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Abstract
With each cell division, phytoplankton create new space for primary colonization by marine bacteria. Although this surface
microenvironment is available to all planktonic bacterial colonizers, we show the assembly of bacterial consortia on a
cosmopolitan marine diatom to be highly specific and reproducible. While phytoplankton–bacteria interactions play
fundamental roles in marine ecosystems, namely primary production and the carbon cycle, the ecological paradigm behind
epiphytic microbiome assembly remains poorly understood. In a replicated and repeated primary colonization experiment,
we exposed the axenic diatom Thalassiosira rotula to several complex and compositionally different bacterial inocula
derived from phytoplankton species of varying degrees of relatedness to the axenic Thalassiosira host or natural seawater.
This revealed a convergent assembly of diverse and compositionally different bacterial inocula, containing up to 2071
operational taxonomic units (OTUs), towards a stable and reproducible core community. Four of these OTUs already
accounted for a cumulative abundance of 60%. This core community was dominated by Rhodobacteraceae (30.5%),
Alteromonadaceae (27.7%), and Oceanospirillales (18.5%) which was qualitatively and quantitatively most similar to its
conspecific original. These findings reject a lottery assembly model of bacterial colonization and suggest selective
microhabitat filtering. This is likely due to diatom host traits such as surface properties and different levels of specialization
resulting in reciprocal stable-state associations.

Introduction

Marine phytoplankton is pivotal in fixing and converting
atmospheric CO2 into biological matter. The organic matter
enters the marine food web and is partially exported to the
ocean floor, supporting global marine biological and geo-
chemical processes as a consequence [1]. These processes
are largely fueled by close interactions between phyto-
plankton and bacteria and driven by specific bacterial
enzymatic capabilities as well as reciprocal needs of bac-
teria and phytoplankton for essential trace elements, micro-,
and macronutrients [2, 3]. Experimental evidence for such
interactions is demonstrated for the utilization and acquisi-
tion of bacterially produced B-vitamins [4] and essential
trace metal ions by diatoms [5]. The presumed vitamin B12

auxotrophy of many phytoplankton is confirmed in more
than 50% of investigated stramenopiles [6].

In return for vitamins and other cofactors, phytoplankton
offer an organic carbon source to heterotrophic bacteria
through cell wall-associated macromolecules and seques-
tration of photosynthetic products [7]. Diatoms, for example,
release up to 5% of their primary production as
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photosynthate [8]. A high proportion of this dissolved
organic carbon consists of high-molecular weight (HMW)
components such as polysaccharides [9]. Recent research
using phototroph–heterotroph co-culture experiments under
nutrient-amended and natural seawater conditions suggests
that phytoplankton and bacterial heterotrophs do not com-
pete for the same limited resources, but rather benefit from
each other because of very different levels of specialization
resulting in complementary associations in long-term stable-
state systems [10]. One of these studies revealed feedback
loops of bacteria producing algal growth hormones from
diatom-derived precursor molecules in exchange for diatom-
excreted organosulfur molecules, which in turn stimulate
bacterial excretion of ammonia subsequently fueling diatom
growth [11]. Despite these sophisticated examples of reci-
procal metabolic exchange, the role of these compounds in
organismal interactions and in the assembly of bacterial
consortia on phytoplankton are poorly studied [7].

The exudation of organic photosynthate molecules by
phytoplankton involves passive diffusion driven by a steep
concentration gradient between the phytoplankton cell and
its surroundings. The diffusive boundary layer causing this
gradient is the algal phycosphere [12], which defines the
location for direct interactions between microalgae and
bacteria. It is largely made up of HMW polysaccharides.
Depending on their monomer composition, type and degree
of branching and ultrastructure, phytoplankton exopoly-
saccharides represent highly diverse and often plankton
species-specific chemical compounds [13]. These molecules
are crucial attractants for heterotrophic bacteria [14]. For
bacteria to utilize these exopolysaccharides requires specific
carbohydrate-active enzymes [15] encoding the machinery
for polysaccharide detection, hydrolysis, and uptake. Such
enzymes are localized within gene clusters referred to as
polysaccharide utilization loci (PULs). As no single bac-
terium is adequately specialized to utilize the suite of
complex phytoplankton exopolysaccharides, commensal
and mutualistic associations of different heterotrophic bac-
teria with complementary PULs are assumed to co-occur in
the phycosphere. This in turn gives rise to the emerging
concept of plankton-specific associated consortia [14, 16].

The above examples indicate that an epiphytic bacterial
community is important to normal phytoplankton function
and, by extension, the ecology of the habitat in which they
exist. Indeed, several recent microbiome studies of diverse
phytoplankton suggest that marine and fresh water phyto-
plankton harbor unique bacterial consortia which are con-
sistent within phytoplankton species and across temporal
scales [16–19]. Yet, some phytoplankton do not harbor a
core set of associated bacteria [20]. In these cases, the
sampling time and location are suggested to be more deci-
sive factors determining the associated microbiome than
phytoplankton species affiliation [21].

The principles underlying the assembly of complex epi-
phytic microbial communities have been an issue of long-
standing concern to the field of marine microbial ecology.
Contrary to microbiome studies of marine microalgae, there
are detailed and spatiotemporally replicated studies of epi-
phytic communities on macroalgal surfaces. The green sea-
weed Ulva australis, for example, harbors a highly specific
associated bacterial community distinct from that of sur-
rounding seawater but with a high degree of variability
among U. australis individuals [22]. These observations
reject the hypothesis of a stable, algal species-specific core
microbiome and suggest that a large number of bacterial
species colonize this macroalgal surface. Burke et al. [22]
linked this conclusion to the redundancy hypothesis [23],
which assumes that more than one species is capable of
performing a specific role within an ecosystem. Yet, on its
own, functional redundancy did not account for observations
of both selectiveness and variability, suggesting additional
selective mechanisms determining the epiphytic bacterial
assemblage on the seaweed. The authors reconciled their
observations with the lottery hypothesis [24, 25], an ecolo-
gical assembly model originally developed to explain the
coexistence of reef fish species, that departs from the tradi-
tional niche-based view. This theory asserts that species with
similar trophic abilities will occupy space within an ecosys-
tem based on stochastic recruitment, i.e., whoever gets there
first wins the lottery for space. In U. australis, this model
entails that a guild of certain bacteria, all of which possess the
necessary genetic abilities to colonize and metabolic
requirements to live on the thallus surface, is functionally
redundant [26]. These considerations are particularly perti-
nent in the context of microbial community ecology, given
the frequent genetic exchange among taxonomically distinct
bacteria through horizontal gene transfer, resulting in a high
degree of genomic and functional coherence.

