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Abstract19

We examine CMIP6 simulations of Arctic sea-ice area and volume. We find that CMIP620

models produce a wide spread of mean Arctic sea-ice area, capturing the observational21

estimate within the multi-model ensemble spread. The CMIP6 multi-model ensemble22

mean provides a more realistic estimate of the sensitivity of September Arctic sea-ice area23

to a given amount of anthropogenic CO2 emissions and to a given amount of global warm-24

ing, compared with earlier CMIP experiments. Still, most CMIP6 models fail to simu-25

late at the same time a plausible evolution of sea-ice area and of global mean surface tem-26

perature. In the vast majority of the available CMIP6 simulations, the Arctic Ocean be-27

comes practically sea-ice free (sea-ice area < 1 million km2) in September for the first28

time before the year 2050 in each of the four emission scenarios SSP1-1.9, SSP1-2.6, SSP2-29

4.5 and SSP5-8.5 examined here.30

Plain Language Summary31

We examine simulations of Arctic sea ice from the latest generation of global cli-32

mate models. We find that the observed evolution of Arctic sea-ice area lies within the33

spread of model simulations. In particular, the latest generation of models performs bet-34

ter than models from previous generations at simulating the sea-ice loss for a given amount35

of CO2 emissions and for a given amount of global warming. In most simulations, the36

Arctic Ocean becomes practically sea-ice free (sea-ice area < 1 million km2) in Septem-37

ber for the first time before the year 2050.38

1 Introduction39

In recent decades, Arctic sea-ice area has decreased rapidly, and the signal of a forced40

sea-ice retreat has clearly emerged from the background noise of year-to-year variabil-41

ity. Because of this, the ability of climate models to plausibly simulate the observed changes42

in Arctic sea-ice coverage has become a central measure of model performance in Arctic-43

focused climate model intercomparisons (e.g., Koenigk et al., 2014; Massonnet et al., 2012;44

Melia et al., 2015; Olonscheck & Notz, 2017; Shu et al., 2015; Stroeve et al., 2007, 2012,45

2014). In this contribution, we extend these earlier studies that examined model perfor-46

mance in the third and fifth phases of the Coupled Model Intercomparison Project (CMIP347

and CMIP5) by examining model simulations from the sixth phase of the Coupled Model48

Intercomparison Project (CMIP6, Eyring et al., 2015). For CMIP6, the Sea-Ice Model49
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Intercomparison Project (SIMIP, Notz et al., 2016) designed a specific set of diagnos-50

tics that allow for detailed analyses of sea-ice related processes and thus a process-based51

evaluation of sea-ice simulations of the participating models. To lay the foundation for52

such analyses, we here provide an initial overview of CMIP6 model performance by ex-53

amining some large-scale, pan-Arctic metrics of model performance and future sea-ice54

evolution, including a comparison to CMIP5 and CMIP3 simulations. A similar anal-55

ysis for Antarctic sea ice is given by (Roach et al., under review).56

2 Analysis Method57

In this contribution, we examine two large-scale integrated quantities that describe58

the time evolution of Arctic sea ice. These are the Northern Hemisphere total sea-ice area59

(SIA) and total sea-ice volume (SIV), which can be calculated readily from SIMIP vari-60

ables as follows.61

To obtain sea-ice area for CMIP6 model simulations, we use the SIMIP variable62

of Northern Hemisphere sea-ice area siarean when provided. If siarean is not provided,63

we calculate the sea-ice area by multiplying sea-ice concentration on the ocean grid (siconc,64

preferred) or on the atmospheric grid (siconca) with individual grid-cell area and then65

sum over the Northern Hemisphere. Note that we use sea-ice area as our primary vari-66

able to describe sea-ice coverage instead of sea-ice extent, which is usually calculated as67

the total area of all grid cells with at least 15% sea-ice concentration. Our choice to fo-68

cus on sea-ice area derives primarily from the fact that sea-ice extent is a strongly grid-69

dependent, non-linear quantity, making it difficult to meaningfully compare between model70

