
shipped for a few days to weeks (while for example the temper-
ature cannot be controlled). To sum it up, autoclaving and NaN3

addition are cheaper and easy to use sterilization methods and
therefore more practical for low sample amounts. In summary,
our data has shown that all investigated methods (autoclaving,
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gamma-sterilization and NaN3 addition) have their advantages
and disadvantages and should be carefully selected for the cor-
responding experimental focus of abiotic controls in environ-
mental studies, particularly for marine sediments.

SUPPLEMENTARY DATA

Supplementary data are available at FEMSEC online.
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Bååth E. Estimation of fungal growth rates in soil using
14C-acetate incorporation into ergosterol. Soil Biol Biochem
2001;33:2011–8.
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