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The Short Course – Overview

1. Introduction to ensemble data assimilation

2. Implementation concept of PDAF
(Parallel Data Assimilation Framework)

3. Hands-on Example: 
Build an Assimilation System with PDAF
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1
Introduction to 

Ensemble Data Assimilation
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Overview

• What can we expect to achieve with data 
assimilation?

• What do we need for data assimilation?

• How does ensemble data assimilation work? 

• How can we apply ensemble data assimilation?

Please note: 
We omit equations of assimilation methods because you 

can apply PDAF without knowing them

(See Short Course SC1.2 on Friday for methodology)
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Application examples

(ocean physics and ocean-biogeochemistry)
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• Generally correct, but has errors

• all fields, fluxes on model grid

• Generally correct, but has errors

• incomplete information: 
data gaps, some fields
ocean data: mainly surface (satellite)

Combine both sources of information 

quantitatively by computer algorithm

➜ Data Assimilation

Motivation

Information: Model Information: Observations

Model surface temperature Satellite surface temperature
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DA – effect on Temperature (September 2012)

Assimilation (analysis)Free run
RMS (root-mean-square) deviation

Assimilation (analysis)Free run

Assimilate surface
temperature each 12 h

Compare assimilated
estimate with assimilated
surface temperature data
(monthly average)

Reduce RMS deviation and
mean deviation (bias)

➜ necessary effect

Mean deviation (observation – model)
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Longe-range effect

Example: Assimilate satellite sea 
surface height data (DOT)

Androsov et al., J. Geodesy, (2019) 93:141–157

Improve also temperature 
at 2000m depth

Reduce difference to assimilated 
data (necessary)
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Assimilation Free – Assimilation

Biogeochemistry: Coupled data assimilation effect

Free run

Surface oxygen mean for May 2012 (as mmol O / m3)

Free run

Coupled data assimilation case: physics and biogeochemistry

• Assimilate satellite sea surface temperature observations

• Assimilation directly changes Oxygen and other biogeochemical 
variables (strongly-coupled assimilation)
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Improving forecasts

• Very stable 5-days forecasts

• At some point the improvement might break down due to dynamics
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Figure 7: RMS error temporal evolution over the period 16 October 2007 – 21 October

2007 for simulated SST without DA (black curve); LSEIK analysis (red); mean of ensemble

forecast based on 12-hourly analysis (blue) and 5 days forecast (green curve) initialized

with the analysis state obtained on 16 October 2007.

38
S. Losa et al., J. Mar. Syst. 105–108 (2012) 152–162

Impact of Assimilation for temperature forecasts
(North & Baltic Seas)
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Bias Estimation

Example: Chlorophyll bias of a 
biogeochemical model

§ un-biased system: 
random fluctuation around true state

§ biased system: 
systematic over- and underestimation
(common situation with real data)

§ Bias estimation:
Separate random from systematic 
deviations

Nerger, L., and W.W. Gregg. J. Marine Systems, 73 (2008) 87-102

Logarithmic bias estimate
April 15, 2004
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Estimate a flux (Primary Production)

§ Primary production is a flux: Uptake of 
carbon by phytoplankton

§ Model: computed as depth-integrated 
product of growth-rate times Carbon-
to-Chlorophyll ratio

§ VGPM: Vertical Generalized 
Production model - satellite data only

§ Primary production from 
assimilation consistent with 
VGPM-estimate

§ Important: Concentration change by 
assimilation is not primary production

(VGPM: Behrenfeld, M.J., P.G. Falkowski., Limnol. 
Oce. 42 (1997) 1-20)

Mean relative difference to VGPM:
Free: 11.2%
Assimilation: -0.5%

L. Nerger & W.W. Gregg, J. Marine Syst. 68 (2007) 237-254
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Data Assimilation

Combine Models and Observations
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Data Assimilation

Combine model with real data

§ Optimal estimation of system state:

• initial conditions    (for weather/ocean forecasts, …)

• state trajectory (temperature, concentrations, …)

• parameters            (growth of phytoplankton, …)

• fluxes                     (heat, primary production, …)

• boundary conditions and �forcing� (wind stress, …)