There is currently no unifying scheme or theory for
bacterial community assembly on marine phytoplankton
that satisfies the diverse observations spanning the spectrum
from distinct core communities on phylogenetically distant
microalgae to spatially and/or temporally diverse commu-
nities on conspecific microalgae. Notably, studies addres-
sing bacterial community assembly resulting from
interactions between two microscopic players (i.e., phyto-
plankton and seawater bacteria) are challenging due to the
microscopic scale at which they occur. The only studies to
date, comparing bacterial assemblages on individual cells of
congeneric diatoms obtained from natural waters, found that
recovered bacterial phylotypes were extremely diverse and
rarely shared across individual diatom cells [27, 28],
potentially supporting a lottery assembly model.

We conducted a series of independent and replicated co-
culture experiments to unravel patterns of bacterial com-
munity assembly on a globally important, bloom-forming
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marine diatom genus, Thalassiosira [29, 30], specifically a
North Sea isolate of T. rotula. The diatom was rendered
axenic and cultured under micronutrient-poor conditions in
the absence of B-vitamins. These axenic T. rotula cultures
were inoculated with complex bacterial communities
detached from conspecific (from the same species), con-
generic (from the same genus), and heterospecific (from a
different species) co-occurring diatom species and seawater
bacterioplankton. Once these co-cultures reached mid-
exponential growth phase, the newly established, primary
T. rotula microbiomes were sampled and sequenced for
biostatistical analyses.

Materials and methods

Phytoplankton collection, species characterization,
and culture maintenance

Monoclonal phytoplankton batch cultures were established
by isolating single cells or chains of microalgae from sea-
water collected at the island of Helgoland (54°11′03′′N, 7°
54′00′′ E). The isolates were grown in 12-well plates with
filter-sterilized artificial seawater medium (ESAW) con-
taining essential trace metals and vitamins [31] with the
exception of T. rotula_A17, which was isolated and main-
tained in vitamin-depleted ESAW. Pure and established
cultures were transferred to 25 mL culture flasks and
maintained at 15 °C and a 12 h light/12 h dark diurnal cycle
(30–70 µmol m−2 s−1). Every week, aliquots of batch cul-
tures were transferred into new medium at a concentration
of 2000 cells mL−1 to maintain healthy and exponentially
growing cultures. Taxonomic identities of T. rotula strain
S16 (isolated in spring 2016, in the following labeled T.
rotula_S16), T. rotula strain A17 (isolated in autumn 2017,
in the following labeled T. rotula_A17), and axenic T.
rotula_S16 (see below), were assigned by sequence simi-
larity analysis of a fragment of the small and large subunit
of the 18S and 28S ribosomal RNA gene (see Supple-
mentary section). Briefly, algal pellets were processed with
the DNeasy Powersoil kit (Qiagen, Germany) according to
the manufacturer’s instructions. PCR was performed with
specific primers [32, 33]. The other diatom isolates were
identified based on morphological characteristics [34]
resulting in the assignment of Ditylum brightwellii and
Cylindrotheca closterium (isolated in spring 2016). Two
other Thalassiosira species, T. weissflogii (CCMP 3365)
and T. pseudonana (CCMP 996) were obtained from the
National Centre for Marine Algae and Microbiota (NCMA
at Bigelow Laboratory, USA) and maintained under the
same conditions described above.

In growth experiments, diatom growth was monitored
daily in black 96-well polystyrene microplates with clear

bottom (Greiner Bio-One, Germany) by measurements of
relative fluorescence units (RFU) of chlorophyll using a
plate reader (FLUOstar Omega, BMG, Germany) at optical
filters settings of λex 440–80 nm and λem 640–80 nm. In
Experiment I diatom growth and performance were further
monitored by pulsed-amplitude-modulation fluorometry
(Water-PAM, Walz, Germany) by measurement of the
minimal (F0) and maximal (Fm) dark fluorescence [35].
Briefly, samples were taken 5–7 h into the light cycle and
diluted in ESAW to be within the PAM detection range.
The photosystem II (PSII) potential quantum yield (Fv/Fm)
is the normalized ratio of F0 and Fm ((Fm− F0)/Fm= Fv/Fm)
and represents the maximum potential quantum efficiency
[36]. The chlorophyll fluorescence readings were correlated
with exact numbers of Lugol-fixed diatom cells enumerated
under the microscope.

Establishment of an axenic T. rotula culture

The T. rotula_S16 culture was rendered axenic according to
[37] with modifications. Briefly, 40 mL diatom culture was
harvested at mid-exponential growth and gravity filtered
onto 3-µm pore-size polycarbonate Nucleopore track-etched
membrane filters (Whatman, Germany) in a sterile glass
vacuum filter device. Diatoms on the filter membrane were
treated sequentially with (i) 150 mL sterile ESAW, (ii)
50 mL sterile ESAW containing 20 µg mL−1 Triton-X 100
(Sigma Aldrich, Germany), and (iii) 150 mL sterile ESAW.
The treated cells were transferred into 100mL sterile ESAW
containing the antibiotics streptomycin (50 µgmL−1), gen-
tamicin (67 µgmL−1), ciprofloxacin (20 µgmL−1), chlor-
amphenicol (2.2 µg mL−1), and ampicillin (100 µgmL−1)
(Sigma, Germany) and incubated for 2 days under the
temperature and light settings above. Subsequently, the
entire procedure was repeated twice to render the culture
axenic. The axenic culture was again gravity filtered, filter
washed and transferred into sterile ESAW without anti-
biotics at ca. 2000 cells mL−1 and grown under the tem-
perature and light settings above. The culture was regularly
checked for axenicity by nucleic acid staining with 4′,6-
diamidino-2-phenylindole (DAPI, Thermo Fisher Scientific,
Germany) under the fluorescence microscope. In parallel, the
diatom culture was regularly inoculated into marine broth to
check for bacterial growth and contamination.

Preparation of T. rotula for co-culture with a
bacterial inoculum

Prior to inoculating diatoms with a defined bacterial con-
sortium, the axenic T. rotula_S16 culture was depleted of
vitamins. This was done by gravity filtration of 40 mL
axenic culture at mid-exponential phase, rinsing the
filter three times with 100 mL ESAW without vitamin
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supplements (ESAW-vit). An aliquot of the axenic, vitamin-
replete T. rotula_S16 culture was transferred to new ESAW-

vit at 2000 cells mL−1 and maintained under temperature and
light settings as described above until mid-exponential
phase. These transfers were repeated until the culture no
longer grew in comparison with an axenic and vitamin-
replete T. rotula_S16 culture. The axenic and vitamin-
deplete T. rotula_S16 culture was immediately used as a
recipient (in the following termed acceptor culture) of
defined bacterial inocula.