output and satellite observations (compare Notz, 2014). In addition, the observational71

spread across different satellite products is smaller for trends in sea-ice area than it is72

for trends in sea-ice extent (Comiso et al., 2017).73

To calculate sea-ice volume for CMIP6 models, we (1) directly use the SIMIP vari-74

able of Northern Hemisphere sea-ice volume sivoln when provided, or (2) multiply the75

sea-ice volume per grid-cell area sivol by individual grid-cell area and sum over the North-76

ern Hemisphere, or (3) multiply sea-ice-concentration siconc, sea-ice thickness sithick77

and individual grid-cell area and then sum over the Northern Hemisphere. For CMIP5,78

only the sea-ice volume per grid-cell area (also called “equivalent sea-ice thickness”, sit)79

is available, so we use method (2) for all CMIP5 models. We were unable to obtain sea-80
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ice volume data for CMIP3 models, so volume comparisons in the following are limited81

to CMIP5 and CMIP6 model simulations.82

To meaningfully estimate model performance relative to the real evolution of the83

sea-ice cover in the Arctic, we must take internal variability into account (see, for ex-84

ample, England et al., 2019; Kay et al., 2011; Notz, 2015; Olonscheck & Notz, 2017; Swart85

et al., 2015). Internal variability describes the spread in plausible climate trajectories86

in response to a given forcing scenario, owing to the chaotic nature of our climate sys-87

tem. The observational record is just one such plausible trajectory, and no single model88

simulation can ever be expected to perfectly agree with it because of its chaotic nature.89

Therefore, most CMIP6 models have been run several times with slightly different ini-90

tial conditions to estimate the range of trajectories that are compatible with a given model’s91

physics. In the following, we take two different approaches to examine whether a given92

model provides a plausible simulation of the observational record in light of internal vari-93

ability.94

First, for CMIP6 models, we estimate a best-guess CMIP6-average internal vari-95

ability σcmip6 by averaging across the individual ensemble spread of those models that96

provide three or more ensemble members (see Table S3 for details). In calculating the97

standard deviation, we correct for small sample size n by using Bessel’s correction and98

then dividing the resulting standard deviation by the scale mean of the chi distribution99

with n−1 degrees of freedom. We then define all simulations that lie within the range100

of 2σ = ±2
√
σ2
cmip6 + σ2

obs around the observational estimate as plausible simulations101

(compare Olonscheck & Notz, 2017). Here, σ2
obs refers to the observational uncertainty102

explained below. This approach allows us to also examine the plausibility of those mod-103

els that only provide a single ensemble member. In addition to considering internal vari-104

ability explicitly, we reduce its impact by examining model performance relative to a time105

average over several years. We take the first twenty years of the satellite record (1979–106

1998) for comparing mean values, as those twenty years provide a compromise between107

using as many years as possible and using a period with no strong trend in Arctic sea-108

ice area and volume. However, even on multi-decadal time scales internal variability af-109

fects the Arctic sea-ice cover, so averaging over 20 years is not long enough an averag-110

ing period to remove the impact of internal variability entirely. To compare trends, we111

examine the overlap period 1979–2014 of the satellite record, which begins in 1979, and112

the historical period of CMIP6, which ends in 2014.113
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Second, in order to select a subset of models for estimating a best guess of the fu-114

ture evolution of the Arctic sea-ice cover, we take the more strict approach to define a115

model as plausible if its ensemble spread includes the observational record, considering116

observational uncertainty. These models are referred to as “selected models” hereafter.117