§ More advanced: Improvement of model formulation

• Detect systematic errors (bias)

• Revise parameterizations based on parameter estimates

€ 
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Data Assimilation – a general view

Consider some physical system (ocean, atmosphere, land, …)

time

observation

truth

model

state
Variational assimilation

Sequential assimilation

Two main approaches:

Optimal estimate basically by least-squares fitting 
(but constrained by model dynamics)

Estimate not necessarily 
between model and obs. 
due to model dynamics

Assimilation 
estimate
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Needed for Data assimilation

1. Model

• with some skill

2. Observations

• with finite errors

• related to model fields

3. Data assimilation method

€ 
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Models

Simulate dynamics of ocean
§ Numerical formulation of relevant 

terms

§ Discretization with finite resolution in 
time and space

§ “forced” by external sources 
(atmosphere, river inflows)

§ Uncertainties

• initial model fields

• external forcing

• in predictions due to model 
formulation
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2013) and uses total wavenumbers up to 63, which corre-
sponds to about 1.85 × 1.85 degrees horizontal resolution; 
the atmosphere comprises 47 levels and has its top at 0.01 
hPa (approx. 80 km). ECHAM6 includes the land surface 
model JSBACH (Stevens et al. 2013) and a hydrological 
discharge model (Hagemann and Dümenil 1997).

Since with higher resolution “the simulated climate 
improves but changes are incremental” (Stevens et al. 
2013), the T63L47 configuration appears to be a reason-
able compromise between simulation quality and compu-
tational efficiency. All standard settings are retained with 
the exception of the T63 land-sea mask, which is adjusted 
to allow for a better fit between the grids of the ocean and 
atmosphere components. The FESOM land-sea distribu-
tion is regarded as ’truth’ and the (fractional) land-sea mask 
of ECHAM6 is adjusted accordingly. This adjustment is 
accomplished by a conservative remapping of the FESOM 
land-sea distribution to the T63 grid of ECHAM6 using an 
adapted routine that has primarily been used to map the 
land-sea mask of the MPIOM to ECHAM5 (H. Haak, per-
sonal communication).

2.2  The Finite Element Sea Ice-Ocean Model (FESOM)

The sea ice-ocean component in the coupled system is 
represented by FESOM, which allows one to simulate 
ocean and sea-ice dynamics on unstructured meshes with 
variable resolution. This makes it possible to refine areas 
of particular interest in a global setting and, for example, 
resolve narrow straits where needed. Additionally, FESOM 
allows for a smooth representation of coastlines and bottom 
topography. The basic principles of FESOM are described 
by Danilov et al. (2004), Wang et al. (2008), Timmermann 
et al. (2009) and Wang et al. (2013). FESOM has been 
validated in numerous studies with prescribed atmospheric 
forcing (see e.g., Sidorenko et al. 2011; Wang et al. 2012; 
Danabasoglu et al. 2014). Although its numerics are fun-
damentally different from that of regular-grid models, 

previous model intercomparisons (see e.g., Sidorenko et al. 
2011; Danabasoglu et al. 2014) show that FESOM is a 
competitive tool for studying the ocean general circulation. 
The latest FESOM version, which is also used in this paper, 
is comprehensively described in Wang et al. (2013). In the 
following, we give a short model description here and men-
tion those settings which are different in the coupled setup.

The surface computational grid used by FESOM is 
shown in Fig. 1. We use a spherical coordinate system 
with the poles over Greenland and the Antarctic continent 
to avoid convergence of meridians in the computational 
domain. The mesh has a nominal resolution of 150 km in 
the open ocean and is gradually refined to about 25 km in 
the northern North Atlantic and the tropics. We use iso-
tropic grid refinement in the tropics since biases in tropi-
cal regions are known to have a detrimental effect on the 
climate of the extratropics through atmospheric teleconnec-
tions (see e.g., Rodwell and Jung 2008; Jung et al. 2010a), 
especially over the Northern Hemisphere. Grid refinement 
(meridional only) in the tropical belt is employed also in 
the regular-grid ocean components of other existing climate 
models (see e.g., Delworth et al. 2006; Gent et al. 2011). 
The 3-dimensional mesh is formed by vertically extending 
the surface grid using 47 unevenly spaced z-levels and the 
ocean bottom is represented with shaved cells.