Preparation of the bacterial inocula

The non-axenic diatom cultures were transferred from
ESAW to ESAW-vit for 2 months prior to their use as a
source of the bacterial inoculum. Briefly, 40 mL culture
aliquots (n= 3) were gravity filtered through 3-µm (0.6 µm
for T. pseudonana) pore-size polycarbonate membranes,
rinsed with 100 mL ESAW-vit and incubated in 40 mL
ESAW-vit for 2 days, after which the procedure was repeated
twice. The logic behind this procedure was to flush free-
living, opportunistic bacteria out of the cultures. This
strategy relied on the rationale that diatom-associated bac-
teria coexist with dissociated conspecifics. The final 40 mL
filtrates of each diatom culture were quantified by fluores-
cence microscopy of DAPI-stained bacterial cells and
immediately used as inoculum. The filter membranes were
transferred into SL1 lysis buffer (NucleoSpin Soil® kit,
Macherey Nagel, Germany) and stored at −20 °C for sub-
sequent sequencing analyses of each diatom-associated
bacterial community. Replicates of the T. rotula_S16
acceptor cultures were processed accordingly.

Co-culture experiment

Aliquots of the axenic, vitamin-deplete T. rotula_S16
acceptor culture were adjusted to 2000 cells mL−1 in
ESAW-vit and spiked with bacterial inocula at a ratio of
1:100 diatom:bacterial cells obtained from (i) conspecific
non-axenic T. rotula_S16 and T. rotula_A17, (ii) con-
generic T. weissflogii and T. pseudonana, (iii) heterospecific
D. brightwellii and C. closterium, and (v) fresh seawater
from Helgoland obtained in autumn 2017 (54°11.3′N, 7°
54.0′ E). An axenic, vitamin-deplete T. rotula_S16 acceptor
culture without bacterial inoculum served as the control.
The co-culture experiments were run under the same tem-
perature and light settings stated above and monitored daily
for growth and performance. After 4 days, the T. rotu-
la_S16 acceptor cultures were gravity filtered onto 3-µm
polycarbonate filters and transferred into lysis buffer and
stored at −20 °C. The replicated co-culture experiments
(n= 3) were done with independently prepared bacterial
inocula (Experiment I) and repeated after 6 months

(Experiment II) to test if the bacterial community assembly
was reproducible. In addition to Experiment I, the Experi-
ment II included a non-diatom-derived source of the
bacterial inoculum prepared from fresh seawater as well as
an inoculum prepared from a fresh T. rotula isolate
(T. rotula_A17).

Bacterial DNA extraction and 16S rRNA gene
sequencing

Bacterial DNA was extracted with the NucleoSpin Soil® kit
(Macherey Nagel, Germany). The filter membranes obtained
in Experiment I were pooled and analyzed, whereas filters of
Experiment II were analyzed individually. The DNA quan-
tity and quality were examined with a Nanodrop (Thermo
Fisher Scientific, Germany). The DNA quality was verified
by electrophoresis on 1% agarose gel. The axenic T. rotu-
la_S16 acceptor culture was processed accordingly to verify
its axenicity. Bacterial DNA was amplified using an
amplicon barcoded sequencing protocol for MiSeq plat-
forms. The V4 hypervariable region of bacterial genes was
amplified using modified universal bacterial primer set
515F/806R (515F: 5′-TCGTCGGCAGCGTCAGATGTGT
ATAAGAGACAG GTGCCAGCMGCCGCGGTAA-3′ and
806R: 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGA
GACAGGGACTACHVGGGTWTCTAAT-3′). Each for-
ward and reverse primer contained different barcode
sequences with Illumina adapter overhang sequences as
described previously [38, 39]. The library was prepared
according to the 16S metagenomic sequencing library pre-
paration script (https://support.illumina.com/downloads/
16s_metagenomic_sequencing_library_preparation.html).
16S rRNA amplicon sequencing was subsequently per-
formed on the Illumina MiSeq platform (Molecular Research
LP; USA) following the manufacturer’s guidelines.
Sequence data were deposited in the European Nucleotide
Archive [40], using the data brokerage service of the Ger-
man Federation for Biological Data [41], in compliance with
the Minimal Information about any (X) Sequence standard
[42]. They are accessible under PRJEB32927.

Sequence data processing and bacterial community
analysis

Sequencing was performed in 2 × 300-bps paired-end-mode
using the MiSeq Reagent Kit v3. The trimmomatic package
[43] was used to crop the 300–275 bps and a sliding window
length 3 allowed an average Phred quality score of 8 to filter
from 5′ to 3′ and cut when the quality dropped below the
value of 8. The paired-ends were merged with Vsearch [44]
with a minimum overlap of 40 bps and a maximum number
of four mismatches. Sequences were reverse complemented
and both directions merged into one file. The combined files
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were filtered for primer sequences, allowing 10% mismatch
and a minimum overlap of 17 bps for the forward and 13 bps
for the reverse primer. This step was followed by feature
filtering to allow a maximum expected error per sequence of
1, a minimum length of 275 bps, a maximum length of
475 bps and a maximum number of ambiguities of 0. Each
sample was de-replicated independently and chimera-
checked de novo. All samples were pooled and de-
replicated to produce a combined dataset as input for the
swarm operational taxonomic unit (OTU) clustering method
under default settings [45]. The most abundant amplicon of
an OTU cluster was used as representative. Sequences were
annotated with the default of the ribosomal database project
classifier implemented in Mothur [46]. The taxonomy was
assigned with the Silva v128 reference file prepared in
Mothur at a confidence level of 80%. The representative
annotation was used for the full OTU cluster.

Statistical analyses

To compare community profiles between different bacterial
inocula and newly established bacterial consortia on T.
rotula in Experiments I and II, mitochondrial and chlor-
oplast reads were excluded prior to nonparametric multi-
variate analyses. All reads were normalized to the median
sequencing depth. Principal coordinates analysis (PCoA)
was performed to determine differences between bacterial
community profiles on a distance matrix using Bray–Curtis

similarity measures. The differences between the grouping
variables (bacterial inoculum and established T. rotula_S16
microbiome) and among the bacterial inocula as well as
among the established T. rotula_S16 consortia were asses-
sed by analysis of similarity (ANOSIM). The similarity
percentage procedure was applied to identify OTUs with the
highest discriminating contribution score. Statistical ana-
lyses of co-culture growth states were performed using
ANOVA testing followed by post hoc, pairwise compar-
isons of Tukey Honest Significance Difference tests. All
analyses were performed with R, version 3.4.4 (R Core
Team, 2018) with Phyloseq [47] and vegan [48], and
plotted with ggplot2 [49].

