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Synopsis Seasonality describes cyclic and largely predictable fluctuations in the environment. Such variations in day

length, temperature, rainfall, and resource availability are ubiquitous and can exert strong selection pressure on organ-

isms to adapt to seasonal environments. However, seasonal variations exhibit large scale geographical divergences caused
by a whole suite of factors such as solar radiation, ocean currents, extent of continents, and topography. Realizing these

contributions in driving patterns of overall seasonality may help advance our understanding of the kinds of evolutionary

adaptations we should expect at a global scale. Here, we introduce a new concept and provide the data describing the
overall degree of seasonality, based on its two major components—amplitude and predictability. Using global terrestrial

datasets on temperature, precipitation and primary productivity, we show that these important seasonal factors exhibit

strong differences in their spatial patterns with notable asymmetries between the southern and the northern hemisphere.
Furthermore, our analysis reveals that seasonality is highly diverse across latitudes as well as longitudinal gradients. This

indicates that using a direct measure of seasonality and its components, amplitude and predictability, may yield a better

understanding of how organisms are adapted to seasonal environments and provide support for predictions on the
consequences of rapid environmental change.

Introduction

Seasonality is a ubiquitous feature of our planet and
represents the strongest source of external variation
influencing almost all natural systems (Fretwell 1972;
Boyce 1979; Wingfield and Kenagy 1991). The often
pervasive, but predictable, seasonal differences in the
environment underpin the evolution of the earth’s
biodiversity as well as key biological processes such
as reproduction (Bronson 2009), predator–prey inter-
actions (Elton and Nicholson 1942), host–pathogen
dynamics (Altizer et al. 2006), and the impressive an-
nual migrations by billions of animals (Dingle 2014).

To successfully live and reproduce in seasonal
habitats, organisms require a suite of morphological,
physiological, and behavioral adaptations. However,
seasonality varies geographically; the combined effect
of the earth’s tilt and rotation result in annual var-
iations in solar radiation, with downstream implica-
tions for annual photoperiod and effects on
temperature, that is greatest at the poles and less

pronounced at the equator (MacArthur 1972). The
necessity of an organism to adapt to seasonal envi-
ronments is thus highly dependent on its location. In
environments with small variation, organisms ex-
pressing one phenotype—with a set of morphologi-
cal, physiological, and behavioral characteristics
resulting from the interaction of its genotype with
the environment—has high fitness at all times
(Levins 1968). In contrast, theory predicts, that large
environmental variation leads to genotypes express-
ing different phenotypes, each having maximum fit-
ness at different times of the year, e.g., summer and
winter (Levins 1968; Wingfield 2008). This includes
phenotypic flexibility in which an individual can ad-
just morphology, physiology, and behavior to maxi-
mize fitness in seasonal environments. For example,
snowshoe hares, Lepus americanus, change pelage
color from brown and cryptic in summer to white
and cryptic in winter (Pielou 1994). Migration is
another prime example for seasonal adaptation and
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individuals often express high phenotypic flexibility
while undergoing various life-history processes asso-
ciated with the movement, reproduction and molt
(e.g., Piersma and Drent 2003).

Phenotypic flexibility of individuals seems to be
linked with varying seasonality and timing of sea-
sonal life-history strategies. This flexibility may vary
with latitude, but it can also vary along ecological
gradients within latitude (e.g., Naya et al. 2008;
Molina-Montenegro and Naya 2012). Another aspect
of phenotypic flexibility addresses timing of life his-
tory stages. Individuals with more life history stages
have flexibility to cope with a wide variation in en-
vironmental conditions but have less flexibility in
timing those stages. Individuals with very few life
history stages can tolerate less variation in environ-
mental conditions but have greater flexibility in tim-
ing those stages (Wingfield 2008). Whereas
seasonality is expressed via different climatic and bi-
otic factors, such as temperature, precipitation, and
biological productivity and while solar radiation
varies strictly across latitudes, the other factors are
modified by a large array of additional processes
such as ocean currents, wind directions (Screen
2014), sea-ice extent (Francis et al. 2009), continental
extent, and topography (Ghalambor et al. 2006). For
example, most tropical habitats show high seasonal
variation in precipitation pattern that require organ-
isms to rapidly respond and time the onset of breed-
ing to these favorable conditions (Murton and
Westwood 1977).