Although the latest version of FESOM (Wang et al. 
2013) employs the K-Profile Parameterization (KPP) for 
vertical mixing (Large et al. 1994), we used the PP scheme 
by Pacanowski and Philander (1981) in this work. The rea-
son is that by the time the coupled simulations were started, 
the performance of the KPP scheme in FESOM was not 
completely tested for long integrations in a global setting. 
The mixing scheme may be changed to KPP in forthcom-
ing simulations. The background vertical diffusion is set 
to 2 × 10−3 m2s−1 for momentum and 10−5 m2s−1 for 
potential temperature and salinity. The maximum value of 
vertical diffusivity and viscosity is limited to 0.01 m2s−1.  
We use the GM parameterization for the stirring due to 

Fig. 1  Grids correspond-
ing to (left) ECHAM6 at T63 
(≈ 180 km) horizontal resolu-
tion and (right) FESOM. The 
grid resolution for FESOM is 
indicated through color coding 
(in km). Dark green areas of the 
T63 grid correspond to areas 
where the land fraction exceeds 
50 %; areas with a land fraction 
between 0 and 50 % are shown 
in light green
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Variable-resolution mesh
(ocean model FESOM)
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Observations

Measure different fields … for example in the Ocean
§ Remote sensing

§ E.g. surface temperature, salinity, sea surface height, 
ocean color, sea ice concentrations & thickness

§ In situ (ships, autonomous vehicles, …)

§ Argo, CTD, Gliders, …

§ Data is sparse: some fields, data gaps

§ Uncertainties

§ Measurement errors

§ Representation errors: 
Model and data do not represent exactly the same 
(e.g. cause by finite model resolution)
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Avalable T and S profiles during July 2008  

Example: Physical Data in North & Baltic Seas 

MARNET
stations

Scanfish and 
CTD profiles

Satellite surface temperature
(12-hour composite)
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Daily gridded SeaWiFS chlorophyll data
Ø gaps: satellite track, clouds, polar nights

Ø On model grid: ~13,000-18,000 data points daily 
(of 41,000 wet grid points)

Ø irregular data availability

Example: Chlorophyll-a (SeaWiFS)
mg/m3

Nerger, L., and W.W. Gregg. J. Marine Systems 68 (2007) 237
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Observation Error Estimates
If no observation errors available:

• need to estimate them

If observation errors available:

• they are typically usable

• usually do not account for 
representation errors 
(might be too low)

data errors from comparison with 2186 
collocation points of in situ data (SeaWiFS) 

logarithmic data errors provided with 
satellite chlorophyll data (OC-CCI)

Pradhan et al, JGR 2019 Nerger & Gregg, JMS 2007
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Data Assimilation Methods

Combine observations and model state estimate
• Account for uncertainty in observations

• Account for uncertainty in model state estimate

• Account for relations (correlations) between 
observed part of the model state and unobserved parts
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Ensemble Data Assimilation

Estimate uncertainty
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Ensemble Kalman Filters

First formulated by G. Evensen (EnKF, J. Geophys. Res. 1994)

Kalman filter: express probability distributions by mean 
and covariance matrix

EnKF: Use ensembles to represent 
probability distributions 

observation

time 0 time 1 time 2

analysis

ensemble 
forecast

ensemble 
transformation

initial
sampling

state 
estimate

forecast
There are 

many 
possible 
choices!