To obtain an observational estimate of sea-ice area, we use observational records118

of sea-ice concentration from the OSI SAF (Lavergne et al., 2019), NASA-Team (Cavalieri119

et al., 1997) and Bootstrap (Comiso et al., 1997) algorithms. Sea-ice area is then cal-120

culated by multiplying the sea-ice concentration with individual grid-cell area and sum-121

ming over the Northern Hemisphere. For the NASA-Team and Bootstrap algorithms,122

we filled the observational pole hole with the average sea-ice concentration around its123

edge (Olason & Notz, 2014). For OSI SAF, we used the filled pole hole of the product124

itself. We take the spread of the three algorithms obtained this way as the observational125

uncertainty σobs.126

For sea-ice volume, we do not compare models with an observational estimate due127

to substantial uncertainties for reanalysed and observed estimates of Arctic sea-ice thick-128

ness and thus volume (e.g. Bunzel et al., 2018; Chevallier et al., 2017; Zygmuntowska129

et al., 2014).130

For global-mean surface temperature (GMST), we use the average of NOAAGlob-131

alTemp v5.0.0 (Vose et al., 2012), GISTemp v4 (GISTEMP Team, 2019; Lenssen et al.,132

2019), HadCRUT4.6.0.0 (Morice et al., 2012) and Berkeley (Rohde et al., 2013) time-133

series as an estimate for the mean evolution, and the spread across these four records134

as an estimate for observational uncertainty. We calculate anomalies relative to the pe-135

riod 1850–1900, except for the shorter record of NOAAGlobalTemp where we calculate136

anomalies relative to 1880–1900. Because the 20-year running-mean temperature fluc-137

tuations during these periods are less than 0.1 ◦C, our results are largely insensitive to138

this choice of baseline period (Figure S2). We take the spread of the four products as139

the observational uncertainty σobs.140

Historical anthropogenic CO2 emissions are taken from the historical budget of (Global141

Carbon Project, 2019). Future anthropogenic CO2 emissions for CMIP6 simulations are142

taken from the respective SSP scenarios described by (Riahi et al., 2017).143

–5–©2020 American Geophysical Union. All rights reserved.



manuscript submitted to Geophysical Research Letters

3 CMIP6 Model Performance144

3.1 Mean Quantities145

We start with an analysis of the mean sea-ice fields simulated by individual CMIP3,146

CMIP5 and CMIP6 models (Figure 1a, b, e, f) over the period 1979–1998. To allow for147

a fair comparison across the three CMIP phases, in this section we analyze only the first148

ensemble member of each model. Given the large number of participating models, this149

results in a fair comparison: for models with several ensemble members, the first ensem-150

ble member is as likely to be above a model’s ensemble mean as below.151

For sea-ice area, we find a large spread across CMIP6 simulations both in March152

and in September (Figure 1a, b), which usually are the months of maximum and min-153

imum sea-ice coverage in the Arctic, respectively. In March, the 1979–1998 mean sea-154

ice area simulated by CMIP6 models ranges from around 12 million km2 to more than155

20 million km2 and thus includes the observational estimate of 14.4 million km2 (Fig-156

ure 1a, Table S3). Out of the 40 CMIP6 models, 21 are within the 2σ = ±1.29 million157

km2 plausibility range around the observational estimate given by the CMIP6-average158

internal variability and observational uncertainty as introduced in section 2 (Figure 1a,159

Table S3). CMIP3 and CMIP5 simulations also show a large spread in mean March sea-160

ice area, and include the observational estimate within their multi-model ensemble spread161

(Figure 1a, Tables S1 and S2). However, in CMIP3 and CMIP5, the multi-model ensem-162

ble spread is more evenly distributed around the observational estimate than in CMIP6,163

where most models lie above it.164

For the mean September sea-ice area over the period 1979–1998, the CMIP6 en-165

semble also shows a large spread of individual simulations, ranging from around 3 mil-166

lion km2 to around 10 million km2 (Figure 1b, Table S3). The observed value of around167

6 million km2 lies well within the range, and 25 out of 40 CMIP6 models are within the168

plausible range of 2σ = ±1.49 million km2 around this value (Table S3). The CMIP6169

multi-model ensemble mean is very close to the observational estimate and well within170

the plausible range. The same holds for CMIP3 and CMIP5, with their individual mod-171

els also spanning a wide range around the observational estimate (Figure 1b, Tables S1172

and S2).173
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For sea-ice volume, we lack data for CMIP3 models and thus can only compare CMIP6174

results to CMIP5 results (see tables S2 and S3 for a detailed overview). For both phases175

of CMIP, the models produce a similar spread of simulated Arctic sea-ice volume from176

less than 20,000 km3 to more than 40,000 km3 in March (Figure 1e), and from less than177