Furthermore, global climate change has altered
temperature and precipitation patterns at an unprec-
edented and geographically diverse rate across the
globe (Burrows et al. 2011). These changes signifi-
cantly altered seasonal profiles and have already gen-
erated profound impacts on ecosystem processes
such as seasonal trophic interactions (Edwards and
Richardson 2004; Parmesan 2006; van Gils et al. 2016).

To predict the response, as well as the conse-
quences, of organisms to these changes in seasonal-
ity, there has been an increasing effort to understand
the underlying ultimate and proximate mechanisms
that shape an individual’s success and fitness within
seasonal habitats. Such research often requires the
characterization of the underlying seasonality that
is experienced by the organism. Given the complex
integrations of a whole suite of factors on seasonality
it seems important to clarify and quantify these pat-
terns instead of using latitude as a proxy for season-
ality that may limit our interpretations of seasonal
mechanisms found within field studies.

The overall aim of this study is to develop global
metrics of the degree of seasonality in terrestrial

systems, incorporating its major components, the
seasonal amplitude, and the predictability of seasonal
variation (Fig. 1). The amplitude of seasonal varia-
tion is a good measure of the magnitude of seasonal
differences and has been used as such in multiple
studies aiming to quantify the strength of seasonality
(e.g., Fan and van den Dool 2008; Wang and Dillon
2014; Lisovski et al. 2017) as well as to identify re-
cent trends in seasonal dynamics (e.g., Vose et al.
2005; Stine et al. 2009; Burrows et al. 2011; Xu
et al. 2013). Quantification of the uncertainty in sea-
sonal dynamics—e.g., among year variation in the
annual extremes of temperature and rainfall (Jetz
and Rubenstein 2011), or the interactions between
the within and among year variations (Wingfield
et al. 1993)—are less apparent in the literature. We
here aim to introduce a concept of predictability that
incorporates both variation in the seasonal phenol-
ogy (phase) and variation in the seasonal amplitude.
Furthermore, by using an algorithm that quantifies
predictability of seasonal variation based on informa-
tion collected during previous annual cycles, we aim
to apply a method that reflects the capabilities of
organisms to foresee future seasonal dynamics, at
both ultimate and proximate levels, and thereby
quantify the potential strength of selection on sea-
sonal adaptations. The seasonal amplitude and the
predictability of the seasonal dynamic may by itself
provide relevant measures of seasonality important
for generation of hypotheses related to proximate
mechanisms. However, the combination that we de-
fine as the degree of seasonality may have additional
important implications to investigate proximate
mechanisms by which organisms perceive environ-
mental information and transduce it into morpho-
logical, physiological, and behavioral responses
appropriate for that season. Furthermore, we aim
to apply this concept to global terrestrial datasets
on temperature, precipitation as well as primary pro-
ductivity and discuss its suitability for future
research.

Methods

Remote sensing

Data from remote sensing systems for temperature,
precipitation, and vegetation index, indicative for
terrestrial net primary productivity (NPP), were
downloaded for 2007–2015. Global surface tempera-
tures were obtained from the GHCN Gridded V2
dataset provided by the NOAA/OAR/ESRL PSD,
Boulder, Colorado, USA (Fan and van den Dool
2008). The downloaded files consisted of monthly
mean temperatures organized in a 0.5!0.5 degree
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spatial grid. Daily amounts of precipitation on a 1!1
degree grid were obtained from the NASA Global
Precipitation Climatology Project (GPCP)
(Huffman et al. 2001). Weekly composite (cleanest
data point for each grid cell across seven consecutive
images) NPP data (Running et al. 2015) with a spa-
tial resolution of 0.1!0.1 degree were obtained from
the NASA Earth Observation repository
(MOD17A2_E_PSN; ftp://neoftp.sci.gsfc.nasa.gov/
geotiff.float/).