What is 
optimal is part 

of our 
research

Different 
choices in 

PDAF
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Ensemble Covariance Matrix 

§ Provide uncertainty information (variances + covariances)

§ Generated dynamically 
by propagating ensemble of model states

Uncertainty: Std. deviation of log Chlorophyll
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Ensemble-estimated Cross-correlations

 

Cross correlations between total chlorophyll
and chlorophyll in phytoplankton groups

Pradhan et al., J. Geophy. Res. Oceans, 124 (2019) 470-490

 

Cross-correlations are used to correct non-observed quantities
from observed ones
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Validation of assimilation results
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Validating a data assimilation system

§ Need independent data for validation
Ø Necessary, but not sufficient:

Reduction of deviation from assimilated data

• Required: 
- Reduction of deviation from independent data
- Reduction of errors for unobserved variables

• Ideally:
- Reduce error below that of model and data alone

§ Want to assimilate all available data (in the ocean)
Ø Data-withholding experiments

Ø Twin experiments

Ø Validate with data of small influence
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Validation: In-Situ chlorophyll data

§ In situ data from SeaBASS/NODC over 1/1998-2/2004

§ Independent from SeaWiFS data
(only used for verification of algorithms)

§ North Central Pacific dominated by CalCOFI data

§ North Central Atlantic dominated by BATS data



SC1.1: Ensemble Data Assimilation with PDAF

Comparison with independent data 

• Shown basins include about 87% of data

• Compare daily co-located data points

Þ Assimilation reduces errors significantly

Þ Error from assimilation lower than SeaWiFS error 
in many basins and globally
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Quantifying the quality of the assimilation result

Assess ensemble mean state:

Common choices

§ RMS (root mean square) errors

§ Bias (mean error)

§ Correlation

compared to observations

 

Assess ensemble quality:

§ Rank histogram

§ CRPS (continuous ranked probability score)

§ Relative entropy

Particularly relevant when using nonlinear 

assimilation methods (e.g. particle filters)

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

Rank histogram, N=50

Scatter plot for validation
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Essential “Fixes” for Ensemble Filters

Covariance Inflation

Localization
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Covariance inflation

§ True variance is always underestimated
§ small ensemble size
§ sampling errors (unknown structure of P)
§ model errors

➜ can lead to filter divergence

§ Simple remedy

➜ Increase error estimate before analysis

§ Inflation
§ Increase ensemble spread by constant factor
§ Some filters allow multiplication of a small matrix 

(“forgetting factor”  ≤1; computationally very efficient)
§ Needs to be experimentally tuned

(Mathematically, this is a regularization)
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Lorenz96 model
• a widely used toy model
• one-dimensional period 

wave
• chaotic dynamics
• included in PDAF 

release

Experiments with Lorenz96 model
(available with PDAF)

• white: filter fails („diverges“)

• increased stability with stronger inflation (smaller forgetting factor)

• optimal choice for inflation factor
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Localization: Why and how?

Ø Combination of observations and 
model state based on estimated 
error covariance matrices

Ø Finite ensemble size leads to 
significant sampling errors 

• particularly for small covariances!

Ø Remove estimated long-range correlations

➜ Increases degrees of freedom for analysis 
(globally not locally!)

➜ Increases size of analysis correction

(introduced for EnKFs by Houtekamer & Mitchell 1998)
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Example: Sampling error and localization

 

 

true
sampled
localized

010 10 2020
distance
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Observation Localization

Local Analysis:

Ø Update small regions  

(like single vertical columns)

allows to define distance

Ø Use only observations within some

distance around this region

Ø State update and ensemble 

transformation fully local

Observation localization:

Ø Down-weight observations 

with increasing distance

S: Analysis region

D: Corresponding data region
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Overview

• What can we expect to achieve with data 
assimilation?

• What do we need for data assimilation?

• How does ensemble data assimilation work? 

• How can we apply ensemble data assimilation?

Please note: 
We omit equations of assimilation methods because you 

can apply PDAF without knowing them

(See Short Course SC1.2 on Friday for methodology)
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2
Implementation Concept of PDAF

(Parallel Data Assimilation Framework)
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Ensemble-based Kalman Filter

First formulated by G. Evensen (EnKF, J. Geophys. Res. 1994)

Kalman filter: express probability distributions by mean 
and covariance matrix

EnKF: Use ensembles to represent 
probability distributions 

observation

time 0 time 1 time 2

analysis

ensemble 
forecast

ensemble 
transformation

initial
sampling

state 
estimate

forecast
There are 

many 
possible 
choices!