5,000 km3 to more than 30,000 km3 in September (Figure 1f). Given a simulated aver-178

age spread from internal variability of around 2,000 km3, the large spread in sea ice vol-179

ume from CMIP6 models can not be explained by internal variability alone. Instead, it180

is caused by the models’ large spread in simulated sea-ice area and thickness.181

Based on this analysis of mean Arctic sea-ice quantities, we find that there is lit-182

tle difference in overall model performance between CMIP3, CMIP5 and CMIP6. The183

multi-model spread of the mean quantities remains large, the observational record lies184

within the multi-model ensemble spread, and many models simulate plausible values of185

mean sea-ice area when considering the impact of internal variability and observational186

uncertainty. The multi-model ensemble means of the past three phases of CMIP are rel-187

atively similar to each other and largely consistent with the observational record.188

3.2 Sensitivity189

In addition to their plausible simulation of mean quantities, the models’ adequacy190

for simulating reality hinges critically on their ability to realistically simulate the response191

of a given climate metric to changes in external forcing. Internal variability causes a large192

spread of plausible climate trajectories in response to a given change in the forcing and193

must carefully be taken into account when interpreting a possible mismatch between a194

simulation and a given observational sea-ice record (Jahn et al., 2016; Kay et al., 2011;195

Notz, 2015; Olonscheck & Notz, 2017; Swart et al., 2015). We find this to remain valid196

for CMIP6 simulations.197

For our analysis of the simulated sensitivity of Arctic sea ice to changes in exter-198

nal forcing, we calculate two distinct quantities: first, the change in sea-ice area for a given199

change in cumulative anthropogenic CO2 emissions over the period 1979–2014 (Figure200

1c); second, the change in sea-ice area for a given change in global mean surface tem-201

perature (GMST) over the period 1979–2014 (Figure 1d). Both quantities can be cal-202

culated from the previously demonstrated linear relationships of sea-ice area to cumu-203

lative CO2 emissions (Herrington & Zickfeld, 2014; Notz & Stroeve, 2016; Zickfeld et al.,204
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2012) and to GMST (e.g., Gregory et al., 2002; Mahlstein & Knutti, 2012; Rosenblum205

& Eisenman, 2016; Stroeve & Notz, 2015; Winton, 2011). Together, these two quanti-206

ties allow us to estimate whether CMIP6 models simulate changes in sea ice with the cor-207

rect sensitivity to changes in external forcing, and whether they potentially do so for the208

right reason. This is because the relationship between sea-ice area and cumulative an-209

thropogenic CO2 emissions is an almost linear proxy for the long-term time evolution210

of Arctic sea-ice area, as cumulative emissions map monotonously to time. In contrast,211

the sensitivity of sea-ice area to GMST changes is a proxy for the sensitivity of the sea-212

ice cover to one particular response of the climate system to changes in external forc-213

ing.214

Our analysis reveals that over the historical period 1979–2014, 28 out of 40 CMIP6215

models simulate a sensitivity of the Arctic sea-ice area to cumulative anthropogenic CO2216

emissions that is within the plausible range of 2.73±1.37 m2 of sea-ice loss per ton of CO2217

emissions (Figure 1c, Table S3). In addition to the larger spread of the CMIP6 multi-218

model ensemble, a major difference between CMIP5 and CMIP6 models is that, in their219

first ensemble member analyzed here, only 3 out of 40 CMIP5 models simulate a larger220

loss of sea-ice area per ton of CO2 emissions than observed. This number increases to221

10 out of 40 models for CMIP6. This results in the CMIP6 multi-model ensemble mean222

being closer to the observational estimate than the CMIP5 and the CMIP3 multi-model223

ensemble means. It is however unclear whether this reflects an improvement of model224

physics or primarily arises from the change in historical forcing in CMIP6 relative to CMIP5225

