On the impact of atmospheric vs oceanic resolutions on the representation of the sea surface temperature in the South Eastern Tropical Atlantic
Despite the efforts of the modelling community to improve the representation of the sea surface temperature (SST) over the South Eastern Tropical Atlantic, warm biases still persist. In this work we use four different configurations of the fully-coupled AWI Climate Model (AWI-CM) which allow us to gain physics-based insight into the role of the oceanic and atmospheric resolutions of the model in the regional distribution of the SST. Our results show that a sole refinement of the oceanic resolution reduces warm biases further than a single increase of the atmospheric component. An increased oceanic resolution is required (i) to simulate properly the Agulhas Current and its associated rings; (ii) to reinforce the northward-flowing Benguela Current and (iii) to intensify coastal upwelling. The best results are obtained when both resolutions are refined. However, even in that case, warm biases persist, reflecting that some processes and feedbacks are still not optimally resolved. Our results indicate that overheating is not due to insufficient upwelling, but rather due to upwelling of waters which are warmer than observations as a result of an erroneous representation of the vertical distribution of temperature. Errors in the representation of the vertical temperature profile are the consequence of a warm bias in the simulated climate state.