What is 
optimal is part 

of our 
research

Different 
choices in 

PDAF
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Computational and Practical Issues

§ Running a whole model ensemble is costly

§ Ensemble propagation is naturally parallel (all independent)

§ Ensemble data assimilation methods need tuning

§ No need to go into model numerics (just model forecasts)

§ Filter step of assimilation only needs to know:

§ Values of model fields an their location

§ Observed values, their location and uncertainty

➜ Ensemble data assimilation can be implemented

in form of a generic code + case-specific routines

➜ Can be used without knowing the exact details of the 

filter algorithm
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PDAF: A tool for data assimilation

Open source: 
Code and documentation available at 

http://pdaf.awi.de

L. Nerger, W. Hiller, Computers & Geosciences 55 (2013) 110-118

PDAF - Parallel Data Assimilation Framework

§ a program library for ensemble data assimilation

§ provide support for parallel ensemble forecasts

§ provide fully-implemented & parallelized filters and smoothers 
(EnKF, LETKF, NETF, EWPF … easy to add more)

§ easily useable with (probably) any numerical model
(applied with MITgcm, NEMO, FESOM, HBM, TerrSysMP, …)

§ run from laptops to supercomputers (Fortran, MPI & OpenMP)

§ first public release in 2004; continued development

§ ~350 registered users; community contributions
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Offline coupling – separate programs

Model

Aaaaaaaa

Aaaaaaaa

aaaaaaaa
a

Start

Stop

read ensemble files

analysis step

Aaaaaaaa

Aaaaaaaa

aaaaaaaaa

Start

Stop

Do i=1, nsteps

Initialize Model
generate mesh
Initialize fields

Time stepper
consider BC

Consider forcing

Post-processing

For each ensemble state
• Initialize from restart files
• Integrate
• Write restart files

• Read restart files (ensemble)
• Compute analysis step
• Write new restart files

Assimilation
program

write model
restart files

generic
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Offline coupling - Efficiency

Offline-coupling is simple to implement
but can be very inefficent

Example: 
Timing from atmosphere-ocean 
coupled model (AWI-CM) 
with daily analysis step:

Model startup: 95 s
Integrate 1 day: 28 s
Model postprocessing: 14 s

Analysis step: 1 s

overhead

Restarting this model is ~3.5 times
more expensive than integrating 1 day

➜ avoid this for data assimilation
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single
program

Indirect exchange (module/common)
Explicit interface

state
time

state
observations

mesh data
Model

initialization
time integration
post processing

Ensemble Filter
Initialization

analysis
ensemble transformation

Observations
quality control

obs. vector
obs. operator

obs. error

Core of PDAF

Components of an Assimilation System

modify parallelization
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Extending a Model for Data Assimilation

Extension for 

data assimilation

revised parallelization enables 

ensemble forecast

plus:
Possible 

model-specific 

adaption

for MITgcm: 

adapt name of 

STDOUT files 

for ensemble

Start

Stop

Do i=1, nsteps

Initialize Model

Initialize coupler

Initialize grid & fields

Time stepper

in-compartment step

coupling

Post-processing

Model

single or multiple 
executables

coupler might be 
separate program

Initialize parallel. Aaaaaaaa

Aaaaaaaa

aaaaaaaaa

Stop

Initialize Model

Initialize coupler

Initialize grid & fields

Time stepper

in-compartment step

coupling

Post-processing

Init_parallel_PDAF

Do i=1, nsteps

Init_PDAF

Assimilate_PDAF

Start

Initialize parallel.

Finalize_PDAF
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Augmenting a Model for Data Assimilation

Couple PDAF (Parallel Data Assimilation Framework) with model

• Modify model to simulate ensemble of model states

• Insert correction step (analysis) to be executed each 12 model hours

• Run model as usual, but with more processors and additional options

Forecast 1

Forecast 2

Forecast 40

Forecast 1

Forecast 2

Forecast 40Analysis

(EnKF)

Observation

...

Day 1

00:00h

...

Day 1

12:00h

...

Day 1

12:00h

Day 2

00:00h

...