(compare Rosenblum & Eisenman, 2016). For example, in CMIP6 the historical ozone226

radiative forcing is about 80 % higher than it was in CMIP5 (Checa-Garcia et al., 2018).227

In contrast, black carbon emissions in the CMIP6 historical forcing are substantially higher228

over the past years than prescribed in the CMIP5 RCP8.5 scenario (Gidden et al., 2019).229

The impact of these changes in non-CO2 climate drivers is confounded into the sensi-230

tivity of sea-ice area to CO2 emissions (again, compare Rosenblum & Eisenman, 2016).231

Emissions of CO2 itself, and of methane, are largely unchanged over the historical pe-232

riod for CMIP5 and CMIP6. However, for the future simulations the CMIP6 SSP5-8.5233

scenario assumes higher CO2 emissions and lower methane emissions than the CMIP5234

RCP8.5 scenario (Gidden et al., 2019).235

Examining the sea-ice loss per degree of global warming, we find that only 11 out236

of 40 CMIP6 models are within the plausible range of 4.01±1.28 million m2 of sea-ice237
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loss per degree of warming (Figure 1d, Table S3). This is comparable to CMIP5, where238

9 out of 40 models were within this plausible range (Figure 1d, Table S2). In CMIP3,239

not a single model provided a plausible sensitivity (Figure 1d). Also, the CMIP6 multi-240

model ensemble mean of Arctic sea-ice loss for a given amount of global warming is closer241

to (but still outside) the plausible range than the multi-model ensemble mean of both242

CMIP5 and CMIP3. This might indicate an improvement of CMIP6 models over pre-243

vious CMIP phases on a process level, given that the main physical link of sea-ice loss244

to any change in external forcing is given by a change in temperature. However, as be-245

fore, this might also be a reflection of a more realistic historical forcing of CMIP6 com-246

pared to CMIP5 and CMIP3.247

While the more realistic simulation of these two sensitivities might indicate progress248

in CMIP6 models’ capability to simulate the ongoing loss of Arctic sea ice, as in CMIP5249

(Rosenblum & Eisenman, 2017) few CMIP6 models are able to simulate a plausible amount250

of sea-ice loss and simultaneously a plausible change in global mean temperature over251

time (or cumulative anthropogenic CO2 emissions). Of the CMIP6 models analyzed here,252

these are ACCESS-CM2, BCC-CSM2-MR, CNRM-CM6-1-HR, FGOALS-f3-L, FIO-ESM-253

2-0, GFDL-ESM4, GISS-E2-1-G, GISS-E2-1-G-CC, MPI-ESM-1-2-HAM, MPI-ESM1-254

2-HR, MPI-ESM1-2-LR, MRI-ESM2-0 and NorESM2-MM. For the other CMIP6 mod-255

els, those models that have a reasonable sea-ice loss tend to have too much global warm-256

ing, while those models that simulate reasonable global warming simulate too little sea-257

ice loss (Figure 1g, Table S3). In particular, the models with a high sensitivity of Arc-258

tic sea-ice area to anthropogenic CO2 emissions also display a high sensitivity of global259

mean temperature to CO2 emissions. Hence, understanding this high climate sensitiv-260

ity is most likely key to understanding why some CMIP6 models display such rapid loss261

of Arctic sea ice. A recent study suggested this high sensitivity to be caused by stronger262

cloud feedbacks (Zelinka et al., 2020).263

If we plot the two sensitivity metrics against each other, it is generally impossible264

to distinguish a given CMIP6 model from the cloud given by CMIP5 models, with the265

exception of the highly sensitive CMIP6 simulations that clearly fall outside the cloud266

of previous CMIP phases (Figure 1g). The lack of both such high-sensitive simulations267

and of very low-sensitive simulations in CMIP5 might be one reason for why the corre-268

lation between the two metrics is lower for CMIP5 than for CMIP3 and CMIP6.269
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In summary, we find that over the period 1979–2014, CMIP6 models on average270

simulate a sensitivity of Arctic sea ice that is closer to the observed value than CMIP5271