Data manipulation

If necessary, datasets were aggregated (median) to
match the highest common resolution of a 1!1 de-
gree spatial grid (restricted by precipitation data)
covering the entire globe with monthly observations
(restricted by temperature data). Values for grid cells
located into the oceans and the Antarctic continent
were discarded. For each grid cell located on land,
temperature, precipitation, and NPP time series were
treated in the same way and the following procedure
and its algorithms were implemented into an R
package called FourSeasons (available at: https://
github.com/slisovski/FourSeasons/) also including a
fine scaled temperature time series for illustration
purposes (land-based NOAA weather station: Lake
Yellowstone). First, a wavelet analysis was used to
determine whether the time series showed significant
seasonal dynamics across years; we used the wt func-
tion within R package biwavelet (Gouhier et al.
2016) with default settings, including “morlet” as
the mother wavelet (for more detailed information,
see description of R package FourSeasons). Test for
significance was based on a regular v2-test, and the
associated wavelet power spectrum across the time
series. In case of significant seasonal periodicity, the
time series was subdivided into annual cycles of

12 months centering the annual peak by fitting a
cosine-curve to the data using a least-square ap-
proach. Next, predictability was quantified using a
seasonally adjusted forecasting method from the R
package forecast (Hyndman and Khandakar 2008);
an ARIMA (autoregressive integrated moving aver-
age) model was used to decompose 4 years of the
time series into its seasonal and trend components.
Based on that information, predictions were made
for the next year, e.g., 52 weeks. This process was
applied across the time series allowing predictions
for 2011–2015. These predictions were then com-
pared with the remote sensed observations using
the R2 value as a measure of model performance
and ultimately as a measure of predictability. To re-
duce the influence of the seasonal amplitude, quan-
tifications of predictability were done using centered
z-transformed (scale function in R) observations. The
seasonal amplitude was simultaneously extracted for
each year from 2011 to 2015 as the difference be-
tween the lower and upper 2.5 quantile of the annual
variation (e.g., the 95 percentile). We deliberately
ignored extreme values during the annual cycle to
account for potential observational errors. Finally,
the degree of seasonality was defined as the mean
of the predictability and the normalized seasonal am-
plitude, e.g., a predictability of 0.8 and amplitude of
0.5 would lead to a 0.65 in the degree of seasonality.
R code for all steps of the data manipulation and for
all three data sources (temperature, precipitation,
and NPP) are attached as Supplementary Material
S2–S3 and can also be downloaded from https://
github.com/slisovski/Lisovski-et-al.-2017-ICB.

Day length pattern

Daylight hours per day, from civil-twilight at dawn
to civil-twilight at dusk, across the globe were calcu-
lated using the R package “GeoLight” and the im-
plemented function “twilight” (Lisovski and Hahn
2012). The mean of the maximum minus the mini-
mum in day length hours across latitudes was calcu-
lated to depict variation in day length across
latitudes.

Terrestrial ecoregions

To summarize the results across major terrestrial
ecoregions we used a simplified version of the elab-
orate classification of terrestrial ecoregions from
Olson and Dinerstein (2001). See Supplementary
Material S1 for detailed information on the used
simplifications.

Fig. 1 The degree of seasonality, defined as a combined effect of

the seasonal amplitude (magnitude of the seasonal change) and

the predictability (consistency) of the seasonal variation across

years. The lines exemplify different magnitudes in the amplitude

and the predictability that would ultimately lead to differences in

the degree of seasonality
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Results

Temperature

The vast majority (99.5%) of terrestrial habitat (not
considering the Antarctic continent) exhibit some
degree of seasonal variation of temperature. Areas
lacking significant seasonality were found in north-
west and central South America and small patches in
equatorial regions of Africa, New Guinea, and
Indonesia. In general, the degree of seasonality was
highest above 30"N (#0.75), exhibits a decline to-
ward the equator (0.2), and peaks again at #35"S
(0.58) before decreasing toward the southern tip of
the land masses of South America, Africa, Australia,
and New Zealand. Across latitudes, predictability was
relatively higher than the normalized amplitude of
the seasonal variation. Given that the predictability
in the seasonal dynamic was found to be high (>0.8)
in almost all environments, variation in the degree of
seasonality is mainly driven by variation in the sea-
sonal amplitude. The highest amplitude was found in
north-eastern Russia in the area surrounding the
Lena river (Figs. 2A and 3B).