Results

Axenification and co-culture of T. rotula_S16 with
bacteria

We demonstrated that T. rotula_S16 critically relied on its
associated bacterial community for growth and perfor-
mance. This was shown with an axenic culture stripped of
its supply of vitamins B1, B7, and B12. In comparison with
the exponentially growing non-axenic and vitamin-deplete
control, the axenic vitamin-deplete T. rotula culture ceased
growth after 5–6 days. This coincided with a drop in
potential quantum yield (Fig. 1) indicative of a decline in
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Fig. 1 Growth and performance of Thalassiosira rotula_S16 in
three sequential culture transfers under axenic and non-axenic
conditions. Growth (F0) (a–c) and potential quantum yield (Fv/Fm)
(d–f) of an axenic (dotted line) and non-axenic (solid line) Tha-
lassiosira rotula_S16 culture under vitamin depletion for the first
(a, d), second (b, e), and third (c, f) sequential transfers into ESAW-vit

at a starting cell density of 2000 cells mL−1. At the beginning of the

third transfer, the culture did no longer grow (c) and its performance
dropped below that of the vitamin-replete control (f). At this stage, the
axenic and vitamin-deplete T. rotula_S16 culture was used as acceptor
in co-culture experiments with bacterial inocula. Growth was deter-
mined by minimal chlorophyll fluorescence (F0) and potential quan-
tum yield using PAM fluorometry. Each data point is the result of three
culture replicates with ±1 standard deviation indicated by vertical bars.
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PSII, supporting the well-established paradigm that a
naturally associated bacterial consortium delivers essential
micronutrients for diatom growth and physiological per-
formance [50]. At day 4, the axenic T. rotula_S16 culture
stopped growing (Fig. 1c) and was used as recipient of the
bacterial inoculum. At this stage, aliquots of the axenic,
vitamin-deplete T. rotula_S16 culture were then inoculated
and cultured with several complex bacterial consortia.

Co-culture of axenic T. rotula_S16 with diverse
bacterial inocula

In co-culture Experiment I, T. rotula_S16 inoculated with
its conspecific bacterial assemblage (Fig. 2, solid line) grew
equally well as the non-axenic vitamin-deplete control
(Fig. 2, dashed line) and reached mid-exponential phase
after 4 days. The axenic T. rotula_S16 culture was stagnant
at this time (Fig. 2, dotted line). The T. rotula_S16 cultures
inoculated with congeneric and heterospecific diatom bac-
terial assemblages in Experiments I and II grew the same or
statistically better than T. rotula_S16 inoculated with its
conspecific bacterial community (Fig. 2 and Supplementary
Table S1). The only exceptions to this trend were T. rotu-
la_S16 cultures inoculated with a bacterial assemblage of
the conspecific autumn 2017 isolate T. rotula_A17 and
seawater which induced significantly higher growth than the
axenic control but significantly lower growth than all other
inoculated cultures.

Sequence analysis and comparison of community
structures in bacterial inocula and established
T. rotula_S16 bacterial consortia

Comparative sequence analyses of the 16S rRNA gene
libraries revealed a total number of 5 million raw reads
across all replicates after quality filtering (Supplementary
Fig. S1). The replicates of Experiment I were pooled prior
to sequencing whereas the independent replicates of
Experiment II were individually sequenced. The individual
bacterial inoculum communities differed significantly
among each other (ANOSIM: R= 0.751, p < 0.001),
whereas all established T. rotula bacterial consortia were
statistically the same (R= 0.133, p= 0.084). This was also
reflected in the clustering pattern obtained by PCoA
(Fig. 4). While significant (p < 0.001) the differences
between the community profiles of the bacterial inocula
(containing 13–2071 OTUs) and the established T. rotula
bacterial consortia (containing 11–80 OTUs, Table S2)
were low as revealed by an R score of 0.154. This is likely
due to the overlap of few OTUs shared across all commu-
nities, such as OTU-7, -11, -29, -30, -2, -12, and -33 (Fig. 5,
panel 2). The most diverse bacterial inoculum was obtained
from seawater containing 2071 OTUs. Of all bacterial
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Fig. 2 Co-culture of axenic Thalassiosira rotula_S16 with different
bacterial inocula. Growth of T. rotula_S16 acceptor cultures (solid
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inoculated with bacterial communities obtained from T. rotula_S16,
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axenic vitamin-deplete T. rotula_S16 culture (dotted line) served as
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deviation indicated by vertical bars. n.d. (not determined).
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OTUs in the established T. rotula bacterial consortia, 79.5%
were Proteobacteria and 2.4% Bacteroidetes.

The different community structures of the bacterial
inocula and the established T. rotula bacterial consortia
were also apparent by PCoA (Fig. 4). There was high
similarity between both conspecific bacterial inocula
obtained from T. rotula_S16 and T. rotula_A17 and their
corresponding established bacterial consortia. The other
bacterial consortia resulting from inoculation of T. rotu-
la_S16 with congeneric and heterospecific bacterial com-
munities clustered closely with the conspecific established
T. rotula_S16 bacterial consortia (Fig. 4).

The established bacterial consortia were characterized by
27 OTUs responsible for a cumulative abundance of 94%.
The most dominant OTUs were OTU-7 (Alteromonas sp.),
OTU-8 (unclassified), OTU-13 (Marinomonas sp.), and
OTU-11 (Sulfitobacter sp.). These four OTUs alone con-
tributed 60% to the overall reads in established T. rotula
bacterial consortia (Fig. 5, panel 1).

When individually comparing the abundances of 27
OTUs in the inocula and established T. rotula bacterial
consortia, three cases could be distinguished (Fig. 5, panel
2). Either an OTU was abundant in both, the inoculum as
well as the established community (e.g., OTU-7). More
often, OTUs were hardly abundant in the inoculum whereas
abundant in the established community (e.g., OTU-8, -13,
-54, -37, -49, -43, -57, and -59). Differences of highly
abundant OTUs in the inoculum versus low abundance in
the established community were also observed (e.g., OTU-
30, -2, -12, -33, -17, and -27).

Discussion

The outside of marine macroorganisms is commonly cov-
ered with microbial biofilms. These epibiotic microbial
assemblages affect macroorganisms in various ways caus-
ing a range of positive and negative impacts [51]. While
host-microbe interactions play fundamental roles in marine
ecosystems, we have little understanding of the ecological
processes that govern these relationships, the evolutionary
processes that shape them and their synecological con-
sequences. Cumulative evidence suggests that epibiotic
microbial communities are characteristic to their living
hosts [52, 53]. Yet, compared with a number of detailed
microbiome studies of multicellular marine macroalgae
[22, 52, 54–56], there is currently no unifying scheme or
theory for bacterial community assembly on unicellular
algae that underpins the divergent observations of distinct
core communities on phylogenetically different microalgae
to spatially and/or temporally diverse communities on
conspecific microalgae [57].

To better understand the bacterial community assembly
on ecologically relevant phytoplankton, we defined a model
diatom that can be cultured and experimentally manipulated
under controlled conditions. We chose the cosmopolitan
marine diatom T. rotula in co-culture with bacterial com-
munities detached from other diatoms of varying degrees of
relatedness to the axenic Thalassiosira host or seawater.
Compared with its well-studied brackish congener T. pseu-
donana [58, 59], T. rotula is a marine bloom-forming dia-
tom of global abundance and significance [29, 30].