Analysis step in 

between time steps

Continue model

time stepping with

changed fields

Initialize 

ensemble

Ensemble 

forecast
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PDAF model binding routines
Interface routines 
• init_parallel_pdaf, init_pdaf, assimilate_pdaf, 

finalize_pdaf

Call-back routines
• Set number of time steps between analysis steps
• Write model fields into PDAF’s state vector and back into model 

fields
• Observation handling

PDAF release includes set of model binding routines for MITgcm
Ø for a simple test case
Ø just download and adapt for your needs
Ø (NEMO will be next)
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• Interface routines call PDAF-core routines

• PDAF-core routines call case-specific routines 
provided by user (included in model binding set)

• User-supplied call-back routines for elementary operations:

§ field transformations between model and filter

§ observation-related operations

• User supplied routines can be implemented 
as routines of the model 
(for MITgcm: Fortran-77 fixed-form source code)

PDAF interface structure

Model PDAF User routines
(call-back)

Access information through modules/common
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Parallelization of Assimilation Program

We use MPI (Message Passing Interface)

• standard for highly scaling parallelization

• used by most large-scale models

Only need to do this once for a model (e.g. done for MITgcm)

Init_parallel_PDAF
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Initialization of Assimilation

Set parameters, for example

• select filter

• set ensemble size

Calls PDAF_init
• initialization routine of framework

• provide parameters according to interface

• provide MPI communicators

• provide name of routine for ensemble initialization

Ensemble initialization routine – called by PDAF_init

• a “call-back routine”

• defined interface: provides ensemble array for initialization

• user-defined initialization

Init_PDAF
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Simple Subroutine Interfaces

Example: ensemble initialization

SUBROUTINE init_ens_pdaf(filtertype, dim, dim_ens, state, 
matrU, ens, flag)

IMPLICIT NONE

! ARGUMENTS:
INTEGER, INTENT(in) :: filtertype ! Type of filter
INTEGER, INTENT(in) :: dim ! Size of state vector
INTEGER, INTENT(in) :: dim_ens ! Size of ensemble
REAL, INTENT(out) :: ens(dim, dim_ens) ! state ensemble
INTEGER, INTENT(inout) :: flag ! PDAF status flag

! Not used for most filters:
REAL, INTENT(inout) :: state(dim) ! model state
REAL, INTENT(inout) :: matrU (dim_ens,dim_ens)

Task to be implemented:
Ø Fill ens with ensemble of initial model states



SC1.1: Ensemble Data Assimilation with PDAF

Ensemble Forecast and Analysis Steps

calls PDAF_assimilate
• checks whether ensemble integration 

reached time for analysis step

• If false: 
• return to model and continue integration

• If true: 
• Write forecast fields into state vectors (call-back routine)

• Compute analysis step of chosen filter

• Set length of next forecast phase (call-back routine)

• Write state vectors into model field arrays (call-back routine)

Assimilate_PDAF



SC1.1: Ensemble Data Assimilation with PDAF

Clean-up of Data Assimilation Program

Clean-up at end of program

• Display timing and memory information for PDAF

• Deallocate arrays inside PDAF

Calls to 

PDAF_print_info (memory and timing info)

PDAF_deallocate (deallocate arrays)

Finalize_PDAF
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Filter analysis implementation

Operate on state vectors

Ø Write all model fields into a 1-dimensional vector

• Filter doesn’t know about ‘fields’

• Computationally most efficient

• Call-back routines for

• Transfer between model fields and state vector

• Observation-related operations 

• Localization operations

For forecast

• Transfer data from state vector to model fields
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case-specific
operations

case-specific 
call-back 
routines

Ensemble Filter Analysis Step

Filter analysis
update ensemble

assimilating observations

Analysis operates 
on state vectors 
(all fields in one 

vector)

Ensemble of
state vectors

X

Vector of
observations

y

Observation 
operator

H(...)