Precipitation

The relative number of habitats that show seasonality
in precipitation is considerably less (75.5%) com-
pared with previously identified temperature patterns
of seasonality. In general, the areas around the equa-
tor (20"N–20"S) show relatively high degrees of sea-
sonality (#0.6) with the highest values in south Asia
extending south of the Himalaya to northern
Australia, as well as in northwestern South
America. Furthermore, the Sahel zone, savannas
south of the equatorial rainforest in Africa (including
Madagascar) as well as central South America and
central America were found to be exhibit strong sea-
sonality in rainfall pattern. In higher latitudes, areas
with moderate to low degrees of seasonality were
found in the tundra/taiga regions of north-central
North America and in eastern Asia (e.g., Japan,
North Korea and South Korea, China, Mongolia,
and the adjacent Russian Arctic). In contrast to the
temperature pattern, predictability in the seasonal
dynamic was generally low across the globe with a
few highly predictable patches again in south Asia
and toward northern Australia as well as on the
Atlantic coast of western Africa (south of the
Sahara Desert) and at the Amazonas river delta in
South America (Figs. 2B and 3C).

NPP

The relative area of seasonal to non-seasonal habitats
in primary productivity was found to be the lowest

(66.5%) compared to seasonality in temperature and
precipitation. Large areas that experience seasonal
dynamics were found in the ranges 50"–70"N as
well as 5"S–20"S. Smaller proportions were found
in latitudes closer to the equator, mainly due to large
vegetation free areas like the Sahara and mountains
like the Himalaya, as well as in the very high north-
ern latitudes where vegetation is limited to lichens
and mosses and the landscape becomes dominated
by barren rocks (Pielou 1994). Highest values of the
degree of seasonality (>0.75) as well as seasonal am-
plitude and predictability were found in the northern
hemisphere above 40"N. A slight reduction in the
degree of seasonality was observed toward and south
of the equator before the degree of seasonality in-
creases again at latitudes higher than 30"S (Figs. 2C
and 3D).

Global summary

The northern tundra, boreal forests/taiga as well as
the temperate forests and grasslands exhibit the high-
est degree of seasonality in temperature and primary
productivity—with the above discussed major differ-
ence in the very high Arctic where a lack of vegeta-
tion causes low or no seasonality in primary
productivity while seasonality in temperature re-
mains high. Seasonality in temperature and primary
productivity was found to be intermediate (or even
high) in Mediterranean, Deserts, and Xeric
Scrublands. In contrast, the degree of seasonality in
precipitation was found to be most pronounced in
the tropical and subtropical ecoregions and generally
low in the predominant ecoregions of the northern
hemisphere (e.g., temperate forest, taiga, and tundra)
(Fig. 2D).

Discussion

Seasonality describes fluctuations that are cyclic,
largely predictable, and partitions the annual cycle
of many organisms into distinct periods when life
history stages such as reproduction and non-
reproduction are expressed. However, while this
may appear to be a simple relationship between en-
vironmental change and expression of life history
stages, large scale geographical divergences in sea-
sonal variation can significantly diversify this pattern.
Thus, we find a large environmental gradient in how
far seasonality may partition the annual cycle of or-
ganisms into distinct life history stages which in turn
determines flexibility in timing of those stages (e.g.,
Wingfield 2008). Furthermore, seasonal variation can
be found in many environmental factors, such as
temperature, precipitation, and primary productivity,
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all exhibiting profound or slightly different patterns
of seasonality. It is thus important to consider all
issues that drive the patterns of overall seasonality
that may provide a better understanding of the kinds
of evolutionary adaptations we should expect at a
global scale.

By developing a single metric reflecting the degree
of seasonality that is based on its two major compo-
nents—amplitude and predictability—and by apply-
ing this concept to freely available global datasets on
temperature, precipitation, and NPP across all ter-
restrial habitats, we aimed to explore how we might
investigate the concept of phenotypic flexibility in
expression of life history stages and their timing.
Most importantly, our analysis, and the resulting
framework, provides a measure of seasonality that
indirectly incorporates the effects of, e.g., the extent
of land masses, ocean currents, wind directions, and

topography. The results show the greater diversity of
patterns of seasonality than the previously followed
proxy for seasonality-latitudinal patterns of day
length (Fig. 3A). In fact, the degree of seasonality
and its two components, amplitude and predictabil-
ity, not only show non-linear relationships across
latitudes, but also substantial differences between the
northern and the southern hemispheres as well as
high variations across longitudinal gradients. For ex-
ample, the interior lowlands and the great plains in
central US exhibit similar degrees of seasonality to the
north slope of Alaska situated some 30" further north
with largely different photoperiods. The highest de-
gree of seasonality in temperature measured across
five recent years occurred in areas around the Lena
River in central Russia (#124"E, > 55"N,) with de-
creasing seasonality toward both the east and the west
(see similar pattern in Ghalambor et al. 2006).

Fig. 2 Degree of seasonality in terrestrial ecosystems (purple) with its two major components, the amplitude and predictability for

temperature (top left), precipitation (top right) and NPP (bottom left). All maps have a spatial resolution of 111!111 km. Areas

without significant seasonal dynamics are indicated in gray. The bottom right panel shows the median and the 50 percentile (box) and

the 95 percentiles (outer bars) of the degree of seasonality for all factors (e.g., temperature, precipitation, and primary productivity)

across major terrestrial ecoregions. The x-axes indicate the relative amount (in percentage) of area that exhibits seasonal variation

within each ecoregion
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Looking separately at the seasonal amplitude and
predictability revealed further informative patterns.
For example, the highest predictability is sometimes
found in areas that experience rather low intra-
annual variation; seasonal rainfall patterns were
highly predictable in two latitudinal bands around
the equator on the African continent. Yet the highest
seasonal amplitude in precipitation occurred in the
areas that are highly affected by the annual

monsoons such as in central-south Asia (e.g., India,
Nepal, and Bangladesh), northern Australia and re-
gions of the Amazon rainforest. Variable ENSO (El
Nino-Southern Oscillation) may at least explain the
lower predictability in the Australasian regions (e.g.,
Power et al. 1999). This example clearly shows the
power of quantifying seasonality based on environ-
mental variables that integrates, or in other words
are affected by, such large-scale climatic processes.

Fig. 3 The degree of seasonality across latitudes for (A) day length, (B) temperature, (C) precipitation, and (D) NPP. The thick lines

and the symbols indicate the mean values for binned latitudes (error bars describe standard deviation). For day length, the amplitude

has been normalized with 1 being the highest seasonal difference (e.g., 24 h). The area of terrestrial land across latitudes is shown by

the bars with dark gray indicating areas exhibiting seasonal variation in the respective factors (e.g., temperature) and the light gray

proportion indicates the area lacking seasonality. The Antarctic Continent has been ignored given the lack of data (e.g., no NPP data)

and the very low percentage of terrestrial habitats
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Large scale analyses that are global in extent come
with obvious caveats. Global datasets, and notably
remote sensing data, are often indirect measures of
abiotic or biotic factors. For example, we used the
MODIS NPP dataset which is mainly based on the
fraction of photosynthetically active radiation and
the leaf area index from another MODIS system.
Although it better reflects the NPP, it is highly cor-
related with the commonly used NDVI (Normalized
Differenced Vegetation Index) dataset that has been
shown to also indicate primary productivity pattern
in many different habitats (e.g., Zhang et al. 2003;
Soudani et al. 2006). However, such measures are
not always linear across habitats (Hmimina et al.
2013). Furthermore, climate and notably cloud cover
creates noise in remote sensed data and often leads
to non-informative pixels (Hmimina et al. 2013).
While new raw-data processing methods deal with
many of these issues (e.g., Kanamitsu et al. 2002;
Hird and McDermid 2009) it often results in a de-
crease in spatial and temporal resolution that ham-
per our ability to perform seasonal analysis requiring
more than a few data points across the annual cycle.
In our analyses, we aggregated the time-series into
monthly measures, matching the lowest temporal
resolution of the used datasets. While monthly ob-
servations, or aggregated monthly means, might be
enough to derive measures of amplitude (some stud-
ies used four or even two measures per year to quan-
tify seasonal variation and variability; e.g., Burrows
et al. 2011; Jetz and Rubenstein 2011); it is arguably
a course resolution for the quantification of predict-
ability or certain phenological measures like the start
of the season, where changes, trends, and variation
occur within short time periods (e.g., days and
weeks) have biological significance (e.g., Sheriff
et al. 2015; van Gils et al. 2016). Spatial resolution
is another factor that needs to be accounted for in
the interpretation of the results presented here.
Despite a high temporal resolution in the NPP and
the dataset we used for surface temperature
(monthly means), the spatial resolution of the pre-
cipitation dataset restricted our analysis to a 1!1
degree grid that is rather low compared to a
0.1!0.1 degree resolution of the NPP dataset.
Arguably, a resolution of 1!1 degree only allows
for inferences on large scale pattern. Thus, our re-
sults provide an overall geographic pattern on the
underlying seasonality that might not reflect the ex-
act seasonality individuals experience within their
(micro-) habitat.

Nevertheless, and despite the above cautionary ca-
veats, our results reveal interesting patterns and can
have multiple applications for future research. For

example, does variation in degree of seasonality pre-
dict phenotypic flexibility and how organisms per-
ceive environmental cues that indicate future
conditions for breeding and other life history stages
(i.e., perception–transduction–response, Wingfield
and Mukai 2009)? Furthermore, our results and nu-
merous previous analyses have demonstrated the
strong hemispheric asymmetry in climatic conditions
(e.g., Addo-Bediako et al. 2000; Ghalambor et al.
2006); yet, the use of latitude remains a major proxy
for the magnitude of seasonal variation. The domi-
nance of continents in the north (80% of the land
masses if we ignore the separated Antarctic conti-
nent) and the extensive oceans in the south have
demonstrable effects on the climatic conditions
(Bonan 2002). The resulting hemispheric differences
in seasonality have led to very different physiological
adaptions in organisms between the two hemi-
spheres. For example, differences have been found
in frost tolerance and proportion of deciduous tree
species (Korner and Paulsen 2004). In animals, the
lower predictability of the inter-annual variation is
thought to be responsible for the generally lower
metabolic rates of terrestrial mammals of most of
the southern continents than in northern counter-
parts (Lovegrove 2000). Furthermore, low-
temperature related diapause is virtually absent in
southern insect species (Convey 1996). Also, the
combination of more unpredictable and low-
amplitude seasonality in the south has led to rela-
tively more species showing erratic and nomadic
movements compared to the highly predictable and
directed migrations of many bird species breeding in
the northern hemisphere (Dingle 2014). While there
is an increasing body of literature revealing these
fundamental differences in seasonal adaptations be-
tween the hemispheres (reviewed in Chown et al.
2004), our results suggest that even the northern
hemisphere experiences large geographical differences
that should be taken into consideration.

We hope that the concept of the degree of season-
ality as well as its two components, predictability and
amplitude, and the results in forms of data-layers
(supplementary material), may guide future research.
Additionally, the R package and the code provided
can be used on both fine- and broad-scale climate
datasets, providing the same metrics for different
spatial scales. While this may help to pin down de-
gree of seasonality at specific localities and allow di-
rect correlation of traits with the underlying
environment, we also hope that the results can
help to generate hypotheses and allow precise pre-
dictions to be made that can be pursued with exper-
imental approaches.
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