and CMIP3 models, both relative to a given CO2 emission (as a proxy for time) and to272

a given warming. However, only few models are able to simulate a plausible sea-ice loss273

sensitivity to cumulative CO2 emissions and simultaneously a plausible rise in global mean274

surface temperature.275

4 Projections of Future Arctic Sea Ice276

The identified spread of CMIP models in simulating the past mean state and sen-277

sitivity to warming and CO2 emissions introduces significant model uncertainty into fu-278

ture projections of the evolution of the Arctic sea-ice cover. This model uncertainty re-279

mains large in CMIP6.280

To address this issue when analyzing projections of when Arctic sea-ice area might281

drop below 1 million km2, a commonly used threshold for an ice-free Arctic, we take the282

following approach. First, we examine the full range of CMIP6 model simulations, not-283

ing that the model spread provides a wide spectrum of the possible future evolution of284

Arctic sea-ice area. Second, we narrow the range by considering only those models that285

have the observations within their ensemble spread simultaneously for two key metrics286

(compare Massonnet et al., 2012): (a) the 2005–2014 September mean sea-ice area and287

(b) the observed sensitivity of sea-ice area to cumulative CO2 emissions over the period288

1979–2014. We choose these metrics because they correlate with the first sea-ice free year289

at a correlation of R > 0.5 for all scenarios over the entire CMIP6 multi-model ensem-290

ble. Note, however, that care must be taken when interpreting the range of selected mod-291

els, as the relationship between past and future evolution of a climate model is not al-292

ways clear (Jahn et al., 2016; Stroeve & Notz, 2015). On the other hand, it becomes more293

important that a model plausibly captures the observed mean state of Arctic sea-ice area294

the lower that mean state becomes, because initial conditions become more important295

as the observed sea-ice state approaches ice-free conditions and the simulations start en-296

tering the realm of decadal predictions. We hence trust that the range of uncertainty given297

by the selected models gives a more realistic estimate of the true model uncertainty than298

that given by the full CMIP6 multi-model ensemble. The selected models are printed299

in bold in table S4.300
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In analyzing the future relationship between sea-ice loss and changes in the forc-301

ing, we find that the simulated correlation between winter Arctic sea-ice area and cu-302

mulative CO2 emissions remains high well into the future (Figure 2a). For summer, the303

linear relationship eventually decreases as more and more years of zero Arctic sea-ice cov-304

erage are averaged into the multi-model mean (Figure 2d). In interpreting these results305

quantitatively, it is of course important to note that CO2, while being the most impor-306

tant external driver of observed changes in Arctic sea-ice coverage, is not the only cause307

of observed and future changes. Its dominant role, however, holds well into the future308

and/or the additional impacts of other anthropogenic forcings, such as methane and aerosols,309

remain roughly stable over time. Otherwise the correlation between March Arctic sea-310

ice area and cumulative CO2 emissions would not remain as stable over time and would311

not be as independent of the specific forcing scenario (Figure 2a).312

We also find that the simulated correlation of temperature with winter Arctic sea-313

ice area remains high well into the future (Figure 2b), while again in summer the cor-314

relation eventually decreases as more models lose their sea ice completely (Figure 2e).315

The high correlation between sea-ice loss and changes in the forcing allows us to316

estimate the cumulative future CO2 emissions, warming level and eventually year at which317

the Arctic Ocean will practically be sea-ice free for the first time, defined as the first year318

in which the monthly mean September sea-ice area drops below 1 million km2.319

We find that CMIP6 models simulate a large spread of cumulative future CO2 emis-320

sions at which the Arctic could first become practically sea-ice free in September (Fig-321

ure 3a). The simulated future emissions for the first occurrence of a practically sea-ice322

free Arctic Ocean range from 450 Gt CO2 below to more than 5000 Gt CO2 above present323

cumulative emissions. However, 158 out of 243 simulations become practically sea-ice324

free before future cumulative CO2 emissions reach 1000 GtCO2 above that of 2019 (equiv-325

alent to about 3400 GtCO2 cumulative emissions since 1850). Considering only the mod-326

els with ensemble members within the plausible range of observed sea-ice evolution, we327

find a reduced range of 170 Gt below to 2200 Gt above cumulative future anthropogenic328