Observation error
covariance matrix

R

For localization:

Local ensemble

Local
observations

Model
interface

Observation 
module

init_obs() obs_op() prod_obs_R()

init_obs_l()

collect_state()
distribute_state()

g2l_state()
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PDAF originated from comparison studies of different filters

Filters and smoothers
• EnKF (Evensen, 1994 + perturbed obs.)
• ETKF (Bishop et al., 2001)
• SEIK filter (Pham et al., 1998)
• ESTKF (Nerger et al., 2012)
• NETF (Toedter & Ahrens, 2015)

All methods include
• global and localized versions
• smoothers

Current algorithms in PDAF

Not yet released:
• serial EnSRF
• particle filter
• EWPF

Not yet released:
• NEMO

Model bindings
• MITgcm, Lorenz96
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ensemble size
0 4 8 12 16 20

tim
e 
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29
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31

32

33
integration time for different ensemble sizes

Execution times (weakly-coupled, DA only into ocean)

MPI-tasks

• ECHAM: 144

• FESOM: 384

Timings (1 day):

• Ens. forecast:  27 – 23 sec

• Analysis step: 0.5 – 0.9 sec

A remaining issue: 

• Increasing integration time with growing ensemble size 
(only 16% due to more parallel communication)

• some variability in integration time over ensemble tasks

• Need optimal distribution of programs over compute 
nodes/racks (here set up as ocean/atmosphere pairs)

10,560 
processor 

cores
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• Simulate a “model”

• Choose an ensemble

• state vector per processor: 107

• observations per processor: 2.105

• Ensemble size: 25

• 2GB memory per processor

• Apply analysis step for different 
processor numbers

• 12 – 120 – 1200 – 12000 

Very big test case

12 120 1200 120003.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

processor cores

tim
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fo
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na
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s 
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 [s
]

Timing of global SEIK analysis step

 

 

N=50
N=25

State dimension: 
1.2e11

Observation 
dimension: 2.4e9• Very small increase in analysis time (~1%)

(Ideal would be constant time)

• Didn’t try to run a real ensemble of largest state size (no model yet)
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Implementation concept of PDAF

For ensemble data assimilation with PDAF

• Augment program for ensemble data assimilation

• Assimilation methods provided by PDAF

• Model-binding routines required 

Ø provided for Lorenz96 and for MITgcm for test case

Ø easy to code yourself

pdaf@awi.de http://pdaf.awi.de
Slides are available online:

Next look into an example
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3
Hands-on Example: 

Build an Assimilation System with PDAF
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Directory layout:

make.arch

src

tutorial

online_2D_serial

model

model_coupled_to_pdaf

pdaf

online_2D_serial.noMPI

- build configurations

- source files

- serial model code

- final assimilation code

- code to be added to the model

Get the tutorial code

Download the tutorial

- alternative code without MPI
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2D „Model“

• Simple 2-dimensional grid domain

• 36 x 18 grid points (longitude x latitude)

• True state: sine wave in diagonal direction 
(periodic for consistent time stepping)

• Simple time stepping:
Shift field in vertical direction one grid point per time step

• Output to text files (18 rows) – true_step*.txt
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General program structure: model/main.f90

program main

initialize initialize model information:
- set dimensions
- allocate model field array
- read initial field

integrate perform time stepping
- shift model field
- write new model field

end program

No parallelization!
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Files in the tutorial directories

The model source code consists of the following files (model/):
• main.F90

• mod_model.F90

• initialize.F90

• integrate.F90

• Makefile
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Files in the tutorial directories

The PDAF coupling code consists of (pdaf/)

• interface subroutines (called from the model code)
• init_parallel_pdaf.F90

• init_pdaf.F90

• assimilate_pdaf.F90

• finalize_pdaf.F90

• user subroutines (called from the PDAF library), eg.
• collect_state_pdaf.F90

• “supporting” modules and subroutines (used in the 
interface and user subroutines), eg.