The co-cultures reached mid-exponential growth at the
same time as the non-axenic control (Fig. 2 and Supple-
mentary Table S1), suggesting that the newly established
primary bacterial consortia support the same synecological
function as the original microbiome of the non-axenic
vitamin-deplete T. rotula control. Given that all diatoms
used in this study are reported to have an absolute vitamin
B12 requirement for growth [60–62], this further suggests
that at least some bacteria in the different inocula (and
seawater) possess vitamin synthesis capabilities. A future
experimental setup resulting from these conclusions would
inoculate the model system with bacterial consortia
obtained from a diatom reported to lack an absolute B12

requirement, such as Phaeodactylum tricornutum, which
has a flexible cobalamin demand because its genome
encodes both cobalamin-dependent and independent
methionine synthase [62]. In this case we would not expect
to observe a growth promoting effect of an axenic, vitamin-
deplete T. rotula culture.

Phylogenetic composition of bacterial inoculum
communities

In support of recent studies, the phylogenetic composition of
associated bacterial consortia among the various diatoms
differed significantly [2, 18, 19, 63]. The consortia were
dominated by Alteromonadaceae and Rhodobacteraceae,
which is in agreement with prior studies [2, 19]. The phy-
logenetically most diverse bacterial community was obtained
from seawater, which is consistent with studies comparing
free-living and particle-associated bacteria (including those
associated with algae) [50, 64]. The repeated sequence ana-
lyses of bacterial consortia on diatoms sampled 6 months
apart were highly reproducible (Figs. 3 and 4). Such strong
conservation across strains cultivated from different seasons
is in agreement with recent studies [16]. The T. rotula iso-
lates obtained in spring 2016 and autumn 2017 revealed
different bacterial consortia, with the autumn isolate rich in
Cryomorphaceae and Oceanospirillaceae while lacking Col-
welliaceae (Fig. 3). Similar observations of the influence of
season on the bacterial community structure have been made
with other conspecific diatoms [21].
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Phylogenetic composition of established T. rotula
bacterial consortia

The bacteria in the different inocula were presumably
adapted to a diatom-associated life style, yet the newly
established T. rotula_S16 bacterial consortia consisting of
11–80 OTUs were statistically different from these source
communities (Fig. 4). Notably, the established T. rotula
bacterial consortia were compositionally and quantitatively
most similar to each of their corresponding conspecific
source community (i.e., T. rotula strains S16 and A17), thus
validating the experimental approach of effectively dis-
sociating and re-establishing their diatom-specific bacterial
consortia (Fig. 4).

Overall, the co-culture experiment revealed a convergent
assembly of highly diverse and compositionally different
bacterial communities (consisting of 13–2071 OTUs) towards
a rather defined and reduced T. rotula core community. Even
the most diverse community, seawater, containing 2071
OTUs, was reduced to this core community, dominated by
Rhodobacteraceae (30.5%), Alteromonadaceae (27.7%), and
Oceanospirillales (18.5%) (Figs. 3 and 4).

C. closterium )T. weissflogii

0

2000

4000

6000

8000
Seawater

B
acterial inoculum

0

2000

4000

6000

8000

I IIa IIb IIc

T. rotula_S
16 acceptor

N
or

m
al

iz
ed

 A
bu

nd
an

ce

I IIa IIb IIcI IIa IIb IIcI IIa IIb IIcI IIa IIb IIcI IIa IIb IIcI IIa IIb IIc

n.d. n.d. n.d.

n.d. n.d. n.d.

Aliivibrio
Alteromonas
Amphritea
Arcobacter
Cobetia
Cocleimonas

Colwellia
Croceibacter
Flavobacterium
Fluviicola
Glaciecola
Gramella

Halomonas
Leeuwenhoekiella
Leucothrix
Lutibacter
Marinomonas
Mesonia

Neptuniibacter
Oleispira
Olleya
Other
Pacificibacter
Paraglaciecola

Pelagicola
Pseudoalteromonas
Pseudophaeobacter
Psychrobacter
Psychromonas
Psychrosphaera

Shewanella
Sulfitobacter
Winogradskyella

T. rotula_S16D. brightwellii T. pseudonana T. rotula_A17   

Fig. 3 Phylogenetic composition of established T. rotula_S16 bac-
terial consortia (bottom row) and bacterial inoculum communities
detached from different diatoms and seawater (top row). The
stacked bar plots show the normalized abundance of OTUs at the

genus level. The pooled replicates of Experiment I are denoted as (I).
Individual replicates (a, b, c) of Experiment II are denoted as (IIa–c).
n.d. (not determined).

−0.2

0.0

0.2

0.4

−0.4 −0.2 0.0 0.2 0.4
PC1 (26.7%)

C. closterium
D. brightwellii

Seawater

T. pseudonana

T. rotula_A17

T. rotula_S16

T. weissflogii

Bacterial 
inoculum

Established T. rotula 
microbiome

P
C

2 
(2

2%
)

Fig. 4 Principle coordinate analysis (PCoA) of bacterial commu-
nity compositions in established Thalassiosira rotula_S16 bacterial
consortia (triangles) and bacterial inocula (squares) obtained from
non-axenic T. rotula_S16, T. rotula_A17, T. weissflogii, T. pseu-
donana, Ditylum brightwellii, Cylindrotheca closterium, and sea-
water. Treatments of Experiment I and II are denoted by open (I) and
closed (II) symbols, respectively.

J. Mönnich et al.



The differences in relative abundance of certain OTUs in
the established bacterial consortia compared with the
inoculum were either the same (indicating neutral uptake),
significantly higher (indicating favorable uptake), or sig-
nificantly lower (indicating disadvantageous uptake) (Fig. 5,
panel 2–6). The most drastic qualitative and quantitative
transition from the inoculum to the core community was
observed in the co-culture setup of a seawater bacterial
community with the axenic T. rotula culture, supporting a
parallel study using seawater bacterioplankton as inoculum
with axenic T. rotula [65].

Our experimental setup was based on the hypothesis that
all bacteria in the different inocula (except for the seawater
community) possessed the genetic and metabolic abilities
to colonize the axenic T. rotula surface and be sustained
on diatom-derived organic carbon. The strong phylogenetic
convergence and high degree of overlap among comparatively

few OTUs shared across the established T. rotula bacterial
consortia was instead indicative of a highly selected, stable,
and reproducible core bacterial community. This conclusion
was further supported by the diverse seawater bacterial com-
munity converging to statistically the same characteristic
community structure (Figs. 3 and 4). Remarkably, despite
high statistical similarity among all established T. rotula_S16
bacterial consortia, the T. rotula_S16 cultures inoculated with
bacteria obtained from T. rotula_A17 and seawater, both
sampled in autumn 2017, revealed significantly lower growth
than the other co-cultures (Fig. 2). Since both of these
established consortia clustered closely by PCoA (Fig. 4), these
results suggest that even small differences in the overall
community composition can significantly affect the diatom
host performance.

Together, these data reject the hypothesis that the bacterial
consortium assembly on T. rotula is due to stochastic

0

20

40

60

0
10
20
30
40
50

0
10
20
30
40
50

OTU-13 (Marinomonas sp.)

0
10
20
30
40
50

C. c
los

ter
ium

D. b
rig

htw
ell

ii
T. 

ps
eu

do
na

na
T. 

weis
sfl

og
ii

T. 
ro

tul
a_

S1
6

T. 
ro

tul
a_

A1
7

Se
aw

ate
r

OTU-7 (Alteromonas sp.) OTU-8 (unclassified)

OTU-12 (Alteromonas sp.)

*

** *

* *
*

*

0

10

20

30

40

50

60

70

80

90

100

7 8 13 11 29 30 2 12 51 54 33 37 49 17 43 57 59 27 11
9

45 23 46 93 19
9

32 70 3

N
or

m
al

iz
ed

 a
bu

nd
an

ce
 (%

)

OTUs

0

5

10

15

20

25

N
or

m
al

iz
ed

 a
bu

nd
an

ce
 (%

)

7 8 13 11 29 30 2 12 51 54 33 37 49 17 43 57 59 27 11
9

45 23 46 93 19
9

32 70 3

OTUs

N
or

m
al

iz
ed

 a
bu

nd
an

ce
 (%

)

C. c
los

ter
ium

D. b
rig

htw
ell

ii
T. 

ps
eu

do
na

na
T. 

weis
sfl

og
ii

T. 
ro

tul
a_

S1
6

T. 
ro

tul
a_

A1
7

Se
aw

ate
r

1 2

43

65

Fig. 5 Abundance and contribution of OTUs to the Thalassiosira
rotula core microbiome. Panel 1 Cumulative normalized abundance
of 27 OTUs comprising 94% of the established T. rotula bacterial
consortia (bold OTU numbers are presented in panel 3–6). Panel 2
Comparison of individual OTU abundances averaged across all
inocula (gray bars) and established acceptor bacterial consortia (black

bars). Panel 3–6 Normalized abundance of OTU-7, -8, -13, and -12 in
individual bacterial inocula (white box plots) and corresponding
established T. rotula bacterial consortia (gray box plots). Significant
differences in OTU abundances between bacterial inocula and estab-
lished consortia are marked with an asterisk.

Niche-based assembly of bacterial consortia on the diatom Thalassiosira rotula is stable and. . .



recruitment according to the lottery hypothesis. Instead, bac-
terial colonization of the diatom results from a reproducible
selection pattern of individual OTUs from the inoculum into
the corresponding established consortia. This clearly suggests
a steering force or “habitat filtering effect” [66]. The host
diatom is likely to drive the initial filtering or selection, pro-
viding nutritional conditions that promote the growth of cer-
tain microbes over others. Indeed, the low-molecular weight
sugars and amino acids released by diatoms are the chemical
cues that allow flagellated and chemotactic bacterial groups
such as Rhodobacteraceae, Alteromonadaceae, and Ocea-
nospirillales to be enriched within the phycosphere and
potentially interact with the HMW substratum (e.g., poly-
saccharides) to which biofilm cells adhere. It is moreover
possible that host traits act in tandem with feedback loops
between the host and microbes, e.g., via the release of anti-
bacterial compounds [67, 68], as well as among microbes
[65, 69], allowing the establishment of a predictable assem-
blage of OTUs in the community.

In our study, the 4-day-old primary T. rotula bacterial
consortium was compositionally highly similar to the
inoculum sourced from an established, several month-old
donor culture, suggesting that the bacterial core commu-
nity indeed represents a long-term stable-state system.
Our findings are in contrast to a recent comparative study
[65] demonstrating a shift in the T. rotula associated
bacterial composition over a time course of 8 days, pos-
sibly due to changes in the host physiology (e.g., growth
and metabolism).

Cumulatively, the co-culture experiment used in this
study offers experimental evidence that initial bacterial
epibiosis of the marine model diatom T. rotula is char-
acteristically underpinned by the niche-based diatom
microscale environment and bacterial species-specific
metabolic characteristics resulting in a remarkably stable
and reproducible bacterial core community. This knowledge
in tandem with further investigations of the role and func-
tion of stable core bacterial members is crucial when
studying the performance and resilience of the diatom
holobiont in the context of environmental change. The
feedback between the marine carbon cycle and ocean
warming make such dynamic hotspots for the microbial
loop critical interactions to consider in light of our rapidly
impacted oceans.

Acknowledgements We thank Nancy Kühne for technical advice and
assistance with the molecular laboratory work, and Stefan Kühne for
assistance in bioinformatics. Open access funding provided by Projekt
DEAL.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Buchan A, LeCleir GR, Gulvik CA, González JM. Master recy-
clers: features and functions of bacteria associated with phyto-
plankton blooms. Nat Rev Microbiol. 2014;12:686–98.

2. Amin SA, Parker MS, Armbrust EV. Interactions between dia-
toms and bacteria. Microbiol Mol Biol Rev. 2012;76:667–84.

3. Rooney-Varga JN, Giewat MW, Savin MC, Sood S, LeGresley
M, Martin JL. Links between phytoplankton and bacterial com-
munity dynamics in a coastal marine environment. Micro Ecol.
2005;49:163–75.

4. Haines KC, Guillard RRL. Growth of vitamin B12-requiring
marine diatoms in mixed laboratory cultures with vitamin B12-
producing marine bacteria. J Phycol. 1974;10:245–52.

5. Amin SA, Green DH, Hart MC, Küpper FC, Sunda WG,
Carrano CJ. Photolysis of iron–siderophore chelates promotes
bacterial–algal mutualism. Proc Natl Acad Sci. 2009;106:
17071–6.

6. Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG.
Algae acquire vitamin B-12 through a symbiotic relationship with
bacteria. Nature. 2005;438:90–3.

7. Myklestad SM. Release of extracellular products by phyto-
plankton with special emphasis on polysaccharides. Sci Total
Environ. 1995;165:155–64.

8. Wetz MS, Wheeler PA. Release of dissolved organic matter by
coastal diatoms. Limnol Oceanogr. 2007;52:798–807.

9. Aluwihare LI, Repeta DJ. A comparison of the chemical char-
acteristics of oceanic DOM and extracellular DOM produced by
marine algae. Mar Ecol Prog Ser. 1999;186:105–17.

10. Christie-Oleza JA, Sousoni D, Lloyd M, Armengaud J, Scanlan
DJ. Nutrient recycling facilitates long-term stability of marine
microbial phototroph–heterotroph interactions. Nat Microbiol.
2017;2:17100.

11. Amin SA, Hmelo LR, van Tol HM, Durham BP, Carlson LT, Heal
KR, et al. Interaction and signalling between a cosmopolitan
phytoplankton and associated bacteria. Nature. 2015;522:98–101.

12. Seymour JR, Amin SA, Raina JB, Stocker R. Zooming in on the
phycosphere: the ecological interface for phytoplankton-bacteria
relationships. Nat Microbiol. 2017;2:17065.

13. Rossi F, De Philippis R. Exocellular polysaccharides in micro-
algae and cyanobacteria: chemical features, role and enzymes and
genes involved in their biosynthesis. In: Borowitzka M, Beardall
J, Raven J, editors. The physiology of microalgae. Developments
in applied phycology 6. New York: Springer; 2016. p. 565–90.

14. Mühlenbruch M, Grossart H-P, Eigemann F, Voss M. Mini-
review: phytoplankton-derived polysaccharides in the marine
environment and their interactions with heterotrophic bacteria.
Environ Microbiol. 2018;20:2671–85.

J. Mönnich et al.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


15. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM,
Henrissat B. The carbohydrate-active enzymes database (CAZy)
in 2013. Nucleic Acids Res. 2014;42:490–5.

16. Behringer G, Ochsenkühn MA, Fei C, Fanning J, Koester JA,
Amin SA. Bacterial communities of diatoms display strong con-
servation across strains and time. Front Microbiol. 2018;9:659.

17. Frischkorn KR, Rouco M, Van Mooy BAS, Dyhrman ST. Epi-
bionts dominate metabolic functional potential of Trichodesmium
colonies from the oligotrophic ocean. ISME J. 2017;11:2090–101.

18. Krohn-Molt I, Alawi M, Förstner KU, Wiegandt A, Burkhardt L,
Indenbirken D, et al. Insights into microalga and bacteria inter-
actions of selected phycosphere biofilms using metagenomic,
transcriptomic, and proteomic approaches. Front Microbiol. 2017;
8:1941.

19. Sapp M, Schwaderer AS, Wiltshire KH, Hoppe H-G, Gerdts G,
Wichels A. Species-specific bacterial communities in the phyco-
sphere of microalgae? Micro Ecol. 2007;53:683–99.

20. Abby SS, Touchon M, De Jode A, Grimsley N, Piganeau G.
Bacteria in Ostreococcus tauri cultures—friends, foes or hitch-
hikers? Front Microbiol. 2014;5:505.

21. Ajani PA, Kahlke T, Siboni N, Carney R, Murray SA, Seymour
JR. The microbiome of the cosmopolitan diatom leptocylindrus
reveals significant spatial and temporal variability. Front Micro-
biol. 2018;9:2758.

22. Burke C, Thomas T, Lewis M, Steinberg P, Kjelleberg S. Com-
position, uniqueness and variability of the epiphytic bacterial
community of the green alga Ulva australis. ISME J. 2011;5:
590–600.

23. Naeem S. Species redundancy and ecosystem reliability. Conserv
Biol. 1998;12:39–45.

24. Munday PL. Competitive coexistence of coral-dwelling fishes: the
lottery hypothesis revisited. Ecology. 2004;85:623–8.

25. Sale PF. Reef fish lottery. Nat Hist. 1976;85:60–5.
26. Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T. Bacterial

community assembly based on functional genes rather than spe-
cies. Proc Natl Acad Sci. 2011;108:14288–93.

27. Baker LJ, Kemp PF. Exploring bacteria diatom associations using
single-cell whole genome amplification. Aquat Micro Ecol.
2014;72:73–88.

28. Crenn K, Duffieux D, Jeanthon C. Bacterial epibiotic communities
of ubiquitous and abundant marine diatoms are distinct in short-
and long-term associations. Front Microbiol. 2018;9:2879.

29. Malviya S, Scalco E, Audic S, Vincent F, Veluchamy A, Poulain
J, et al. Insights into global diatom distribution and diversity in the
world’s ocean. Proc Natl Acad Sci. 2016;113:1516–25.

30. Whittaker KA, Rignanese DR, Olson RJ, Rynearson TA. Mole-
cular subdivision of the marine diatom Thalassiosira rotula in
relation to geographic distribution, genome size, and physiology.
BMC Evol Biol. 2012;12:209.

31. Harrison PJ, Waters RE, Taylor FJR. A broad-spectrum artificial
seawater medium for coastal and open ocean phytoplankton. J
Phycol. 1980;16:28–35.

32. Medlin L, Elwood HJ, Stickel S, Sogin ML. The characterization
of enzymatically amplified eukaryotic 16S-like rRNA-coding
regions. Gene. 1988;71:491–9.

33. Scholin CA, Herzog M, Sogin M, Anderson DM. Identification of
group- and strain-specific genetic markers for globally distributed
Alexandrium (Dinophaceae). II. Sequence analysis of the frag-
ment of the LSU rRNA gene. J Phycol. 1994;30:999–1011.

34. Kraberg A, Baumann M, Dürselen C. Coastal phytoplankton—
photo guide for northern European seas. München: Verlag Dr.
Friedrich Pfeil; 2010.

35. Bramucci AR, Labeeuw L, Mayers TJ, Saby JA, Case RJ. A small
volume bioassay to assess bacterial/phytoplankton co-culture
using WATER-Pulse-Amplitude-Modulated (WATER-PAM)

fluorometry. J Vis Exp. 2015. https://doi.org/10.3791/52455:
52455.

36. Vankooten O, Snel JFH. The use of chlorophyll fluorescence
nomenclature in plant stress physiology. Photosynthesis Res.
1990;25:147–50.

37. Shishlyannikov SM, Zakharova YR, Volokitina NA, Mikhailov IS,
Petrova DP, Likhoshway YV. A procedure for establishing an axenic
culture of the diatom Synedra acus subsp radians (Kutz.) Skabibitsch
from Lake Baikal. Limnol Oceanogr Methods. 2011;9:478–84.

38. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J,
Fierer N, et al. Ultra-high-throughput microbial community ana-
lysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:
1621–4.

39. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M,
et al. Evaluation of general 16S ribosomal RNA gene PCR pri-
mers for classical and next-generation sequencing-based diversity
studies. Nucleic Acids Res. 2013;41:11.

40. Toribio AL, Alako B, Amid C, Cerdeño-Tarrága A, Clarke L,
Cleland I, et al. European nucleotide archive in 2016. Nucleic
Acids Res. 2016;45:32–6.

41. Diepenbroek M, Glöckner F, Grobe P, Güntsch A, Huber R,
König-Ries B, et al. Towards an integrated biodiversity and
ecological research data management and archiving platform: the
German Federation for the Curation of Biological Data (GFBio)
In: Plödereder E, Grunske L, Schneider E, Ull D, editors. Infor-
matik 2014—Big Data Komplexität meistern. GI-Edition: Lecture
Notes in Informatics (LNI)—Proceedings. GI edn. 232. Bonn:
Köllen Verlag; 2014. p. 1711–24.

42. Yilmaz P, Kottmann R, Field D, Knight R, Cole JR, Amaral-
Zettler L, et al. Minimum information about a marker gene
sequence (MIMARKS) and minimum information about any (x)
sequence (MIxS) specifications. Nat Biotechnol. 2011;29:415.

43. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer
for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

44. Rognes T, Flouri T, Nichols B, Quince C, Mahe F. VSEARCH: a
versatile open source tool for metagenomics. PeerJ. 2016;4:22.

45. Mahe F, Rognes T, Quince C, de Vargas C, Dunthorn M. Swarm:
robust and fast clustering method for amplicon-based studies.
PeerJ. 2014;2:13.

46. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian
classifier for rapid assignment of rRNA sequences into the new
bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.

47. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible
interactive analysis and graphics of microbiome census data. PLoS
One. 2013;8:11.

48. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P,
McGlinn D, et al. Vegan: community ecology package. R package
version 2.5‐1. 2018. https://cran.r-project.org/web/packages/vega
n/index.html.

49. Wickham H. ggplot2: Elegant graphics for data analysis. New
York, NY: Springer; 2009.

50. Grossart H-P, Levold F, Allgaier M, Simon M, Brinkhoff T.
Marine diatom species harbour distinct bacterial communities.
Environ Microbiol. 2005;7:860–73.

51. Harder T. Marine epibiosis: concepts, ecological consequences
and host defence. In: Flemming H-C, Murthy PS, Venkatesan R,
Cooksey K, editors. Marine and industrial biofouling. Berlin,
Heidelberg: Springer Berlin Heidelberg; 2009. p. 219–31. https://
doi.org/10.1007/978-3-540-69796-1_12.

52. Lachnit T, Meske D, Wahl M, Harder T, Schmitz R. Epibacterial
community patterns on marine macroalgae are host-specific but
temporally variable. Environ Microbiol. 2011;13:655–65.

53. Pita L, Rix L, Slaby BM, Franke A, Hentschel U. The sponge
holobiont in a changing ocean: from microbes to ecosystems.
Microbiome. 2018;6:46.

Niche-based assembly of bacterial consortia on the diatom Thalassiosira rotula is stable and. . .

https://doi.org/10.3791/52455:52455
https://doi.org/10.3791/52455:52455
https://cran.r-project.org/web/packages/vegan/index.html
https://cran.r-project.org/web/packages/vegan/index.html
https://doi.org/10.1007/978-3-540-69796-1_12
https://doi.org/10.1007/978-3-540-69796-1_12


54. Barott KL, Rodriguez-Brito B, Janouškovec J, Marhaver KL,
Smith JE, Keeling P, et al. Microbial diversity associated with four
functional groups of benthic reef algae and the reef-building coral
Montastraea annularis. Environ Microbiol. 2011;13:1192–204.

55. Egan S, Harder T, Burke C, Steinberg P, Kjelleberg S, Thomas T.
The seaweed holobiont: understanding seaweed–bacteria interac-
tions. FEMS Microbiol Rev. 2013;37:462–76.

56. Vieira C, Engelen AH, Guentas L, Aires T, Houlbreque F, Gau-
bert J, et al. Species specificity of bacteria associated to the brown
seaweeds lobophora (Dictyotales, Phaeophyceae) and their
potential for induction of rapid coral bleaching in acropora mur-
icata. Front Microbiol. 2016;7:316.

57. Wietz M, Lau SC, Harder T. Editorial: socio-ecology of microbes
in a changing ocean. Front Mar Sci. 2019;6:190. https://doi.org/
10.3389/fmars.2019.00190.

58. Alverson AJ, Beszteri B, Julius ML, Theriot EC. The model
marine diatom Thalassiosira pseudonana likely descended from a
freshwater ancestor in the genus Cyclotella. BMC Evol Biol.
2011;11:125.

59. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D,
Putnam NH, et al. The genome of the diatom Thalassiosira
pseudonana: ecology, evolution, and metabolism. Science. 2004;
306:79–86.

60. Croft MT, Warren MJ, Smith AG. Algae need their vitamins.
Eukaryot Cell. 2006;5:1175–83.

61. Grossart H-P. Interactions between marine bacteria and axenic
diatoms (Cylindrotheca fusiformis, Nitzschia laevis, and Tha-
lassiosira weissflogii) incubated under various conditions in the
lab. Aquat Micro Ecol. 1999;19:1–11.

62. Helliwell KE, Wheeler GL, Leptos KC, Goldstein RE, Smith AG.
Insights into the evolution of vitamin B12 auxotrophy from
sequenced algal genomes. Mol Biol Evol. 2011;28:2921–33.

63. Lupette J, Lami R, Krasovec M, Grimsley N, Moreau H, Piganeau
G, et al. Marinobacter dominates the bacterial community of the
Ostreococcus tauri phycosphere in culture. Front Microbiol.
2016;7:1414.

64. DeLong EF, Franks DG, Alldredge AL. Phylogenetic diversity of
aggregate-attached vs. free-living marine bacterial assemblages.
Limnol Oceanogr. 1993;38:924–34.

65. Majzoub ME, Beyersmann PG, Simon M, Thomas T, Brinkhoff
T, Egan S. Phaeobacter inhibens controls bacterial community
assembly on a marine diatom. FEMS Microbiol Ecol. 2019;95:
fiz060.

66. Costello EK, Stagaman K, Dethlefsen L, Bohannan BJM, Relman
DA. The application of ecological theory toward an understanding
of the human microbiome. Science. 2012;336:1255–62.

67. Qin J, D’Antignanal T, Zhang W, Franco C. Discovery of anti-
microbial activities of a marine diatom Thalassiosira rotula. Afr J
Microbiol Res. 2013;7:10.

68. Wichard T, Gerecht A, Boersma M, Poulet SA, Wiltshire K,
Pohnert G. Lipid and fatty acid composition of diatoms revisited:
rapid wound-activated change of food quality parameters influ-
ences herbivorous copepod reproductive success. ChemBioChem.
2007;8:1146–53.

69. Longford SR, Campbell AH, Nielsen S, Case RJ, Kjelleberg S,
Steinberg PD. Interactions within the microbiome alter microbial
interactions with host chemical defences and affect disease in a
marine holobiont. Sci Rep. 2019;9:1363.

J. Mönnich et al.

https://doi.org/10.3389/fmars.2019.00190
https://doi.org/10.3389/fmars.2019.00190

	Niche-based assembly of bacterial consortia on the diatom Thalassiosira rotula is stable and reproducible
	Abstract
	Introduction
	Materials and methods
	Phytoplankton collection, species characterization, and culture maintenance
	Establishment of an axenic T. rotula culture
	Preparation of T. rotula for co-culture with a bacterial inoculum
	Preparation of the bacterial inocula
	Co-culture experiment
	Bacterial DNA extraction and 16S rRNA gene sequencing
	Sequence data processing and bacterial community analysis
	Statistical analyses

	Results
	Axenification and co-culture of T. rotulaS16 with bacteria
	Co-culture of axenic T. rotulaS16 with diverse bacterial inocula
	Sequence analysis and comparison of community structures in bacterial inocula and established T.�rotulaS16 bacterial consortia

	Discussion
	Phylogenetic composition of bacterial inoculum communities
	Phylogenetic composition of established T. rotula bacterial consortia
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	References