CO2 emissions when Arctic sea-ice area is projected to drop below 1 million km2. Of these329

members from the selected models, the vast majority (101 out of 128) become practi-330

cally sea-ice free at future cumulative CO2 emissions less than 1000 Gt. This compares331

favourably with the range of 800±300 Gt estimated from a direct analysis of the observed332
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sensitivity (Notz & Stroeve, 2018). In combination, these estimates make it appear likely333

that the Arctic Ocean will practically lose its sea ice cover in September for the first time334

at future anthropogenic CO2 emissions of between 200 and 1100 Gt above that of 2019.335

As a function of GMST, ice-free conditions occur across the entire CMIP6 multi-336

model ensemble at a global warming of between 0.9 and 3.2 ◦C above pre-industrial con-337

ditions of each individual model (Figure 3b). If we select only those models with a rea-338

sonable simulation of past Arctic sea-ice conditions, the estimated temperature range339

decreases slightly to 1.3 to 2.9 ◦C. The upper end of this range is higher than the range340

of 1.7±0.4 ◦C estimated from a direct analysis of the observed sensitivity (Notz & Stroeve,341

2018) and higher than estimates from bias-corrected simulations that all project the first342

ice-free Arctic at temperatures below 2 ◦C (Jahn, 2018; Niederdrenk & Notz, 2018; Ri-343

dley & Blockley, 2018; Screen & Williamson, 2017; Sigmond et al., 2018). This high bias344

is probably a reflection of the CMIP6 models’ weak sensitivity of sea-ice area loss to global345

warming, resulting in too high estimates of the warming at which the Arctic becomes346

practically sea-ice free in summer.347

In the CMIP6 ensemble, the sea-ice area loss per cumulative CO2 emissions and348

degree of global warming does barely depend on the forcing scenario (Figure 3a, b). Sce-349

nario dependence is also very small regarding the near-term future evolution of Arctic350

summer sea ice as a function of time until about 2040 (Figures 2f and 3c). This is re-351

lated to the fact that until 2040, the scenarios evolve quite similarly (O’Neill et al., 2016).352

Furthermore, given that the current sea-ice area is much smaller than it used to be, the353

importance of internal variability increases relative to the forced change necessary to lose354

the remaining sea-ice cover in September. As a consequence, for some models the sea355

ice disappears earlier for the low-emissions scenarios than for the high-emissions scenar-356

ios in the ensemble members provided to the CMIP6 archive (Table S4). For all scenar-357

ios, the first year of practically sea-ice-free conditions ranges from some years before present358

to the end of this century (Table S4), with a clear majority of models reaching ice-free359

conditions before 2050. This finding remains valid for the selected models. From the mid-360

dle of the century onward, scenario dependence becomes more and more evident. For ex-361

ample, the loss of sea-ice area in March occurs much faster from 2050 onward in scenario362

SSP5-8.5 than in other scenarios (Figure 2c).363

–12–©2020 American Geophysical Union. All rights reserved.



manuscript submitted to Geophysical Research Letters

5 Conclusion364

Based on the analyzed evolution of Arctic sea-ice area and volume in CMIP6 mod-365

els, in this contribution we have found the following:366

• CMIP6 model performance in simulating Arctic sea ice is similar to CMIP3 and367

CMIP5 model performance in many aspects. This includes models simulating a368

wide spread of mean sea-ice area and volume in March and September; the multi-369

model ensemble spread capturing the observed mean sea-ice area in March and370

September; the models’ general underestimation of the sensitivity of September371

sea-ice area to a given amount of global warming; as well as most models’ failure372

to simulate at the same time a plausible evolution of sea-ice area and of global mean373

surface temperature.374

• CMIP6 model performance differs from CMIP3 and CMIP5 in some aspects. These375

include a larger fraction of CMIP6 models capturing the observed sensitivity of376

Arctic sea ice to anthropogenic CO2 emissions and the CMIP6 multi-model en-377

semble mean being closer to the observed sensitivity of Arctic sea ice to global warm-378

ing. It is unclear to what degree these improvements are caused by a change in379

the forcing versus improvement of model physics.380

• The CMIP6 models simulate a large spread for when Arctic sea-ice area is pre-381

dicted to drop below 1 million km2, such that the Arctic Ocean becomes practi-382

cally sea-ice free. However, the clear majority of all models, and of those models383

that best capture the observed evolution, project that the Arctic will become prac-384

tically sea-ice free in September before the year 2050 at future anthropogenic CO2385

emissions of less than 1000 GtCO2 above that of 2019 in all scenarios.386
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Figure 1. Comparison of sea-ice metrics as simulated by the first ensemble members of

CMIP3 (blue), CMIP5 (orange) and CMIP6 (green) models. The individual panels show the

mean Arctic sea-ice area (SIA) in (a) March and (b) September for 1979–1998; mean Arctic

sea-ice volume (SIV) in (e) March and (f) September for 1979–1998; and (c-d) the sensitivity

over the period 1979–2014 of September sea-ice area to (c) CO2 emissions and (d) global annual

mean surface temperature (GMST). (g) The sensitivity of Arctic sea-ice area to CO2 emissions

scattered against the sensitivity of GMST to CO2 emissions. In (a-f), horizontal dashes represent

the first ensemble member of each model and crosses represent the multi-model ensemble mean.

The thick dashed black lines denote the average of the observational satellite products, where

available. The dotted lines denote one standard deviation of observational uncertainty. The green

dashed lines denote the 2σ plausible range including internal variability and observational uncer-

tainty as defined in section 2. The gray shadings around the lines denote overlays of estimated

internal variability from all CMIP6 models with three or more ensemble members, with each

overlay representing the 1-standard-deviation spread of a single model. Hence, the darker the

shading, the more models agree on internal variability to cover a certain range.

–14–©2020 American Geophysical Union. All rights reserved.



manuscript submitted to Geophysical Research Letters

0 2500 5000 7500 10000
0

5

10

15

20

Se
a 

ice
 a

re
a 

[m
illi

on
 k

m
2 ]

a)

0 2500 5000 7500 10000
Cumulative CO2 emissions [Gt]

0

2

4

6

8

10

12

Se
a 

ice
 a

re
a 

[m
illi

on
 k

m
2 ]

d)

0 1 2 3 4 5
0

5

10

15

20
b)

0 1 2 3 4 5
Surface temperature change [°C]

0

2

4

6

8

10

12e)
Historical
SSP5-8.5
SSP2-4.5
SSP1-2.6
Observations

1950 2000 2050 2100
0

5

10

15

20
c)

1950 2000 2050 2100
Year

0

2

4

6

8

10

12f)

March

September

Figure 2. Evolution of Arctic sea-ice area over the historical period and following three

scenario projections in (a-c) March and (d-f) September as a function of (a,d) cumulative anthro-

pogenic CO2 emissions, (b,e) global annual mean surface temperature anomaly and (c,f) time

for all available CMIP6 models. Thick lines denote the multi-model ensemble mean, where all

models are represented by their first ensemble member, and the shading around the lines indi-

cates one? standard deviation around the multi-model mean. Faint dots denote the first ensemble

member of each model and thick black lines and crosses denote observations. Note that discon-

tinuities in the multi-model ensemble mean arise from a different number of available models for

the historical period and the scenario simulations.
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Figure 3. CMIP6 projections of (a) future cumulative CO2 emissions, (b) global annual mean

surface temperature anomaly and (c) year when September-mean sea-ice area drops below 1 mil-

lion km2 for the first time in each simulation. The numbers at the top of the panels denote the

number of simulations that do not simulate a sea-ice cover below 1 million km2 by 2100 (top row)

and the total number of simulations (bottom row) for each scenario. Each dot represents a single

simulation, with all available CMIP6 simulations shown in the figure.
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