• mod_assimilation.F90

• init_pdaf_parse.F90
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Running the tutorial model

• cd to tutorial/online_2D_serialmodel/model

• Set environment variable PDAF_ARCH

export PDAF_ARCH=linux_gfortran_openmpi

• Run make

• Run the model with ./model

• Inputs are read in from tutorial/inputs_online

• Outputs are written in
tutorial/online_2D_serialmodel/model

eg. true_step10.txt
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Observations

• Add random error to true state (standard deviation 0.5)

• Select a set of observations at 28 grid points

• File storage (in inputs_online): 

text file, full 2D field, -999 marks ‘no data’ – obs_step*.txt
one file for each time step
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Coupling the model to PDAF: Online mode
• Combine model with PDAF into single program

• modify Makefile to build model_pdaf

• Add 4 subroutine calls:
init_parallel_pdaf- add parallelization
init_pdaf - initialize assimilation
assimilate_pdaf - perform assimilation
finalize_pdaf - clean up

• Implement user subroutines, e.g. for
• observation operator
• initialization of observation vector
• transfer between state vector and model fields

http://pdaf.awi.de/trac/wiki/OverviewOfUserRoutinesWithDefaultNames

http://pdaf.awi.de/trac/wiki/OverviewOfUserRoutinesWithDefaultNames
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Online coupling: Parallelization

• Online coupling avoids writing to disk to exchange state 
vectors between the model and PDAF

• Add MPI to the model to run several model instances in 
parallel

• Run the parallel version with
mpirun -np <n> ./model_pdaf ... 

• Alternative: PDAF’s “flexible” approach: 
http://pdaf.awi.de/ModifyModelForEnsembleIntegration
• cd to tutorial/online_2D_serialmodel.noMPI/model

http://pdaf.awi.de/ModifyModelForEnsembleIntegration
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Files to copy from pdaf to model
init_parallel_pdaf.F90

mod_parallel_pdaf.F90

parser_mpi.F90

finalize_pdaf.F90

init_pdaf.F90

mod_assimilation.F90

init_pdaf_info.F90

init_pdaf_parse.F90

init_ens.F90

next_observation_pdaf.F90

distribute_state_pdaf.F90

prepoststep_ens_pdaf.F90

... (continued on next slide)

initialization

ensemble forecast

parallelization

post step

PDAF interface subroutine -
called from the model

helper module/subroutine for 
the interface

PDAF user subroutine - called 
from PDAF library

clean up
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Files to copy from pdaf to model
... (continued from previous slide)

assimilate_pdaf.F90

collect_state_pdaf.F90

init_dim_obs_pdaf.F90

obs_op_pdaf.F90

init_obs_pdaf.F90

prodrinva_pdaf.F90

• Each file contains a short summary what the subroutine does

analysis step
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Files to be adapted in  model
main.F90

integrate.F90

Makefile

• Reference solutions for the modified files are in 
model_coupled_to_pdaf

• When complete, run make again
• Then run

mpirun -np 9 ./model_pdaf -dim_ens 9

• Outputs are written to
ens_<i>_step<j>_for.txt

ens_<i>_step<j>_ana.txt

- add calls to PDAF interface

- add calls to PDAF interface

- add linking to PDAF library, PDAF 
interface and user subroutines

This runs a filter without
localization with ensemble

size 9
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Plotting

• When your coupling is working, lookt at the results
• With Matlab/Octave you can use

load ens_01_step02_for.txt
pcolor(ens_01_step02_for)

• Or use the Python scripts
./plot_file.py ens_<i>_step<j>_for.txt

./plot_ens.py <i> <j>
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More PDAF experiments

• Find PDAF command line parameters in

./pdaf/init_pdaf_parse.F90

• Try for example

mpirun -np 4 ./model_pdaf -dim_ens 4 

(this runs a filter (ESTKF) without localization with ensemble size 4; it 
gives a worse result than ensemble size 9)

mpirun -np 9 ./model_pdaf -dim_ens 9 -filtertype 7

(this runs a filter (LESTKF) with localization and localization radius 0, 
i.e. correcting only at observed grid points)

mpirun -np 9 ./model_pdaf -dim_ens 9 -filtertype 7 
–local_range 5

(this runs a filter (LESTKF) with localization and localization radius of 5 
grid points)
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Feedback, Questions, more code, …

Full PDAF package contains 

• more tutorial code, more filters, and the fully implemented 
Lorenz-96 model and MITgcm model binding

Web site provides an extensive tutorial for self-study

For further questions

• Contact us at pdaf@awi.de

• Poster A.14, Friday 14:00–15:45 (L. Nerger)

pdaf@awi.de http://pdaf.awi.de
Slides are available online:


